List of Figures

Figure	Title	Page No.
1.1	Size spectrum of particles	1
1.2	Electrical double layer according to Helmholtz-perrin	6
1.3	Electrical double layer according to Guoy-chapman	7
1.4	Electric double layer according to Stern	8
1.5	Electric double layer according to modern views	9
1.6	Schematic representation of the structure of the clay	12
1.7	The total potential energy diagram	16
1.8	Schematic diagram of possible mechanism of colloid	22
1.9	Three criteria for colloid facilitated contaminant transport	25
1.10	Source of heavy metal contamination	29
2.1	Map of the study area and the sampling sites along the	37
	Mahi river	
2.2	Map of the study area and the sampling sites along the	38
2.3	Mini river Structure of dyes used in the adsorption experiments	48
2.4	Schematic diagram showing the model column	51
3.1	Litholog of the Rayka section	62
3.2	Electrical conductivity and colloid size of Rayka section	65
3.3	Litholog of the Jaspur section	66
3.4	Electrical conductivity and colloid size of Jaspur section	68
3.5	Litholog of Dodka section	69
3.6	Electrical conductivity and colloid size of Dodka section	71
3.7	Litholog of Mujpur section	72
3.8	Electrical conductivity and colloid size of Mujpur section	74
3.9	Electrical conductivity and particle size of colloids of	78
	Angad section	
3.10	Electrical conductivity and particle size of colloids of	80
	Amrapura section	1

3.11	Electrical conductivity and particle size of colloids of	82
	Chamunda nagar section	
3.12	Size distribution of river colloids and its Rayleigh ratio	85
3.13	Size distribution of ground water colloids and its Rayleigh	86
	ratio	
3.14	SEM image of Mahi river colloids	88
3.15	SEM combined EDS image of colloids	88
3.16	X ray diffraction analysis of colloids of Rayka section	91
3.17	X ray diffraction analysis of colloids of Jaspur section	92
3.18	Transmission Electron Microscopy image of colloidal	94
	particles	
3.19	Break through curves of colloid mobilization from Rayka	99
	sediments	
3.20	X ray diffraction spectra of colloids	102
3.21	Energy dispersive X-ray analysis (EDS) spectra of colloids	102
3.22	Scanning electron microscopy image of aggregated soil	103
	colloids	
3.23	Effect of initial concentration on adsorption of dye	105
3.24	Effect of adsorbent mass on adsorption of dye	108
3.25	Effect of pH on the adsorption of (a) Alizarin red (b)	110
2.25	Methylene blue	110
3.26	Zeta potential of colloidal suspensions at different pH	110
3.27	The adsorbed amount of dye at different initial	114
	concentration vs time	
3.28	Intra-particle diffusion plot for the adsorption of dye on colloid	117
3.29	X-ray diffractogram of aggregated colloidal particles	120
3.30	EDX spectra of aggregated colloidal particles	120
3.31	Adsorption of dye contaminant on native colloids	123
3.32	Leaching of colloidal particles from soil column	125
3 33	Particle size distribution of colloids eluted from sediments	128

3.34	Transport of the dye through the soil column at (n) 0.01M	130
	NaCl, (o) 0.001M NaCl	
3.35	Transport of the dye contaminant at elevated pH values (a)	135
	pH 7.5 (b) pH 9.5 (c) pH 11.5	
3.36	SEM combined EDS spectra of colloids	140
3.37	Mobilization of colloids from sediments	143
3.38	(a) Adsorption of dye on colloid (b) Freundlich adsorption	145
	isotherm	
3.39	Transport of methylene blue through the column	147
3.40	Effect of pH on the adsorption of Cr(VI) on native colloid	150
3.41	Effect of initial solution concentration on the adsorption	152
	of Cr(VI) on colloid	
3.42	Transport of Ni, Pb and Cr(VI) transport through the soil	157
	column	
3.43	Transport of chromium through (m) contaminated sediment	160
	(10 cm) and ($\bullet \blacktriangle \nabla$) contaminated zone supported on	
	uncontaminated zone	
3.44	Adsorption of chromium on sediment	161
3.45	Heavy metal content in Angad sediments	168
3.46	Heavy metal content in Amrapura sediments	169
3.47	Concentration of heavy metals in River water	173
3.48	Concentration of Heavy metals in Ground water	175
3.49	Effect of partition coefficient on the transport of	187
	contaminants in (a) clay (b) silt and (c) sand	
3.50	Effect of flow rate on the transport of chemicals (9 mL/hr	191
	and 18 mL/hr)	
3.51	FTIR spectra of humic acid	195
3.52	Thermogravimetry analysis (TGA) of Humic acid	197
3.53	Adsorption of dyes and Cr(VI) on humic acid at different	203
	initial concentrations	
3.54	Effect of initial concentration vs time	209