CHAPTER IV

Figure No.	Caption to Figures	Pg. No.
4.1	Experimental set up for impedance measurements. Two Ag/AgCl	190
	electrodes are used as CEs, and potential across the membrane	
	(BM) is measured with two REs using Haber–Luggin capillaries	
	salt bridges (HLC). The solution flux (SF) is directed to the	
4.2	Schemetic discrements and seture used for motal ion	102
4.2	transport studies	193
4.3	Schematic experimental set up for the determination of	194
	membrane permselectivity by membrane potential measurements	
4.4	ATR Spectra of (A) ZrT particle (B) Cross linked ZrTETA-55 membrane	206
4.5	¹ H-NMR spectrum of ZrTETA-55 membrane	206
4.6	Schematic structure of ZrTETA-55 membrane	206
4.7	SEM images of ZrT gel particles	206
4.8	SEM image of cross section of ZrTETA-55 membrane	206
4.9	SEM image of cross section of ZrTETA-55 membrane	206
4.10	DSC of ZrTETA-X membranes	207
4.11	DMA curves for ZrTETA-X membranes	207
4.12	Adsorption capacity of ZrTETA-55 membrane for different metal ions	207
4.13	Diffuse reflectance spectrum (DRS) for ZrTETA-55 membrane before and after Cu ²⁺ chelation	207
4.14	Proposed structure for Cu ²⁺ chelated ZrTETA-55 membrane	207
4.15	WXRD pattern of ZrTETA-55 and Cu ²⁺ Chelated ZrTETA-55	207
	membrane	
4.16	EDX of ZrTETA-55 membrane	208
4.17	EDX of Cu ²⁺ chelated ZrTETA-55 membrane	208
4.18	Membrane conductivity data in equilibration of different metal salt solutions (0.01 M)	208
4.19	i-v characteristics for ZrTETA-X membranes in equilibration with 0.10M NaCl solution	208
4.20	t_i^m values in equilibration with 0.1M metal ion solutions across ZrTETA-X membranes	208

4.21	Variation of electro osmotic flux (J_v) with applied voltage for different ZrTETA-X membranes	208
4.22	Electro-transport flux for different metal ions (J) (0.10 M) across ZrTETA-X membranes at 10 mA/cm ² applied current density	209
4.23	Ionic flux data across different ZrTETA-X membranes for various metal ions (0.10M) under 10 mA·cm ⁻² applied current density	209
4.24	Separation factor (SF) of different equi-molar metal ion mixtures (0.10 M) for ZrTETA-X membranes under 10 mA·cm ⁻² applied current density	209
4.25	Effect of pH on Cu ²⁺ adsorption towards crosslinked ZrTETA-55 hybrid membrane	215
4.26	Effect of contact time on the adsorption of Cu ²⁺ at different concentrations using ZrTETA-55 hybrid membrane	215
4.27	Effect of Cu ²⁺ concentration on adsorption (%) using crosslinked ZrTETA-55 hybrid membrane at pH 7.0	215
4.28	Effect of adsorbent dose for Cu ²⁺ (50mg.L ⁻¹) adsorption using crosslinked ZrTETA-55 hybrid membrane	215
4.29	Vant Hoff plot [log K _c vs. 1/T]	215
4.30	Pseudo first order plots for Cu ²⁺ adsorption on crosslinked ZrTETA-55 hybrid membrane at different concentration	215
4.31	Pseudo second order plot for Cu ²⁺ adsorption on crosslinked ZrTETA-55 hybrid membrane at different concentration (pH 7.0)	216
4.32	Freundlich plots for Cu ²⁺ adsorption on crosslinked ZrTETA- 55 hybrid membrane under different experimental conditions	216
4.33	Langmuir plot for Cu ²⁺ adsorption on crosslinked ZrTETA-55 hybrid membrane under different experimental conditions	216

Table No.	Caption to Tables	Pg. No.
4.1	Properties of commercial ion exchange membranes [1-7]	180
4.2	w, $_{H2O}$, IUC, r(Å), X_m , and w values for different ZrTETA-X membranes	210
4.3	Oxidative and Hydrolytic Stabilities for ZrTETA-X Chelating Membranes	210
4.4	Characteristic values of i-v curves for ZrTETA-X membranes in equilibration with 0.10 M NaCl solutions	210
4.5	Thermodynamic parameters and correlation coefficients (R^2) at different temperatures for the adsorption of Cu ²⁺ on crosslinked ZrTETA-55 hybrid membrane at pH 7.0	217
4.6	Pseudo-first- and second-order kinetic constants and correlation coefficients (R^2) for Cu ²⁺ adsorption at pH 7.0 using ZrTETA-55 hybrid membrane	217
4.7	Freundlich and Langmuir constants and correlation coefficients (R^2) for Cu ²⁺ adsorption on ZrTETA-55 hybrid membrane at pH 7.0	217
4.8	Langmuir correlation coefficients (R_L) for Cu^{2+} adsorption at different concentration on ZrTETA-55 hybrid membrane at pH 7.0	217