Synthesis and characterization of hydrogels from template polymerization of acrylic acid on to modified chitosan

Renu Singh & C. N. Murthy

Polymer Bulletin

ISSN 0170-0839

Polym. Bull. DOI 10.1007/s00289-013-1046-5

🙆 Springer

ONLIN

Polym. Bull. DOI 10.1007/s00289-013-1046-5

ORIGINAL PAPER

Synthesis and characterization of hydrogels from template polymerization of acrylic acid on to modified chitosan

Renu Singh · C. N. Murthy

Received: 6 April 2013/Revised: 22 August 2013/Accepted: 24 August 2013 © Springer-Verlag Berlin Heidelberg 2013

Abstract A novel hydrogel based on chitosan was prepared by graft copolymerization of acrylic acid on diamino derivative of chitosan, i.e., 6-amino-6-deoxychitosan (6a6dC). This diamino chitosan was grafted with acrylic acid in an aqueous solution in contrast to acetic acid in the conventional method. Hydrogen peroxide/Lascorbic acid redox system was found to be an efficient initiator system for grafting reaction in an aqueous system at room temperature. The synthesized hydrogel, 6a6dC-g-PAA, was characterized by Fourier transform infrared, thermogravimetric analyses and Scanning electron microscopy (SEM). Thermal studies showed that it is more stable than chitosan and 6-amino-6-deoxy-chitosan. This 6a6dC-g-PAA, also showed an appreciable water absorbing capacity which was attributed to the very porous surface as observed from SEM analysis.

Keywords 6-Amino-6-deoxy-chitosan \cdot Acrylic acid \cdot H₂O₂/L-ascorbic acid \cdot Hydrogels \cdot Water absorbency

Introduction

Hydrogels are well-known as networks of hydrophilic polymers, which can absorb a significant amount of water (>20 % of their dry mass) without dissolving or losing their structural integrity [1, 2]. Chemically, cross-linked hydrogels were developed in the last few decades as carriers for drugs. The controlled drug delivery devices assure a sustained release and targeted effect [3]. In recent years, the polyacrylic acid (PAA) and its copolymers have been often used as carriers in drug release

R. Singh \cdot C. N. Murthy (\boxtimes)

Applied Chemistry Department, Faculty of Technology and Engineering, The M. S. University of Baroda, PO Box 51, Kalabhavan, Vadodara 390 001, Gujarat, India e-mail: chivukula_mn@yahoo.com