STUDIES ON NANOENCAPSULATION OF NONPOLAR MOLECULES BY CYCLODEXTRIN AND CYCLODEXTRIN BASED POLYMERS

Thesis Submitted To

THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA

For The Degree of

Doctor of Philosophy In Applied Chemistry

Submitted By Gangadhar Tammana

Applied Chemistry Department Faculty of Technology & Engineering The M. S. University of Baroda Vadodara- 390 001 Gujarat, India

October 2013

Tel: 2434188 extn.415, 212

APPLIED CHEMISTRY DEPARTMENT

Faculty of Technology & Engineering The Maharaja Sayajirao University of Baroda Post Box No: 51, Kalabhavan Vadodara- 390 001 (India)

DST-FIST Sponsored Department

Ref. No. App Ch./

Date: 9/10/ 2013

CERTIFICATE

This is to certify that the thesis entitled "Studies on Nanoencapsulation of Nonpolar molecules by cyclodextrin and cyclodextrin based polymers" submitted by Mr. Gangadhar Tammana to The M. S. University of Baroda, Vadodara for the award of Ph.D degree in Applied Chemistry incorporates the original research work carried out by him under my supervision.

Prof. C. N. Murthy **Research Guide Applied Chemistry Department**

Head **Applied Chemistry Department**

Dean Faculty of Technology & Engineering The M. S. University of Baroda

DECLARATION

I state that the work presented in this thesis entitled "**Studies on Nanoencapsulation of Nonpolar molecules by cyclodextrin and cyclodextrin based polymers**" comprises independent investigations carried out by me under the guidance of Prof. C. N. Murthy. Wherever references have been made to the work of others, it has been clearly indicated with the source of information under the references section. The matter presented in this thesis has not been submitted elsewhere for the award of any other degree.

Signature of the Candidate

(Gangadhar Tammana)

Acknowledgements

I am happy to reach another milestone in my life! I would like to take this opportunity to thank my supervisor, Prof. C. N. Murthy, for his invaluable guidance, encouragement and support in the period of this study and preparation of the thesis. His constructive suggestions helped me to come through all the difficulties during my research work. It was my privilege to work under his able guidance. I consider it a great opportunity to have been his student, and I will ever remain grateful to him.

This work would not have been possible without financial support. I thank Council of Scientific and Industrial Research (CSIR) and Department of Science and Technology (DST) for providing me financial support, first under CSIR Fellowship and second under DST PURSE PROGRAMME.

I deeply thank Prof. P. T. Deota, Head, Applied Chemistry Department, for his continual support and encouragement during my research work.

I want to give my special gratitude to Dr. K. V. R. Murthy, Applied Physics Department for valuable guidance, support and help in the fluorescence studies and XRD analysis.

I gratefully express deep appreciation to Dr. Vinod I. Bhoi for his help in many experiments and Dr. Santosh Kumar for his invaluable help by providing so many results and data during the peak time of my experimental work.

I express deep appreciation to Dipesh Bardiya, Pharmacy Department, The M. S. University of Baroda, who helped me in carrying out drug delivery studies.

I would like to thank my fellow research colleagues Dr. R. Murali, Dr. Mayur Patel, Dr. Indrajit Shown, Dr. Shweta Gupta, Renu Singh, Prachi Shah, Vaishali Suthar, Pavan karkare, Dr. Parimal patel, Brijesh Shah, Srinivas Ghodke, Tarun parangi, Gautam patel, Deepak Singh, Umesh and Pranav for their continuous support and encouragement throughout my research work. I wish to express my heartfelt thanks to Dr. R. P. Singh, National Chemical Laboratory, Pune, for his kind support and guidance during the visit to NCL under the CSIR collaboration project.

I am thankful to all the teaching and non-teaching staff of the Applied Chemistry Department for supporting me throughout the research work.

My deepest heartfelt gratitude to my father, mother, brother, sister and brother-in-law for their moral support and making me pass through the difficult situations with great ease during my prolonged years of my research work.

More importantly, I would like to deeply acknowledge my uncle, Subhas Chandra Bose for his financial support throughout my study. Without his support, I could not be able to complete this study.

Finally, I would like to thank my wife Naga Devi for her moral support and sacrifice during the last stage of my research work.

Gangadhar Tammana

Dedicated To

My Parents T. V. V. Satyanarayana & Achamambha

Uncle

Subhas Chandra Bose

Wife

Naga Devi

TABLE OF CONTENTS

Contents	VII-XI
List of Figures	XII-XVI
List of Schemes	XVII
List of Tables	XVIII
Abbreviations	XIX-XX

Contents

		Page No.
Chapter 1	Introduction	1-53
1.1	Overview of Cyclodextrins	1
1.2	Chemical structure of Cyclodextrins	3
1.3	Solubility of Cyclodextrins	7
1.4	Aqueous Viscosity and Stability of Cyclodextrins	11
1.5	Cyclodextrin Inclusion complex formation	11
1.6	Selective Modification of Cyclodextrins	14
1.6.1	Selective monosubstitution at the 6-position	18
1.6.2	Selective Di-, Tri-substitution at the 6-position	20
1.7	Cyclodextrin based polymers	23
1.7.1	Linear Cyclodextrin polymers	23
1.7.2	Cross-linked polymers	31
1.7.3	Necklace Type CD polymers (Polyrotaxanes)	34
1.8	Applications of cyclodextrins and cyclodextrin polymers	34
1.8.1	Food industry	34
1.8.2	Cosmetics, toiletries and personal care	36
1.8.3	Chemical industries	38
1.8.3.1	Analytical chemistry	38
1.8.3.2	Catalytic chemistry	40
1.8.3.3	Environmental	41
1.8.3.4	Pharmaceuticals	42
	References	44-53

Chapter 2	-Cyclodextrin based Monomers	54-100
2.1	Monofunctionalization of -Cyclodextrin on primary	54-72
	side and their applications	
2.1.1	Brief Review	54
2.1.2	Experimental	60
	2.1.2.1 Materials	60
	2.1.2.2 Measurements	61
	2.1.2.3 Synthesis of Mono-6-(p-toluenesulfonyl)-6-deoxy- -cyclodextrin	61
	2.1.2.4 Synthesis of mono-6-isothiocyanato-6-deoxy	61
	Cyclodextrin	
2.1.3	Results and Discussion	62
	2.1.3.1 Mono-6-(p-toluenesulfonyl)-6-deoxycyclodextrin monomer	62
	2.1.3.2 Mono-6-isothiocyanato-6-deoxyCyclodextrin	64
	monomer	
2.2	Di-Functionalization of -Cyclodextrin	73-100
2.2.1	Experimental	73
	2.2.1.1 Materials	73
	2.2.1.2 Measurements	73
	2.2.1.3 Synthesis of 6^A , 6^D -biphenyl bridged -Cyclodextrin	73
	2.2.1.4 Synthesis of 6^{A} , 6^{D} -diiodo 6^{A} , 6^{D} -dideoxy -	74
	Cyclodextrin	
	2.2.1.5 Synthesis of 6^{A} , 6^{D} -diazido 6^{A} , 6^{D} -dideoxy -	74
	Cyclodextrin	
	2.2.1.6 Synthesis of 6^{A} , 6^{D} -diamino 6^{A} , 6^{D} -dideoxy -	75
	Cyclodextrin	
	2.2.1.7 Synthesis of 6 ^A , 6 ^D -diisothiocyanto 6 ^A , 6 ^D -dideoxy	75
	2.2.1.7 Synthesis of 0, 0 -unsolniocyanto 0, 0 -uldeoxy	
	-cyclodextrin	
2.2.2	• • • • •	78

	cyclodextrin	
	2.2.2.2 6 ^A ,6 ^D -diiodo 6 ^A ,6 ^D -dideoxy -Cyclodextrin	81
	2.2.2.3 6 ^A , 6 ^D -diazido 6 ^A ,6 ^D -dideoxy -Cyclodextrin	81
	2.2.2.4 6 ^A ,6 ^D -diamino 6 ^A ,6 ^D -dideoxy -Cyclodextrin	88
	2.2.2.5 6 ^A , 6 ^D -diisothiocyanto 6 ^A , 6 ^D -dideoxy -	93
	cyclodextrin	
2.23	Conclusions	97
	References	98-100

Chapter 3 Bis(-Cyclodextrin) and -Cyclodextrin based polymers 101-140

3.1	Brief Review	101
3.2	Experimental	104
	3.1.1 Materials	104
	3.2.2 Measurements	104
	3.2.3 Synthesis of ethylenediamine linked -CD dimer	104
	3.2.4 Synthesis of -Cyclodextrin based Polymers	105
	3.2.5 Determination of Aqueous Solubility of Polymers	111
3.3	Results and Discussion	111
	3.3.1 Aqueous Solubility of -CD Polymers	112
3.4	Characterization of Bis(β-Cyclodextrin)	114
	3.4.1 Fourier Transform Infrared Spectroscopy (FTIR)	114
	3.4.2 Nuclear Magnetic Resonance Spectroscopy (NMR)	114
3.5	Characterization of -CD-CC and -CD-EDA Polymers	119
	3.5.1 Fourier Transform Infrared Spectroscopy (FTIR)	119
	3.5.2 Nuclear Magnetic Resonance Spectroscopy (NMR)	119
	3.5.3 Thermogravimetric Analysis (TGA)	124
	3.5.4 X-ray Diffraction (XRD)	124
	3.5.5 Electron Ionization (ESI) mass spectroscopy	127
3.6	Characterization of -CD-Urea polymers	130
	3.6.1 Fourier Transform Infrared Spectroscopy (FTIR)	130
	3.6.2 Nuclear Magnetic Resonance Spectroscopy (NMR)	130

	3.6.3 Thermogravimetric Analysis (TGA)	135
	3.6.4 X-ray Diffraction (XRD)	135
3.7	Conclusions	138
	References	139-140
Chapter 4	Applications of Cyclodextrin based Polymers and Bis (-	141-181
	Cyclodextrin)	
4.1	Aqueous Solubilization of Cefpodoxime proxetil and	141-158
	Carbamazepine by Cyclodextrin based Polymers	
4.1.1	Brief Review	141
4.1.2	Experimental	143
	4.1.2.1 Materials	143
	4.1.2.2 Measurements	143
	4.1.2.3 Synthesis of -CD-P-CPDX Inclusion Complex	143
	4.1.2.4 Synthesis of -CD-P-CBZ Inclusion Complex	144
	4.1.2.5 Phase Solubility	144
	4.1.2.6 Dissolution Studies	147
4.1.3	Results and Discussions	147
	4.1.3.1 Fourier Transform Infrared Spectroscopy (FTIR)	147
	4.1.3.2 Aqueous Solubility of -CD-polymer and Host-	148
	Guest Interactions.	
	4.1.3.3 Phase Solubility Diagrams of the -CD-P/CPDX	153
	and -CD-P/CBZ inclusion complexes	
	4.1.3.4 Dissolution Studies	153
	Reference	158
4.2	Nanoencapsulation of [60] fullerene by bis	159-181
	cyclodextrin	
4.2.1	Brief Review	159
4.2.2	Experimental	161
	4.2.2.1 Materials	161
	4.2.2.2 Measurements	161
	4.2.2.3 Synthesis of C ₆₀ -biscyclodextrin inclusion	162

complex

	List of Presentations	184-185
	List of Publications	184
	Summary of the Work	182-183
	References	179-181
4.2.4	Conclusions	178
	Static Light Scattering (SLS)	
	4.2.3.8 Transmission Electron Micrograph (TEM) and	176
	4.2.3.7 X-ray Diffraction (XRD)	174
	4.2.3.6 Thermogravimetric Analysis (TGA)	172
	4.2.3.5 Nuclear Magnetic Resonance Spectroscopy (NMR)	169
	4.2.3.4 UV-vis Spectra	169
	4.2.3.3 Fourier Transform Infrared Spectroscopy (FTIR)	165
	4.2.3.2 Stability Constant	164
	4.2.3.1 Aqueous Solubility	164
4.2.3	Results and Discussion	164
	4.2.2.4 Determination of Stability Constant	162

List of Figures

Figure	Title	Page No
Chapter 1	Introduction	
1.1	Formation of cyclic and acyclic dextrins from starch a)	2
	starch b) cyclic and acyclic dextrins	
1.2	Schematic structures of native -, - and -cyclodextrins	4
1.3	(a) 3D Molecular structure of -CD, (b) Torus (Bucket)	5
	shape of CD and (c) Common Structure of CDs	
1.4	(a) Solubility of -CD as a function of different cosolvent in	10
	water mixture and (b) Solubility of -CD as a function of	
	DMSO in water-DMSO mixture	
1.5	Host-Guest Inclusion Complexation	12
1.6	Overview of the strategies for modification of CD	17
1.7	Conversion of a 6-substituted CD to a 3, 6-anhydro CD	19
1.8	Possible positional isomers of mono, di and tri-modified -	21
	CD and -CD	
1.9	Specific Introductions of mono-, di- and tri- substitutents to	22
	cylclodextrins	
1.10	Structural classification of cyclodextrin polymers	24
1.11	Synthetic scheme of linear pendent-cyclodextrin polymer	25
1.12	Synthetic scheme of CD-CM-Chitosan polymer	27
1.13	Synthesis of novel linear water-soluble polymer	28
1.14	Synthesis of linear cationic cyclodextrin main-chain polymer	29
1.15	Synthesis of supramolecular polymers constructed by	30
	cyclodextrins with cinnamide	
1.16	Synthesis of -cyclodextrin-epichlorohydrin polymer	32
1.17	Synthesis of -cyclodextrin-hexamethylene diisocyanate	33
	polymer	
1.18	Synthesis of necklace type CD polymers (Polyrotaxane)	35

Chapter 2	-Cyclodextrin based Monomers	
2.1	Monofunctionalization of -Cyclodextrin on primary side	54
	and their applications	
2.1.1	Overview of strategies for monosubstitution at the 6-position	55
	of -CD	
2.1.2	Monotosylation of -CD: (a) without pyridine, the secondary	56
	face is promoted or (b) with pyridine, the primary face is	
	promoted.	
2.1.3	FT-IR of Mono-6-(p-toluenesulfonyl)-6-deoxy	65
	cyclodextrin	
2.1.4	¹ H NMR of Mono-6-(p-toluenesulfonyl)-6-deoxy	66
	cyclodextrin	
2.1.5	¹³ C NMR of Mono-6-(p-toluenesulfonyl)-6-deoxy	67
	cyclodextrin	
2.1.6	ESI-MS of Mono-6-(p-toluenesulfonyl)-6-deoxy	68
	cyclodextrin	
2.1.7	FT-IR of mono-6-isothiocyanato-6-deoxyCyclodextrin	69
2.1.8	¹³ C NMR of mono-6-isothiocyanato-6-deoxyCyclodextrin	70
2.1.9	MALDI-TOF of mono-6-isothiocyanato-6-deoxy	71
	Cyclodextrin	
2.2.0	Structural dimension of the -cyclodextrin and biphenyl-	72
	4,4'-disulfonyl chloride	
2.2	Di-Functionalization of -Cyclodextrin	73
2.2.1	FTIR spectrum of 6 ^A ,6 ^D -biphenyl bridged -cyclodextrin	79
2.2.2	¹³ C NMR spectrum of biphenyl bridged -cyclodextrin in	80
	DMSO-d ₆	
2.2.3	FTIR spectrum of 6 ^A ,6 ^D -diiodo 6 ^A ,6 ^D -dideoxy -	82
	cyclodextrin	
2.2.4	¹ H NMR spectrum of 6 ^A ,6 ^D -diiodo 6 ^A ,6 ^D -dideoxy -	83
	cyclodextrin in D ₂ O	

2.2.5	¹³ C NMR spectrum of 6A,6D-diiodo 6A,6D-dideoxy -	84
	cyclodextrin in D2O	
2.2.6	FTIR spectrum of 6^{A} , 6^{D} -diazido 6^{A} , 6^{D} -dideoxy -	85
	cyclodextrin	
2.2.7	¹ H NMR spectrum of 6^{A} , 6^{D} -diazido 6^{A} , 6^{D} -dideoxy -	86
	cyclodextrin D ₂ O	
2.2.8	13 C NMR spectrum of 6^{A} , 6^{D} -diazido 6^{A} , 6^{D} -dideoxy -	87
	cyclodextrin in D ₂ O	
2.2.9	FTIR spectrum of 6 ^A ,6 ^D -diamino 6 ^A ,6 ^D -dideoxy -	89
	cyclodextrin	
2.3.0	¹ H NMR spectrum of 6^{A} , 6^{D} -diamino 6^{A} , 6^{D} -dideoxy -	90
	cyclodextrin in D ₂ O	
2.3.1	¹ H NMR spectrum of 6 ^A ,6 ^D -diamino 6 ^A ,6 ^D -dideoxy -	91
	cyclodextrin in DMSO-d ₆	
2.3.2	¹ H NMR spectrum of 6 ^A ,6 ^D -diamino 6 ^A ,6 ^D -dideoxy -	92
	cyclodextrin in DMSO-d ₆	
2.3.3	FT-IR of 6A, 6D-dideoxy 6 ^A , 6 ^D di-isothiocyante -	94
	Cyclodextrin	
2.3.4	¹ H NMR of 6 ^A , 6 ^D -dideoxy 6 ^A , 6 ^D di-isothiocyante -	95
	Cyclodextrin	
2.3.5	13 C NMR of 6^{A} , 6^{D} -dideoxy 6^{A} , 6^{D} di-isothiocyante -	96
	Cyclodextrin	
Chapter 3	Bis(-Cyclodextrin) and -Cyclodextrin based polymers	101-137
3.1	Three main types of Linked CD dimers	102
3.2	a) FTIR spectra of the -CD-OTs (b) FTIR spectra of the -	115-116
	CD-Dimer	
3.3	¹ H NMR spectra of (a) Capped $-CD$, (b) Bis ($-CD$) in D ₂ O	117
3.4	¹³ C NMR spectra of Bis(-CD) in D ₂ O	118
3.5	FTIR spectra of (a) -CD, (b) -CD-CC polymer and (c) -	121
	CD-EDA polymer	
3.6	¹ H NMR spectra of (a) -CD, (b) -CD-CC polymer and (c)	122
	-CD-EDA polymer in D ₂ O	

3.7	¹³ C NMR spectra of (a) -CD, (b) -CD-CC polymer and (c) -CD-EDA polymer in D ₂ O	123
3.8	TGA curves of -CD, -CD-CC polymer and -CD-EDA polymer	125
3.9	XRD patterns of (a) -CD (b) -CD-CC polymer and (c) - CD-EDA polymer	126
3.10	(a) ESI-mass of -Cyclodextrin-CC polymer (b) ESI-mass of -CD-EDA polymer	128-129
3.11	FTIR spectra of (a) Capped -CD, (b) Urea and (c) -CD-Urea polymer	131
3.12	¹ H NMR spectra of (a) Capped -CD and (b) -CD-Urea polymer in D_2O	132
3.13	(a) ${}^{13}C$ NMR spectra of Capped -CD (b) ${}^{13}C$ NMR spectra of -CD-Urea polymer in D ₂ O	133-134
3.14	TGA curves of Capped -CD and -CD-Urea polymer	136
3.15	XRD curves of (a) Capped -CD and (b) -CD-Urea	137
	polymer	
Chapter 4	Applications of Cyclodextrin based Polymers and Bis (-	141-177
Chapter 4	Applications of Cyclodextrin based Polymers and Bis (- Cyclodextrin)	141-177
Chapter 4 4.1		141-177 141
-	Cyclodextrin)	
-	Cyclodextrin) Aqueous Solubilization of Cefpodoxime proxetil and	
4.1	Cyclodextrin) Aqueous Solubilization of Cefpodoxime proxetil and Carbamazepine by Cyclodextrin based Polymers	141
4.1 4.1.1	Cyclodextrin) Aqueous Solubilization of Cefpodoxime proxetil and Carbamazepine by Cyclodextrin based Polymers Chemical structure of Cefpodoxime proxetil	141 142
4.1 4.1.1 4.1.2	Cyclodextrin) Aqueous Solubilization of Cefpodoxime proxetil and Carbamazepine by Cyclodextrin based Polymers Chemical structure of Cefpodoxime proxetil Chemical structure of Cefpodoxime proxetil	141 142 142
4.1 4.1.1 4.1.2	Cyclodextrin)Aqueous Solubilization of Cefpodoxime proxetil andCarbamazepine by Cyclodextrin based PolymersChemical structure of Cefpodoxime proxetilChemical structure of Cefpodoxime proxetilFTIR absorption spectra of (a) CPDX (b) -CD polymer and	141 142 142
4.1 4.1.1 4.1.2 4.1.3	Cyclodextrin) Aqueous Solubilization of Cefpodoxime proxetil and Carbamazepine by Cyclodextrin based Polymers Chemical structure of Cefpodoxime proxetil Chemical structure of Cefpodoxime proxetil FTIR absorption spectra of (a) CPDX (b) -CD polymer and (c) -CD polymer/CPDX complex FTIR spectra of (a) -CD-Urea-P, (b) CBZ, (c) CBZ	141 142 142 149
4.1 4.1.1 4.1.2 4.1.3 4.1.4	Cyclodextrin) Aqueous Solubilization of Cefpodoxime proxetil and Carbamazepine by Cyclodextrin based Polymers Chemical structure of Cefpodoxime proxetil Chemical structure of Cefpodoxime proxetil FTIR absorption spectra of (a) CPDX (b) -CD polymer and (c) -CD polymer/CPDX complex FTIR spectra of (a) -CD-Urea-P, (b) CBZ, (c) CBZ encapsulated -CD-Urea UV-Vis absorbance of (a) -CD Polymer in water (b) CP in	 141 142 142 149 150

Polymer

	Polymer	
4.1.8	Phase solubility diagram of CBZ in -CD and -CD-Polymer	155
4.1.9	Dissolution curves of CPDX with -CD and -CD Polymer	156
4.2.0	Dissolution curves of CBZ with -CD and -CD Polymer	157
4.2	Nanoencapsulation of [60] fullerene by biscyclodextrin	159
4.2.1	The double-reciprocal plot of the variation of absorbance at	166
	348 nm at different biscyclodextrin concentrations and	
	fixed concentration of C ₆₀	
4.2.2	FT-IR spectra of (a) biscyclodextrin, (b) C_{60} and (c) bis	168
	cyclodextrin-C ₆₀ inclusion complex	
4.2.3	UV-vis absorbance spectra of (a) C60 in toluene, (b) bis-	170
	cyclodextrinin water and (c) biscyclodextrin-C60	
	inclusion complex in water.	
4.2.4	¹ H NMR spectra of (a) bis -cyclodextrin and (b) bis -	171
	cyclodextrin/ C_{60} inclusion complex.	
4.2.5	TGA curves of (a) biscyclodextrin-C ₆₀ inclusion complex,	173
	(b) C ₆₀ and (c) biscyclodextrin.	
4.2.6	XRD difractogram of (a) -cyclodextrin, (b) bis	175
	cyclodextrin, (c) C_{60} and (d) biscyclodextrin- C_{60} inclusion	
	complex.	
4.2.7	(a) TEM micrograph of biscyclodextrin- C_{60} inclusion	177
	complex; Inset: HRTEM image of C_{60} lattice (b) spherical	
	self-assembly of biscyclodextrin- C_{60} inclusion complex	
	(c) histogram showing the lattice spacing of 0.34 nm.	

List of Schemes

Scheme No	Title	Page No
2.1.1	Synthesis of intermediate Ts-CD via direct monotosylation	63
	at primary position	
2.1.2	Synthesis of mono-6-isothiocyanato-6-deoxy	63
	Cyclodextrin	
2.2.0	Structural dimension of the -cyclodextrin and biphenyl-	72
	4,4'-disulfonyl chloride	
2.2.1	Synthetic scheme for the synthesis of selectively	76
	difunctionalized -cyclodextrins	
2.2.2	Synthesis of 6 ^A , 6 ^D -biphenyl bridged -Cyclodextrin	77
	monomer	
2.2.3	Synthesis of 6 ^A , 6 ^D -diisothiocyanto 6 ^A , 6 ^D -dideoxy -	77
	cyclodextrin monomer	
3.1	Synthesis of Bis(β -Cyclodextrin) or β -Cyclodextrin Dimer	106
3.2	Synthesis of -cyclodextrin-cyanuric chloride based	107
	polymers	
3.3	Synthesis of Ethylenediamine linked -Cyclodextrin	109
	polymer	
3.4	Reaction scheme for the synthesis of -cyclodextrin	110
	polymer with short linker Urea.	
4.1.1	Scheme shows the formation of inclusion complex of drug	145
	CPDX with -CD-EDA-P in mixed solvents system	
4.1.2	Scheme shows the formation of inclusion complex of drug	146
	CBZ with -CD-EDA-P in mixed solvents system	
4.2.1	Synthesis of ethylenediamno bridged biscyclodextrin	163
4.2.2	Synthesis of ethylenediamno bridged biscyclodextrin-	163
	C_{60} inclusion complex.	
	- · · · · · · · · · · · · · · · · · · ·	

List of Tables

Table No	Title	Page No
1.1	Physical properties of the three major cyclodextrins	6
1.2	Solubility of cyclodextrins in water as a function of	8
	temperature	
1.3	Some marketed food products containing CDs or made by	37
	CD-aided technology	
1.4	Some marketed pharmaceutical products containing CDs	43
3.1	Aqueous Solubility and Molecular Weight of -CD	113
	Polymers at 25°C	
4.2.1	Parameter Comparison for the -Cyclodextrin-C60, -	167
	Cyclodextrin-C60 and biscyclodextrin-C60Inclusion	
	Complexes in Aqueous Solution	

Abbreviations

AR	Analytical Reagent
BCS	Biopharmaceutical Classification System
C ₆₀	[60]Fullerene
C ₇₀	[70]Fullerene
CBZ	Carbamazepine
CC	Cyanuric Chloride
CDCl ₃	Deuterated Chloroform
CDs	Cyclodextrins
CE	Capillary Electrophoresis
CGTase	Cyclodextrin Glycosyltransferase
СМ	Carboxymethyl
CPDX	Cefpodoxime proxetil
D_2O	Deuterium Oxide
DCC	N,N'-Dicyclohexylcarbodiimide
DMA	Dimethyacetamide
DMAO	Dimethyl(aminomethyl)phosphine oxide
DMF	N,N'-Dimethylformamide
DMSO	Dimethylsulfoxide
DMSO-d ₆	Deuterium Dimethylsulfoxide
DNA	Deoxy Ribonucleic Acid
DS	Degree of substitution
EPH	Epichlorohydrine
FTIR	Fourier Transform Infrared
HIV	Human Immunodeficiency Virus
HPLC	High Performance Liquid Chromatography
K _b	Binding Constant
K _{SV}	Stern-Volmer Constant
Me ₄ Si	Tetramethyl Silane
MeCN	Acetonitrile
Mw	Molecular weight
MWCO	Molecular Weight Cut Off

NMR	Nuclear Magnetic Resonance
ppm	Parts Per Million
RM	Randomly Methylated
RT	Room Temperature
SLS	Static Light Scattering
TBDMS	ter-Butyldimethylsilyl Chloride
TEM	Transmission Electron Microscopy
TGA	Thermogravimetric Analysis
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
TMS	Tetramethyl Silane
TsCl	Tosyl Chloride
UV-Vis	Ultraviolet Visible
XRD	X-Ray Diffraction