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Chapter 4 
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Symbols 

 a radius of the circular discs (m) 

 FF   ferrofluid 

  h0           central film thickness (m) 

  h            film thickness defined in equations (4.1-4.4) (m) 

 0h            squeeze velocity, 10 (m s )
dh

dt


 

 H            magnetic field strength (A m1) 

 H            magnetic field vector  

H*            thickness of the porous matrix (m) 

 I              sum of moments of inertia of the particles per unit volume (Ns2m2
 ) 

 K             quantity defined in equation (4.12) (Am 4)  

 kB            Boltzmann constant (J o 1( K) ) 

  k             permeability of the porous matrix (m2) 

 m             magnetic moment of a particle  (A m2) 

 M            magnetization vector 

 M0           equilibrium magnetization (A m1) 

 MF      magnetic fluid 

  n             number of particles per unit volume (m3)   

  p             film pressure (N m2)  

  P            fluid pressure in the porous matrix (N m2) 

  q    fluid velocity vector 
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  r             radial co-ordinate (m)  

 s slip constant (m1) 

 t              time (s)  

T              temperature (oK)   

Vsq   dimensionless squeeze velocity parameter defined in equation (4.26) 

VMF   variable magnetic field 

W             load-carrying capacity (N) 

W            dimensionless load-carrying capacity defined in equation (4.34) 

eW           dimensionless load-carrying capacity for exponential squeeze film-bearing 

sW           dimensionless load-carrying capacity for secant squeeze film-bearing 

isW           dimensionless load-carrying capacity for mirror image of secant squeeze film-

bearing     

pW         dimensionless load-carrying capacity for parallel squeeze film-bearing 

z   axial co-ordinate (m) 

Greek symbols 

               inclination of the magnetic field vector to the radial direction 

      curvature of the mirror image of secant upper disc (m2) 

         curvature of the exponential upper disc (m2) 

 curvature of the secant  upper disc (m2) 

α               a2,  dimensionless curvature parameter defined in equation (4.36c) 

β              a2, dimensionless curvature parameter defined in equation (4.36a) 
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γ               a2, dimensionless curvature parameter defined in equation (4.36b) 

η              viscosity of the suspension (N s m2) 

0η             viscosity of the carrier liquid (N s m2) 

rη             porosity of the porous matrix in r-direction 

0μ            free space permeability (N A2) 

              dimensionless field strength (Langevin’s parameter) 

 ρ             fluid density (N s2 m 4) 

Bτ             Brownian relaxation time (s) 

sτ              magnetic moment relaxation time (s) 

              volume concentration of the particles 

ψ              dimensionless porous thickness parameter defined in equation (4.26) 

fΩ           dimensionless  rotational parameter defined in equation (4.26) 

uΩ            rotational velocity of the upper disc (rad. s1) 

lΩ            rotational velocity of the lower disc (rad. s1) 

r u lΩ Ω Ω  
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4.1 Introduction  

A ferrofluid (FF) or magnetic fluid (MF) is a colloidal dispersion of magnetic 

particles in a non-conducting carrier liquid. Neuringer-Rosensweig (NR) [1] suggested FF 

flow model in which only magnetic body force is considered without any effects of rotations 

of the carrier liquid as well as magnetic particles. With the invention of FF [1], its 

applications as lubricant on various bearing design systems have been found from different 

viewpoints [2,3]. Everywhere it was shown that the better performances of the bearing 

characteristics were obtained. The NR model is depended on the assumption that the 

magnetization vector is parallel to the magnetic field vector. Prajapati [2] studied effect of 

MF on different porous squeeze film-bearing designs like circular, annular, elliptic, conical, 

etc. It was concluded that the load-carrying capacity increases with the increase of 

magnetization parameter. Montazeri [3] numerically discussed FF lubricated hydrodynamic 

journal bearings. It was shown that compared to conventional lubricant, FF improves  

hydrodynamic characteristics and provides a higher load capacity with the reduction in 

friction coefficient. 

In the case of different angular velocities of rotations of the carrier liquid as well as 

magnetic particles, frictional forces arise. These forces cause an increase in the effective 

viscosity of the FF and it has major impact on the pressure when FF is used as lubricant. 

Shliomis [4] considered rotations of the carrier liquid as well as magnetic particles in the FF 

flow model with magnetic body force. Many authors [5-14] studied this model from different 

viewpoints. Shukla and Kumar [5] analysed FF lubricated slider and squeeze film-bearings 

using uniform transverse magnetic field by neglecting relaxation time of particle rotation. In 

their study they derived pressure equation under the assumptions that the FF is saturated (so 

that the saturation magnetization is independent of the applied magnetic field) and the 

magnetic moment relaxation time is negligible. However, Shah and Bhat [6] derived pressure 
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equation without above assumptions of [5] in their study on FF squeeze film between curved 

annular plates. It was concluded that the load-carrying capacity and approaching time of 

squeeze films can be enhanced by increasing the volume concentration of solid phase in FF 

and the intensity of external magnetic fields. Shah [7] extended the above analysis [6] with 

the insertion of rotation effect of the upper plate, and studied different shapes (secant, 

exponential and flat) of the upper plate. The results showed that load-carrying capacity and 

response time increases with the increase of volume fraction of the particles and rotation of 

the upper plate. Also, it was shown that, load-carrying capacity and response time increases 

with the increase of curvature of the exponential plate, whereas it decreases with the increase 

of curvature of the secant shape. Singh and Gupta [8] studied FF lubricated curved slider 

bearing with the effect of transverse magnetic field, and shown the improvement in stiffness 

and damping capacities due to the effects of rotation and volume concentration of magnetic 

particles. Lin [9] derived Reynolds equation for MF lubricated slider bearings using 

transverse magnetic field and shown the improvement in load-carrying capacity, dynamic 

stiffness and damping characteristics. Patel and Deheri [10] discussed FF lubrication of 

squeeze film in rotating rough curved circular discs with assorted porous structures. It was 

concluded that even if suitable magnetization is in force, roughness aspect must be accorded 

priority while designing the bearing system. Shah and Parikh [11] analysed FF lubrication of 

different shapes of slider bearings and compared dimensionless load-carrying capacity for the 

effect of squeeze velocity. It was concluded that the load-carrying capacity of all bearings 

remains constant with the increase of Langevin’s parameter, whereas it has an increasing 

tendency with the increase of volume concentration of the particles. Lin et. al. [12] studied 

effects of circumferential and radial rough surfaces on a non-Newtonian MF lubricated 

squeeze film. It was concluded that circumferential roughness effect increases the mean load-

carrying capacity and lengthen the mean approaching time as compared to smooth discs. 
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However, the radial roughness pattern showed the reverse trend. Huang and Wang [13] 

presented comprehensive review on FFs lubrication with some experimental studies.  

Nargund and Asha [14] studied load-carrying capacity of hyperbolic slider bearings and 

showed the better performance of the system.   

All above studies based on Shliomis model are with transverse magnetic field. It is 

observed that the study with oblique radially variable magnetic field (VMF) considering the 

effects of porosity, slip velocity at the film-porous interface and rotations of both the discs, is 

ignored. The Shliomis model is important because it includes the effects of rotations of the 

carrier liquid as well as magnetic particles, and it behaves differently in the case of VMF. 

The VMF is important because of having its advantage of generating maximum field at the 

required active contact area in the bearing design system. Also, looking to industrial 

applications, the above three effects are also important. The effect of porosity is included 

because of its advantageous property of self-lubrication.  Hence, there is a need of the present 

study. Thus, the aim of the present Chapter is to study lubrication of circular squeeze film-

bearings using Shliomis FF flow model with the effects of oblique radially VMF, porosity, 

slip velocity at the film-porous interface and rotations of both the discs. The squeeze film-

bearings are made up of circular porous upper disc of different shapes (exponential, secant, 

mirror image of secant and parallel) and circular impermeable flat lower disc. While deriving 

the modified Reynolds equation, the validity of the Darcy’s law is assumed in the porous 

region (matrix or layer). The continuity equation is also used in the film as well as porous 

region. Using this Reynolds equation, general form of pressure equation is derived and 

expression for dimensionless load-carrying capacity is obtained. Using this expression, 

results for different bearing design systems (due to different shapes of the upper disc) are 

computed and compared for variation of different parameters. The pressure equation derived 

in the present case is of more general in nature and different than all previous studies. 
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Moreover, the present analysis considers the effect of sample magnetic field and it can be 

extended to other forms of fields similarly. Also, the mirror image of secant squeeze film-

bearing introduced first time in this study. 

4.2 Mathematical Formulation of the Problem 
  

 Figure 4.1 shows the physical configuration of the problem under consideration, 

which consists of two circular discs (case of both flat discs is shown) each of radius a. The 

upper disc is made by attaching a porous matrix of uniform thickness H* to the solid 

impermeable disc. The upper disc may also be curved (which may be either exponential or 

secant or mirror image of secant shapes as shown in Figure 4.2) while the lower disc is solid 

impermeable flat. The central film thickness is h0. The region between two discs is known as 

film region (lubrication region), which is filled with FF. The upper disc moves normally 

towards lower one with a uniform velocity, known as squeeze velocity dtdhh /00 
 , where t 

is time. The upper and lower discs rotated with rotational (angular) velocities Ωu and Ωl, 

respectively. Due to the different shapes of the upper disc, the film thickness h takes 

following different forms. 

Case 1 For exponentially curved upper disc  

arehh rβ   0;
2

0 ,                                                 (4.1) 

where  β is curvature and  r  is the radial co-ordinate.  

Case 2 For secant curved upper disc 

arrγhh  0;)(sec 2

0 ,                                             (4.2) 

where   is curvature.  

 

Case 3 For mirror image of secant curved upper disc 

arrαhhh  0;)(sec2 2

00 ,                                         (4.3) 
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where  is curvature.   

Case 4 For parallel upper disc 

.0;0 arhh                                                       (4.4) 

 With reference to the shape of the upper disc, the bearing designs for the Cases 1-4 

referred here as exponential squeeze film-bearing, secant squeeze film-bearing, mirror image 

of secant squeeze film-bearing and parallel squeeze film-bearing, respectively. 

Neglecting inertia terms, assuming steady flow and other usual assumptions of 

lubrication, the basic flow equations governed by Shliomis model [4, 6, 7] using cylindrical 

frame of reference can be written as follows.  

 Equation of Motion 

 
2

2

0 0

1
( ) ( ) 0 0

2

ρv
p η μ μ , ,

r

 
          

 
q M H M H                (4.5) 

Equation of Magnetization 

0 ( )
M

τ Ω
H

  M H H , 
)/(1 00 IττHMμ

τ
τ

sB

B


                        (4.6) 

Equation of Continuity 

0 q                                                          (4.7) 

 

Maxwell  equations 

0 H                                                            (4.8)  

( ) 0  M H                                                   (4.9) 
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where p is the film pressure, η is the viscosity of the suspension, q is the fluid velocity vector, 

µ0 is the permeability of free space, M is the magnetization vector, H is the applied magnetic 

field vector,  is the fluid density, v is the tangential component of q, M0 is the equilibrium 

magnetization, H is the magnitude of  H, 1
2

Ω  q ,  
Bτ  is the Brownian relaxation time, 

sτ  is the magnetic moment relaxation time and I is the sum of moments of inertia of the 

particles per unit volume. 

Also, 

( , , ) ( , , ),r r z u rv w q                                                (4.10) 

where ( , , )r z  are cylindrical polar co-ordinates and dot )(  represents derivative with 

respect to  t. 

Assuming the predomination of the velocity gradient across the film, v as a linear 

function of the axial co-ordinate z, and the axially symmetric flow in the film as well as 

magnetic field, the r-component of equation (4.5) with the help of equation (4.6) and 

1
2

Ω  q  implies  




































2

00

00

2

2

4
1

1
lr ΩΩ

h

z
rρ

dr

dH
Mμ

dr

dp

η

τHMμ
η

z

u
,               (4.11) 

where lur ΩΩΩ   and u is the radial component of q. The inclination   of   

( ) (cos 0 sin ), ( )H r θ , , θ θ θ r , z H  to the radial direction is assumed to be small and can 

be obtained from the condition (4.8). 

 In order to consider active contact area in the neighbourhood of r = 2a/3, the magnetic 

field strength of radially VMF should be chosen (referring to [15]) as 

)(2 raKrH  ,                                                  (4.12) 
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where K being the quantity chosen to suit the dimensions of both sides of equation (4.12). 

Such a field attains maximum at r = 2a/3 and vanishes at r = 0 and r = a. For other active 

contact areas, suitable form of magnetic field strength should be chosen. 

Defining the following quantities for a suspension of spherical particles [4,6]  

1
0 B s

0 B

3 3 tanh
(coth ) , , , , ,

6 2 tanh

B
ξ

k Tξ ηV φ I ξ ξ
M nm ξ H τ V τ τ φ

μ m k T n ηφ ξ ξ


      


, 

(4.13) 

equation (4.11) takes the form 





































2

2

2 sinh
ln

)1(

1
lrB ΩΩ

h

z
rρ

ξ

ξ
Tnkp

dr

d

τηz

u
,                 (4.14) 

where n is the number of magnetic particles per unit volume, m is the magnetic moment of a 

particle,   (Langevin’s parameter) is the dimensionless form of H , 
Bk  is the Boltzmann 

constant, T is the temperature and   is the volume concentration of the particles. 

Solving equation (4.14) using slip boundary conditions [15,16] 

u=0 when z=0,  
rηk

s
z

u

s
u

5
;

1





  when z=h                        (4.15) 

yields 

,

})2()1({6

})3()1{(4})4()1({

6

sinh
ln})2()1({

)1)(1(2

1

222

23234

2

2



















































l

lrr

B

Ωzshhzshh

ΩΩzshhzshhΩzshhzsh

h

rρ

ξ

ξ
Tnkp

dr

d
zshhzsh

τshη
u

                                                                                                                                                                               

                                                                                                                                            (4.16) 

where k being permeability of the porous matrix, rη being porosity of the porous matrix in                

r-direction and s being the slip constant. 
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 Substituting equation (4.16) into the integral form of continuity equation (4.7) in 

cylindrical polar co-ordinates for the film region 

0 0 0

0

1
( ) 0; ,

h

h h z h z
ru dz w w w w w w

r r  


    

                        (4.17) 

yields

,0

})38()414()318({
10

sinh
ln)4(

)1)(1(12

1

22
2

3




























































h

lluu

B

w

ΩshΩΩshΩsh
rρ

ξ

ξ
Tnkp

dr

d
rsh

τshη

h

dr

d

r
 

                                                              (4.18) 

where w being the axial velocity component of q and w0=0 as the lower disc is impermeable.  

Moreover, the relation between viscosity of the suspension η  and viscosity of the 

carrier liquid 
0η  is given by [4, 6]  

. 
2

5
10 








 φηη                                                         (4.19) 

Assuming the validity of the Darcy’s law, the radial and axial components 

(considering the contributions from the magnetic pressure and rotation of the upper disc) of 

the fluid velocity in the porous matrix yields, respectively, as 









































z

u
τHMμ

z
Ωrρ

ξ

ξ
TnkP

rη

k
u uB 00

2

4

1sinh
ln                 (4.20) 

and 









































z

u
τHMrμ

rrξ

ξ
TnkP

zη

k
w B 00

4

1sinh
ln ,                    (4.21) 
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where P is the fluid pressure in the porous matrix. 

Substituting equations (4.20) and (4.21) in the continuity equation for the porous 

matrix  

0)(
1











z

w
ur

rr
                                                (4.22) 

and integrating it across the porous matrix (h, h + H*) yields 

2*
*

2
sinh

ln
sinh

ln uB

hz

B ρΩH
ξ

ξ
Tnkp

dr

d
r

dr

d

r

H

ξ

ξ
TnkP

z



































,   (4.23) 

where Morgan-Cameron approximation [15] and the fact that the surface z = h + H* is 

impermeable is used. 

Owing to continuity of the fluid velocity components across the film-porous interface,  

.0 hh whw                                                      (4.24) 

Using equations (4.16), (4.21), (4.23), (4.24), equation (4.18) yields the Reynolds 

equation for the present study as 

.

)1)(1(10

})38()414()318{(

)1)(1(

)23(
)126(

1

sinh
ln

)1)(1(

6)4(
12

1

2232

2222
22*

0

23
*
































































τsh

ΩshΩΩshΩshhrρ

τsh

hrτksΩΩΩΩρ
rΩkHρhη

dr

d

r

ξ

ξ
Tnkp

dr

d
r

τsh

hτksshh
kH

dr

d

r

lluu

lluu
u

B

  

(4.25) 
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4.3 Solution 

Introducing dimensionless quantities 

0

2

3

0

sq

2

0

0

0
sq

2

0

0

0

3

0

*

0

2

3

0

,,,

,
6

,,,,,

haη

Thnk
μ

Ω

Ω
Ω

Vη

hρΩ
S

hΩ

h
V

h

k
δshs

h

h
h

h

kH
ψ

a

r
R

haη

ph
p

B*

u

l
f

u

u










           (4.26) 

and using equation (4.12), equation (4.25) becomes  

,)(
1sinh

ln
1

RF
dR

d

Rξ

ξ
μp

dR

d
GR

dR

d

R

* 















                        (4.27) 

where 

,
)1)(1(

)4(
12

23

τhs

hτsδhsh
ψG




                                    (4.28) 

 

,
)1)(1(10

})38()414()318{(

)1)(1(6

)23(
)126(

2322

τhs

ΩhsΩhshshSR

τhs

ΩΩSRhτsδ
RSψF

ffff











 

                                                                                                                                (4.29)      

)1(2 RRλξ  ,                                                     (4.30) 

Tk

mKaμ
λ

B

3

0 .                                                      (4.31)     

Solving equation (4.27) using boundary conditions 
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0,0(1) 
dR

pd
p  when 0R                                         (4.32) 

yields 



R

* dR
G

F

ξ

ξ
μp

1

sinh
ln .                                              (4.33)  

The load-carrying capacity W of the bearing can be expressed in dimensionless form 

as 

dR
G

FR
IμdRpR

haηπ

Wh
W   

1

0

1

0

2

0

4

3

0

2

1

2 
,                           (4.34) 

where   

dRξ
ξ

RR
λ

I  









1

0

3 coth
1

)32(
2

,                                     (4.35) 

and G and F are given by equations (4.28) and (4.29), respectively. 

4.4 Results and Discussion 

The results for the dimensionless load-carrying capacity W given by equation (4.34) 

are computed using Simpson’s one-third rule with step size 0.1. The representative values of 

the different parameters taken in computations are as follows [6,16,17]. These values are 

remain fixed unless and until the calculation of W is made with respect to the variation of the 

particular parameter. 

a = 0.05 m,   h0 = 0.00005 m,    
Bk  = 1.38 × 1023 J (oK)1, 

T = 297 oK,   mAJ1075.1 125

0

mμ ,   
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 = 0.0075,    V = 1.02  1025 m3,    
0 0.012η  N s m2, 

1sm001.0 0h ,   )10( 3OH  ,   = 1400 N s2 m4,  ,25.0rη   

k = 5.1 1011 m2,  H* = 0.000007 m  

with the relations  

max4
27 ξ , K = 91026.1  maxξ . 

Also, for smaller values of ξ ,     

0
1

coth 
ξ

ξ ,  .0
tanh

tanh






ξξ

ξξ
 

The calculation of order of magnetic field strength is shown below. 

From equation (4.12), 

KH 4

max 101852.0   

1822.0/10),10(For 73  KOH . 

 Using subscripts e, s, is, p for the concerned quantities when the squeeze film-bearing 

designs are of exponential, secant, mirror image of secant and parallel shapes, respectively,  

equations (4.1)-(4.4) for computation becomes 

10; 22

  Raββehh R

e  β ,                                          (4.36a) 

10;)(sec 22  RaγγRγhh s ,                                      (4.36b) 

10);(sec2 22  Ra ααRαhh is ,                                   (4.36c) 
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10;1  Rhh p .                                                    (4.36d) 

The sketch of the above different shapes (except for parallel, for parallel shape refer         

Figure 4.1) are shown in Figure 4. 2 for  

0.6.,6.0  αγββ  

 The computed values of W  for different parameters are displayed graphically. Before 

discussing graphs, it should be noted here that counterclockwise (positive) or clockwise 

rotations of either of the discs can be decided by looking from the top of the bearing system 

or with respect to the vertical axis. 

Figures 4.3-4.6 shows the variation in W as a function of dimensionless rotational 

parameter fΩ  considering ul ΩΩ   (that is, when the lower disc is  rotated  faster than the 

upper disc either in counterclockwise or clockwise direction) for different geometry of the 

squeeze film-bearings like exponential, secant, mirror image of secant and parallel, 

respectively. The additional fixed values taken in computations are as follows. 

(1) πΩu 30 , which indicates the rotation of the upper disc in counterclockwise direction 

with a fixed value π30 . 

(2)  Dimensionless curvature parameters 6.0 αγβ .  

It is observed, in general from Figures 4.3-4.6, that W  decreases in the case when fΩ  

increases along the positive axis or decreases along the negative axis. That is, W  decreases in 

the case when the speed of rotation of the lower disc increased more than π30  either in 

counterclockwise or clockwise direction. It is also observed that W is more in the case of 

clockwise rotation of the lower disc and maximum nearer to 1fΩ . Moreover, this 

behaviour of W is same for all bearing designs. Table 4.1 show the maximum value of W , 
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when the lower disc is rotated in different directions with speed π40 . It is observed that when 

the lower disc is rotated in clockwise direction, the increase rate of W is more and 

approximately about 0.90% for exponential squeeze film-bearing, 1.92% for secant squeeze 

film-bearing, 2.13% for mirror image of secant squeeze film-bearing and 1.47% for parallel 

squeeze film-bearing. It should be noted here that, the mirror image of secant squeeze film-

bearing design shape is introduced first time in the study because such type of shape exists in 

industry while manufacturing the disc. 

Figures 4.7-4.10 shows the variation in W as a function of fΩ  considering 

ul ΩΩ  (that is, when the upper disc is rotated faster or equal speed than the lower disc 

either in counterclockwise or clockwise direction) for different geometry of the squeeze film-

bearings like exponential, secant, mirror image of secant and parallel, respectively. Here, the 

additional fixed values taken as πΩl 30  and 6.0 αγβ . It is observed, in general, that 

W increases in the case when fΩ increases along the positive axis or decreases along the 

negative axis. That is, W increases in the case when the speed of rotation of the upper disc 

moves form higher values to π30  either in counterclockwise or clockwise direction. It is also 

observed that W is more in the case of clockwise rotation of the upper disc and maximum at 

1fΩ  . Moreover, this behaviour of W is same for all bearing designs. Table 4.2 shows the 

maximum value of W , when the upper disc is rotated in different directions with speed π30 . 

It is observed that when the upper disc is rotated in clockwise direction, the increase rate of 

W is more and approximately about 0.45% for exponential squeeze film-bearing, 1.92% for 

secant squeeze film-bearing, 1.05% for mirror image of secant squeeze film-bearing and 

1.47% for parallel squeeze film-bearing. 
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It should be noted here that for the same data values, counterclockwise rotation of the 

upper disc and clockwise rotation of the lower disc, or clockwise rotation of the upper disc 

and counterclockwise rotation of the lower disc, gives the same results due to kinematics of 

the rotation. That is, when πΩu 30  and 6.0 αγβ  are fixed, and when the lower 

disc is rotated faster than the upper disc either in clockwise or counterclockwise direction, 

then the same results are obtained as shown in Figures 4.3-4.6 since ulf ΩΩΩ / . The same 

is also true for Figures 4.7-4.10. 

Since ulf ΩΩΩ / , so when 0fΩ  (that is, when there is no rotation of the lower 

disc irrespective of the rotation of the upper disc in different directions), it is observed from 

Table 4.3 that for all bearing designs, W  decreases as speed of rotations of the upper disc 

increases. Again, in this calculation 6.0 αγβ  is fixed.  

Table 4.4 represents the results of W  when fΩ  takes negative values (that is, either 

uΩ  is rotated in counterclockwise direction and 
lΩ  is rotated in clockwise direction, or 

uΩ  is 

rotated in clockwise direction and 
lΩ

 
is rotated in counterclockwise direction). Table 4.5 

represents the results of W  when fΩ  takes positive values (that is, either both the discs are 

rotated in counterclockwise direction, or clockwise direction). For both the tables 

6.0 αγβ  is fixed. It is observed from both the Tables that W decreases as the speed of 

rotations of both the discs increases. Further, W  is more in the case when the speed of 

rotations of both the discs is in different directions to each other. 

While discussing the Figures 4.3-4.10 and Tables 4.1-4.5, the following behaviours of 

W  are observed in general. 

(1) Maximum W is obtained in the case of exponential squeeze film-bearing while minimum 

W  in the case of secant squeeze film-bearing. Thus, for all bearing designs W  can be 
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obtained in the order .spise WWWW   This may be because of the following 

reason.  

 Referring to Figure4.2, in the case of exponential squeeze film-bearing the 

curvature of the upper disc at the center is in downward direction (that is, upper disc is 

concave with respect to lower disc), whereas in the case of secant shape the curvature is 

in upward direction (that is, upper disc is convex with respect to lower disc). Table 4.6 

shows the behaviour of curvatures of all the upper discs by referring to Figure 4.2. As the 

maximum magnetic field is taken at r=2a/3, so because of such magnetic field and 

exponential shape of the upper disc, nearly closed bearing design system appears which 

leads to less possibility of leakage. Thus, maximum pressure generation is possible, 

which implies increase in W .  The curvature of the upper disc of mirror image of secant 

squeeze film-bearing is less in downward direction as compared to exponential shape, so 

W  is less in this case. Thus, as curvature of the upper disc at the center increases in 

downward direction (that is, as concavity of the upper disc increases with respect to 

lower disc), W increases significantly. This may be the reason of obtaining W  in the 

order .spise WWWW    

(2) Maximum W  is obtained in the case when both the discs are rotated in different 

directions to each other. This may be because of the following reason. 

When the discs are rotated, then there is an appearance of centrifugal force (which 

points outward) in the rotating fluid system and it increases linearly with the radial 

distance r. In the case of rotation of both the discs in different directions to each other, 

the effect of centrifugal force is reduced (as compared to rotations of both the discs in the 

same direction) and as a result the leakage possibility is reduced. This may be because of 
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twisted nature of the generated spikes. Nearly similar type of behaviour is obtained when 

only one disc is rotated. 

Figure 4.11 shows different shapes of the exponential squeeze film-bearing for 

6.06.0  β . Here, the shapes of the upper disc changes from convex to concave with 

respect to lower disc. Figure 4.12 shows various shapes of secant and mirror image of secant 

squeeze film-bearings for 6.02.0  γ  and 6.02.0  α , respectively. The upper disc of the 

secant squeeze film-bearing takes convex shape, which shows less curvature to more 

curvature in upward direction as γ  moves from 0.2 to 0.6. For the upper disc of mirror image 

of secant squeeze film-bearing, concave shape is obtained which shows less curvature to 

more curvature in downward direction as α  moves from 0.2 to 0.6. 

Figures 4.13-4.17 shows the variation in W  when 1fΩ  (that is, either 
uΩ  is 

rotated in counterclockwise direction and 
lΩ  is rotated in clockwise direction, or 

uΩ  is 

rotated in clockwise direction and 
lΩ

 
is rotated in counterclockwise direction with a fixed 

value of π30 ).  

Figure 4.13 shows the variation in W  as a function of dimensionless curvature 

parameter β  for exponential squeeze film-bearing. It is observed that W  increases as β  

moves from  0.6 to 0.6. That means concave shape with more curvature at the center has 

more impact on the increase of W . Figure 4.14 shows the variation in W  as a function of 

dimensionless curvature parameter γ  for secant squeeze film-bearing. It is observed that W  

decreases as γ moves from 0.2 to 0.6. That means convex shape with less curvature at the 

center in upward direction has more impact on the increase of W . Moreover, secant function 

is an even function, so symmetric behaviour of W  with respect to vertical axis is obtained. 

Figure 4.15 shows the variation in W  as a function of dimensionless curvature parameter α  
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for mirror image of the secant squeeze film-bearing. It is observed that W  increases as 

α moves from 0.2 to 0.6.  That means concave shape with more curvature at the center has 

more impact on the increase of W . Again, mirror image of secant is even function, so 

symmetric behaviour of W  is obtained.  

Patel and Deheri [10] studied squeeze film-bearing system formed by upper 

exponential disc using Shliomis model with transverse magnetic field. It was shown that W  

increases with the increasing values of β . Also, maximum  W  is obtained about 1.6 when 

1.9β . In the present study, the similar behaviour of W  is obtained with the advantage of 

having maximum W  as 2.24 (refer Table4.1, 4.2, 4.4) at smaller value of 0.6.β  Shah and 

Bhat [6] also observed the similar type of increasing behaviour of W  with the increasing 

values of β . 

Figure 4.16 shows the comparative study of variation in W as a function of 

dimensionless porous thickness parameter     for all bearing designs. It is observed that W  

increases in all cases when 0ψ ; that is, W  increases when width of the porous matrix 

decreases. This may be because of following reason. 

According to [16], when porous matrix is attached with any one of the disc, then there 

is a possibility that the pressure in the porous medium provides a path for the fluid to come 

out easily to the environment (leakage problem). Of course this varies with permeability of 

the porous matrix. Thus, the presence of the porous material decreases the resistance to flow 

in r – direction and as a consequence the load carrying capacity is reduced. The same 

behaviour also agrees with the theoretical conclusion of the Prakash and Tiwari [18], and 

experimental results of Wu [19]. The similar type of behaviour is also observed in [10], 

where they have considered Shliomis model based on [5] using transverse magnetic field.  
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Figure 4.17 shows the comparative study of variation in W as a function of 

dimensionless squeeze velocity parameter Vsq for all bearing designs. It is observed that 

squeeze velocity parameter has no effect on W .  

Both the Figures 4.16 and 4.17 shows that the secant and parallel squeeze film-

bearings show almost same behaviour. Moreover, it is observed that W  is maximum for 

exponential squeeze film-bearing, and minimum for secant and parallel squeeze film-bearings 

with .psise WWWW   Here, for both the Figures 4.16 and 4.17, 6.0 αβ  and 

2.0γ  is fixed. 

4.5 Conclusions 

On the basis of ferrohydrodynamic theory by M.I. Shliomis and equation of continuity for 

film as well as porous region, modified Reynolds equation for lubrication of circular squeeze 

film-bearings is derived by considering the effects of oblique radially variable magnetic field 

(VMF), slip velocity at the film-porous interface and rotations of both the discs. The squeeze 

film-bearings are made up of circular porous upper disc of different shapes (exponential, 

secant, mirror image of secant and parallel) and circular impermeable flat lower disc. The 

validity of the Darcy’s law is assumed in the porous region. The FF flow by Shliomis model 

is important because it includes the effects of rotations of the carrier liquid as well as 

magnetic particles. Moreover, the VMF is used because of its advantage of generating 

maximum field at the required active contact area of the bearing design system. Also, the 

effect of porosity is included because of its advantageous property of self-lubrication. Using 

Reynolds equation, pressure equation is derived and expression for dimensionless load-

carrying capacity is obtained. Using this expression, results for different bearing design 

systems are computed and compared for variation of different parameters like rotation, 

curvature of the upper discs, thickness of the porous matrix and squeeze velocity. The 

pressure equation derived in the present case is of more general in nature and different than 
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all previous studies. Moreover, the present analysis considers the effect of sample magnetic 

field and it can be extended to other forms of fields similarly. Further, the mirror image of 

secant design shape is introduced first time because such type of shape exists in industry 

while manufacturing the disc. 

The following conclusions can be made from the results and discussion. 

1. W  is maximum when 1fΩ ; that is, either uΩ  is rotated in counterclockwise direction 

and 
lΩ  in clockwise direction, or 

uΩ  is rotated in clockwise direction and 
lΩ  in 

counterclockwise direction with the same speed. But getting 1fΩ  for faster rotation 

results moderate reduction in W . 

2. Maximum W is obtained in the case of exponential squeeze film-bearing while minimum 

in the case of secant shape with .spise WWWW   

3. Concave (with respect to lower flat disc) shape of the upper disc with more curvature at the 

center has more impact on the increase of W  as compared to convex shape.  

4.  Convex (with respect to lower flat disc) shape with less curvature at the center in upward 

direction has more impact on the increase of  W . 

5. W  increases even if rotation of the lower disc is zero and irrespective of the decrease of  

rotation of the upper disc. 

6. W  increases when dimensionless porous thickness parameter () approaches to 0.  

7. W almost remains constant  when squeeze velocity parameter increases.  
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                                      fΩ           eW            sW                   isW                   pW    

Clockwise   1.33         2.24          0.53           0.96            0.69      

Counterclockwise    1.33         2.22          0.52                  0.94                  0.68   

%  increase in W           0.90                  1.92           2.13                  1.47               

 

Table 4.1 Values of W  when lower disc is rotated in different directions either with 

πΩl 40 (clockwise) or πΩl 40 (counterclockwise) considering πΩu 30 and 

6.0 αγβ  

                                

 

                                                            fΩ                          eW       sW                     isW                              pW  

Clockwise                      ‒1.0                2.24              0.53             0.96               0.69      

Counterclockwise      1.0                 2.23               0.52                0.95                   0.68 

%  increase  in W                                   0.45               1.92                1.05                   1.47     

 

Table 4.2 Values of W  when upper disc is rotated in different directions either with 

πΩu 30 (clockwise) or πΩu 30 (counterclockwise) considering πΩl 30 and  

6.0 αγβ  

 

 

___________________________________________________________________________ 

uΩ   30   40          50            60 

             (or  30 )                      (or  40 )         (or  50 )         (or  60 )              

eW                     2.2385                      2.2338                   2.2277         2.2203 

sW                 0.5331                      0.5291                   0.5239         0.5176  

isW               0.9603                      0.9561                   0.9507         0.9441  

pW                      0.6914                        0.6874                   0.6821                    0.6757 

 

Table 4.3 Effects on W  when the rotation of the lower disc is zero (that is, 0lΩ  ) 

irrespective of the rotation of the upper disc in different directions (that is, either 

counterclockwise  or clockwise) considering 6.0 αγβ  
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uΩ        30π (or ‒ 30π)            40π (or  ‒ 40π)                50π (or ‒ 50π)        60π (or  ‒ 60π) 

lΩ             ‒ 30π (or  30π)                 ‒ 40π (or  40π)                        ‒ 50π (or  50π)    ‒ 60π (or  60π)                    

eW                  2.2400                      2.2364            2.2318                       2.2262 

sW           0.5347        0.5319            0.5283                       0.5240 

isW           0.9619        0.9589            0.9550                         0.9504  

pW                   0.6930        0.6902                        0.6865                          0.6820  

 

Table 4.4 Effects on W  when fΩ  takes negative values (that is, either 
uΩ  is rotated in 

counterclockwise direction and 
lΩ  is rotated in clockwise direction, or 

uΩ  is 

rotated in clockwise direction and 
lΩ

 
is rotated in counterclockwise direction) 

considering 6.0 αγβ  

 

 

 

uΩ      30π (or ‒30π)     40π (or ‒40π)          50π (or ‒50π)      60π (or ‒60π) 

lΩ     30π (or ‒30π)                      40π (or ‒40π)                          50π (or ‒50π)      60π (or ‒60π)                   

eW                    2.2287             2.2163             2.2004          2.1810 
         

sW           0.5223                    0.5100             0.4941          0.4746 

isW           0.9498         0.9374                        0.9215          0.9021 

pW                 0.6808         0.6684             0.6525                     0.6331  

 

Table 4.5 Effects on W  when fΩ  takes positive values (that is, either both the discs rotated 

in counterclockwise direction, or in clockwise direction) considering 

6.0 αγβ  
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Shape 

of  the  

lower 

disc 

Shape of the  

upper disc 

Curvature of the  

upper disc 

Shape of the  

upper disc with 

respect to   

lower disc 

Curvature at the 

center for concave 

discs 

Curvature at the 

center for convex 

discs 

 

 

 

 

 

Parallel 

(flat) 

 

 

 

Exponential 

(refer Eq. 

(4.36a)) 

 

 

0β  

 

Concave 

 

maximum 

 

- 

 

0β  

 

Convex 

 

- 

 

maximum curvature 

in upward direction 

Secant (refer         

Eq. (4.36 b)) 

 

 

0γ
   

Or    0γ
 

 

 

Always convex 

 

- 

 

less curvature in 

upward direction as 

compared to 

exponential disc 

Mirror image of 

secant (refer         

Eq. (4.36 c)) 

 

 

0α    Or   0α
 

 

 

Always concave 

 

Less as compared to 

exponential shape 

 

Parallel (refer       

Eq. (4.36 d)) 

 

0 αγβ  

 

Parallel 

 

- 

 

- 

 

Table 4.6  Comparative chart of curvatures of the upper discs 
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Figure 4.1   Schematic diagram of the physical configuration of the circular 

                    squeeze film-bearing (case of both flat discs) 
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Figure 4.2    Exponential (
2R

e eh β ), secant ( )(sec 2Rγhs  ) and mirror image of   secant 

( )(sec2 2Rαhis  ) shapes of the upper disc for 0.6,6.0  αγββ  
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Figure 4.3 Variation in W  for different values of fΩ   considering ul ΩΩ   for 
2R

e ehh β  when πΩu 30  and 6.0β  

 

 

 

 
 

Figure 4.4 Variation in W  for different values of fΩ  considering ul ΩΩ   for 

)(sec 2Rγhh s   when πΩu 30  and 6.0γ   
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Figure 4.5 Variation in W  for different values of fΩ  considering ul ΩΩ   for 

)(sec2 2Rαhh is   when πΩu 30  and 6.0α   

 

 

 

 

 

 

 

 

Figure 4.6  Variation in W  for different values of fΩ  considering ul ΩΩ   for 

1 phh when πΩu 30  
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Figure 4.7  Variation in W  for different values of fΩ  considering ul ΩΩ   for 
2R

e ehh β  when πΩl 30  and 6.0β  

 

 

 

 

 

 

 

Figure 4.8  Variation in W  for different values of fΩ considering ul ΩΩ   for 

)(sec 2Rγhh s  when πΩl 30  and 6.0γ   
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Figure 4.9  Variation in W  for different values of fΩ considering ul ΩΩ   for 

)(sec2 2Rαhh is   when πΩl 30  and 6.0α  

 

 

 

 

 

Figure 4.10  Variation in W  for different values of fΩ considering ul ΩΩ   for 1 phh  

when πΩl 30  
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Figure 4.11 Different shapes of exponential upper disc for various values of dimensionless 

curvature parameter β ; 6.06.0  β  
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Figure 4.12  Different shapes of secant and mirror image of secant upper discs for various 

values of dimensionless curvature parameters )6.02.0(  γγ  and 

)6.02.0(  αα , respectively 

 

β
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Figure 4.13 Variation in W  for different values of dimensionless curvature parameter β and 

1fΩ (that is, either πΩu 30  and πΩl 30  or πΩu 30  and πΩl 30 ) 

for 
2R

e ehh β  

 

 

 

 

 

Figure 4.14  Variation in W  for different values of dimensionless curvature parameter γ and 

1fΩ (that is, either πΩu 30  and πΩl 30  or πΩu 30  and πΩl 30 ) 

for )(sec 2Rγhh s    
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Figure 4.15  Variation in W  for different values of dimensionless curvature parameter α and 

1fΩ  (that is, either πΩu 30  and πΩl 30  or πΩu 30  and 

πΩl 30 ) for )(sec2 2Rαhh is   

 

 

 

Figure 4.16  Variation in W  for different values of dimensionless porous thickness 

parameter ψ and 1fΩ (that is, either πΩu 30  and πΩl 30  or 

πΩu 30  and πΩl 30  ) for all designs of h  considering 6.0 αβ , 

2.0γ  
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Figure 4.17  Variation in W  for different values of dimensionless squeeze velocity 

parameter Vsq and 1fΩ  (that is, either πΩu 30  and πΩl 30  or 

πΩu 30  and πΩl 30 ) for all designs of h  considering 6.0 αβ , 

2.0γ  

 

 

 

 

 

 

 

 

 

 


