
1 | P a g e  
 

Synopsis of the thesis entitled 

 

MATHEMATICAL MODELING OF FERROFLUID LUBRICATED BEARING 

DESIGN PROBLEMS 

 

 

Submitted by  

 

RAJIV BANSILAL SHAH 

(Registration No. : FOTE/857) 

 

Guided By 

 

Dr. RAJESH CHIMANLAL SHAH 

 

Towards the Partial Fulfilment for the  

Degree of 

 

DOCTOR OF PHILOSOPHY 

In 

APPLIED MATHEMATICS 

 

 

 

 

 

 
 

DEPARTMENT OF APPLIED MATHEMATICS 

Faculty of Technology & Engineering 
The Maharaja Sayajirao University of Baroda 

Vadodara-390001, Gujarat, India 
(September, 2020) 

 



2 | P a g e  
 

PUBLICATION AND CONFERENCE DETAILS 

 
List of papers published 

 

1. Derivation of ferrofluid lubrication equation for slider bearings with variable 

magnetic field and rotations of the carrier liquid as well as magnetic particles. 

Meccanica 2018; 53, 857-869 (doi: https://doi.org/10.1098/rsos.170254) 

2. Ferrofluid lubrication of circular squeeze film bearings controlled by variable 

magnetic field with rotations of the discs, porosity and slip velocity. Royal 

Society Open Science 2017; 4 :170254 (doi: https://doi.org/10.1007/s11012-

017-0788-9) 

3. Static and dynamic performances of ferrofluid lubricated long journal 

bearing. Z. Naturforschung A 2021; 76(6), 493-506 (doi: 

https://doi.org/10.1515/zna-2021-0057) 

 

 Manuscripts under communication: 01 

 

List of papers presented in conferences 

 
1. Ferrofluid  lubrication of circular squeeze film bearings controlled by variable 

magnetic field  at international conference of SIAM(Society for Industrial and 

Applied Mathematics) on Applications of Dynamical Systems(DS19), 

Snowbird, Utah, USA during 19-23 May, 2019. 

 

2. Derivation of ferrofluid lubrication equation for slider bearings with variable 

magnetic field and rotations of the carrier liquid as well as magnetic particles at 

the national conference on STEM(Science, Technology, Engineering and 

Mathematics) cSTEM’19 at the G. H. Patel College of Engineering & 

Technology(GCET), Vallabh Vidyanagar, Gujarat, India during 27-28 

September, 2019. 

https://doi.org/10.1098/rsos.170254
https://doi.org/10.1007/s11012-017-0788-9
https://doi.org/10.1007/s11012-017-0788-9
https://doi.org/10.1515/zna-2021-0057


3 | P a g e  
 

Brief Literature Review 

 

A ferrofluid (FF) or magnetic fluid (MF) is a colloidal dispersion of nano magnetic 

particles in a non-conducting carrier liquid. Neuringer and Rosensweig (NR) [1] invented the 

concept of ferrofluid and a theory of ferrohydrodynamics is developed. McTague [2] 

experimentally investigated the influence of a uniform magnetic field H on the viscosity of a 

suspension of cobalt nanoparticles and discovered an increase of viscosity with the increase 

of magnetic field strength. Hall and Busenberg [3] theoretically studied viscosity of magnetic 

suspensions and calculated magnetization equation by considering that the torque on 

spherical particles is exerted by shearing fluid and also due to external magnetic field. But in 

their development there was no consideration of Brownian rotation of the particles. With this 

view Shliomis [4] studied FF phenomenon when the angular velocities of rotations of the 

carrier liquid as well as magnetic particles are different. Due to these differences of angular 

velocities frictional force arise which cause an increase in the effective viscosity of the FF. 

Shliomis [5] deals mainly with physical and hydrodynamic properties of magnetic colloid. 

The mechanisms of relaxation of the magnetization of a suspension are also discussed. 

Raikher and Shliomis [6] calculated the effective viscosity of a suspension of ferromagnetic 

particles with anisotropy of the "easy-axis". They established the relationship between the 

viscosity and the anisotropy field.  

Due to the important property of FF to adhere to any desired location on the surface 

under the influence of an applied magnetic field, it has gained widespread popularity among 

the researchers working on the lubrication theory of bearings.  

The following are some references regarding use of FF lubricant on different bearing 

design systems using NR model.  
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Tipei [7] analyzed general momentum equations under the assumption of FFs as 

Newtonian fluids. The short bearing case is studied. It is shown that the load-carrying 

capacity increases because of the effect of magnetic particles. The bearing stability and 

stiffness are also shown to be improved. Agrawal [8] studied the effects of MF on a porous 

inclined slider bearing. It is shown that the load-carrying capacity increases without affecting 

the friction on the moving slider due to the effect of magnetization of the magnetic particles 

in the lubricant. Chi et. al. [9] studied new type of FF lubricated journal bearing consists of 

three pads (one of them is a deformable elastic pad). The theoretical analysis and 

experimental investigation shows the better performance of the bearing as compared to 

ordinary bearings (which uses conventional lubricant). Moreover, the bearing is operated 

without leakage and any feed system. Prajapati [10] studied effect of MF on different porous 

squeeze film-bearing designs like circular, annular, elliptic, conical, etc. It is concluded that 

the load-carrying capacity increases with the increase of magnetization parameter, and the 

bearings can support a load even when there is no flow. Osman et.al. [11] studied the static 

and dynamic characteristics of the hydrodynamic journal bearings lubricated with ferrofluid. 

They have calculated the bearing characteristics like load carrying capacity, attitude angle, 

frictional force at the journal surface, friction coefficient and bearing side leakage. Using 

finite perturbation technique, they also determined the eight oil film stiffness and damping 

coefficients and used these as input to find the critical speed. Montazeri [12] numerically 

discussed FF lubricated hydrodynamic journal bearings. It is shown that compared to 

conventional lubricant, FF improves the hydrodynamic characteristics of journal bearings and 

provides a higher load capacity with the reduction in friction coefficient. Kuzhir [13] predict 

the shape of a free boundary of lubricant in the presence of a static load and magnetic field in 

ferrofluid lubricated journal bearing. The analysis involves simultaneous integration of the 

Reynolds equation and the free boundary equation using perturbation technique with respect 
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to shaft eccentricity. Magnetic field is shown to flatten ferrofluid free boundaries as well as to 

reduce cavitation region; both effects diminishing lubricant leakage. Hsu et. al. [14] 

investigated ferrofluid based long journal bearings under the effects of stochastic surface 

roughness and magnetic field (which is generated by an infinitely long wire). They show that 

due to placing such infinitely long wire magnetic field at appropriate distance from the center 

of the bearing can suppress side leakage, thereby extending the life of the bearings. They also 

show that under a higher power-law index and induced magnetic force, the introduction of 

transverse roughness can enhance film pressure and load capacity, while reducing the attitude 

angle and modified friction coefficient. The introduction of longitudinal roughness has the 

opposite effect. Shah and Kataria [15] theoretically discussed FF based squeeze film between 

a sphere and a flat plate. It is concluded that loss in the dimensionless load-carrying capacity 

due to the effect of porosity is almost zero because of using FF as lubricant for smaller values 

of thickness parameter of the porous layer and radial permeability parameter. Rao et. al. [16] 

analyse porous layered long journal bearing lubricated with ferrofluid using displaced 

infinitely long wire magnetic field model. Expressions for dimensionless pressure and shear 

stress are derived using Reynolds boundary conditions. Dimensionless load-carrying capacity 

and coefficient of friction are evaluated under the influence of permeability of porous media, 

porous layer thickness, lubricant layer thickness, magnetic field intensity and distance ratio 

parameter. The results show the increase in load-carrying capacity and reduction in 

coefficient of friction. Hu and Xu [17] mathematically studied lubrication performance of the 

journal bearing using cohesion forces & couple stresses of MFs, and the effect of squeeze 

dynamics. The bearing characteristics like load-carrying capacity, attitude angle, friction 

coefficient and side leakage studied. The results show that dimensionless load-carrying 

capacity increases with the increase of squeeze parameter, cohesion force coefficient and 

couple stress parameter of the MF.  
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The following are some references regarding use of FF lubricant on different bearing 

design systems using Shliomis model.  

 Shukla and Kumar [18] used Shliomis model to study the slider and squeeze film 

bearings with uniform transverse magnetic field by neglecting relaxation time of particle 

rotation. They derived the pressure equation under the assumptions that the FF is saturated so 

that the saturation magnetization is independent of the applied magnetic field, and the 

magnetic moment relaxation time is negligible. Shah and Bhat [19] analyzed FF lubricated 

squeeze film in a long journal bearing and shown that when magnetic field is uniform, the 

rotational viscosity parameter of Shliomis model causes increase in the load-carrying 

capacity and response time. The case of non-uniform magnetic field is also studied. Shah and 

Bhat [20] derived the pressure equation and the case of squeeze film between curved annular 

plates bearing is studied. It is concluded that the load-carrying capacity and approaching time 

of squeeze film can be enhanced by increasing the volume concentration of the solid phase in 

FF and the intensity of external magnetic field. Singh and Gupta [21] studied curved slider 

bearing with the effect of transverse magnetic field. It is shown that there is an improvement 

in stiffness and damping capacities of the bearings due to the effects of rotation and volume 

concentration of magnetic particles.  Lin et. al. [22] investigated lubrication performance of 

short journal bearings operating with non-Newtonian ferrofluids model of Shliomis and the 

micro-continuum theory of Stokes. The results show that bearings give better performance 

and result in a higher load capacity as compared with the case of conventional non-ferrofluid 

lubricant. Also, comparing with the Newtonian ferrofluid case, the non-Newtonian effects of 

couple stresses provide an enhancement in the load capacity, as well as a reduction in the 

friction parameter.  Lin [23] derived Reynolds equation for MF lubricated slider bearings 

using transverse magnetic field. It is shown that load-carrying capacity, dynamic stiffness and 

damping characteristics are improved. Shah and Parikh [24] analysed different shapes of 
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slider bearings and compared dimensionless load-carrying capacity for the effect of squeeze 

velocity. It is concluded that the load-carrying capacity of all bearings remains constant with 

the increase of Langevin’s parameter, whereas it has an increasing tendency with the increase 

of volume concentration of the particles. Shah and Shah [25] derived Reynolds equation for 

the study of lubrication of different slider bearings, using Shliomis based ferrofluid flow and 

continuity equation. They have considered the effects of oblique radially variable magnetic 

field and squeeze velocity. Using Reynolds equation, general form of pressure equation is 

derived and expressions for dimensionless load-carrying capacity, frictional force, coefficient 

of friction and center of pressure are obtained. Using these expressions, results for different 

slider bearings are computed for different parameters and compared. Shah and Shah [26] 

derived the modified Reynolds equation using Shliomis ferrofluid flow model and continuity 

equation for lubrication of circular squeeze film bearings considering the effects of oblique 

radially variable magnetic field, slip velocity at the film porous interface and rotations of both 

the discs. Using Reynolds equation, general form of pressure equation is derived and 

expression for dimensionless load-carrying capacity is obtained. Using this expression, 

results for different bearing design systems are computed and compared for variation of 

different parameters. 
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Basic equations and boundary conditions 

 
Basic equations and boundary conditions used in the study are as follows. 

(1) Based on the Shliomis [4, 20] FF flow model, fundamental equations used in the study are 

as follows.  

Equations of Motion 

                      

2

0

s

1
( ( ) 0

2
p I 


        q M )H S   

      

            (1) 

Equation of internal angular momentum 

                                                            0 ( )sI    S M H                                     (2)                                           

Equation of magnetization 

                                                          

B
0 ( )M

H I


  

H
M S M

                                             

(3)

 

Maxwell’s equations 

                                                     0 H                                                            (4)  

                                                    ( ) 0  M H                                                       (5) 

Equation of continuity 

                                                        0 q                                                             (6) 
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(2)  

Integral form of the continuity equation in Cartesian coordinate  

                                               
0

0

0

h

hu dz w w
x


  

 
                                                

 (7) 

Integral form of the continuity equation in cylindrical coordinate  

                                           0

0

1
( ) 0

h

hru dz w w
r r


  

 
                                           

(8) 

(3)  

Slip boundary conditions 

                                           

1 5
;

r

u
u U s

s z k


   


                                           

 (9) 

where, p is the pressure,   is the viscosity of the suspension, 
 is the permeability of free 

space, H  is the applied magnetic field vector, H  is magnetic field strength, M  is the 

magnetization vector, I  is the sum of moments of inertia of the particles per unit volume, 

= ( ,0, )u wq is the fluid velocity vector, 1
2

 q  ,   is the Brownian relaxation time, 
s  

is the magnetic moment relaxation time and 
0M  is the equilibrium magnetization,   is the 

fluid density, s  is a slip constant, U is velocity in x- direction, k  being permeability of the 

porous matrix, 
r  being porosity of the porous matrix. 
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Organization of the thesis 

Chapter 1 mainly deals with the motivation as well as literature survey of the present work. 

Chapter 2 contains physico-mathematical background necessary to understand the 

subsequent chapters. That means it contains pre-requisite for the problems discussed in the 

subsequent chapters. 

Chapter 3 deals with  the derivation of ferrofluid lubrication equation for different shapes of 

slider bearings considering the effect of oblique variable magnetic field and squeeze velocity. 

Different slider bearing designs are made up of various stators shapes (inclined, exponential, 

secant, convex and parallel) and flat parallel sliders. In deriving the modified Reynolds 

equation for the study of lubrication of different slider bearings, Shliomis FF flow model 

(equations (1)-(5))  and integral form of the continuity equation (equation (7)) is used. The 

external oblique radially variable magnetic field vector is chosen as  

     ( )(cos ,0,sin )H x  H                                                 (10) 

with magnetic field strength 

1( ) ( )H x K x A x                                                      (11) 

where, A is the length of the lower surface of the slider along the x-axis and  is the 

inclination of the magnetic field with the x-axis. Also 
1K  is a quantity chosen to suit the 

dimensions of both sides of equation (11). Such a field attains maximum at x = A/2 and 

vanishes at x = 0 and x = A. In this case we have considered active contact zone in the 

neighbourhood of  x = A/2.  

With reference to the various stators shapes (inclined pad, exponential pad, secant 

pad, convex pad and parallel pad), the slider bearing designs referred here as inclined slider 
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bearing, exponential slider bearing, secant slider bearing, convex slider bearing and parallel 

slider bearing, respectively. Accordingly using subscripts pcsei ,,,, , the following shapes 

are taken in computation. 

10;)1(  XXaahh i                                     
(12) 

10;)lnexp(  XaXahh e                                 
(13) 

10)};1(sec{
2

  XXhh s                                   
(14) 

24 ( 1 4 ) ; 0 1ch h X a X a X        
                      

(15) 

10;1  Xhh p                                            
(16) 

where,  

2

1 1 1

, ,
h x h

a , X h
h h A h


   

                                           

(17) 

and   is the central thickness of the convex pad, 
1h , 

2h  are minimum and maximum values 

of film thickness  h   respectively. 

Using Reynolds equation, general form of dimensionless pressure equation is derived 

as  

*

0

sinh
ln 6 ,

X
h X Q

p dX
G

 




   
  

 


                                    

(18)

                                        

where,                    



12 | P a g e  
 

1

0

1

0

βX h
dX

G
Q

dX

G








    , 
3

5
2

(1 )(1 )

h
G

 


 
 

and 

                
2

*1 1

1 0

2
, BAh nk Th

Uh UA
 


    

where,   is dimensionless field strength (Langevin’s parameter),  is squeeze velocity 

parameter, n is the number of particles per unit volume, 
Bk is Boltzmann constant, T is 

temperature,  
0  is the viscosity of carrier liquid and U  is slider velocity.

   

 

Expression for dimensionless Load-carrying capacity (W ) can be obtained as  

1

* *

0

6 ( )
X

W I h X Q dX
G

    
                                   

(19) 

where,   

1

*

0

1
(1 2 ) coth ,I X X dX 



 
   

 


                                                                                                                                     

 

  Frictional force ( F ) can be obtained as  

  

1

2

0

5 1 3
1 ( )

2
F h X Q dX

h h
 

   
       
   


                            

(20)

 

where,    is the volume concentration of the particles. 

Coefficient of friction ( f )  can be obtained as 
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F
f

W


                                                            

(21)

   

and Center of pressure ( x )  can be obtained as  

1 2

0

1
μ 6 ( ) ,

2

* ** X
x I h βX Q dX

GW

 
    

 


                              

(22) 

where,  

1

** 2

0

1
(1 2 ) coth .I X X dX 



 
   

 


        

Using these expressions, results for different slider bearings are computed for 

different parameters and compared. In the present analysis, the case of sample magnetic field 

is considered in such a way that it is maximum at the middle of the bearing. However, the 

study with other forms of magnetic field because of different requirements can be discussed 

similarly. From the results and discussion, following conclusions can be made. 

Using subscripts i, e, s, c, p for the concerned quantities when the slider bearings are 

inclined, exponential, secant, convex, and parallel respectively. 

(1) W  is maximum for parallel slider bearing, whereas it is least for secant slider bearing. For 

all other bearings, W  almost remains the same. Thus,  

p i e c sW W W W W    . 

The behaviour of W increases with the increasing values of squeeze velocity parameter  for 

all bearing designs.  



14 | P a g e  
 

(2) F  is maximum for inclined, exponential and convex slider bearings, whereas it is least 

for parallel slider bearing. Thus,  

ceisp FFFFF  . 

The behaviour of F  remains constant for parallel slider bearing, whereas it increases for all 

other bearings with the increasing values of  .  

(3) f  is maximum for secant slider bearing, whereas it is least for parallel slider bearing. For 

all other bearings, f  almost remains the same. Thus,  

.p i e c sf f f f f     

The behaviour of f  decreases with the increasing values of   for all bearing designs. 

(4) The position of x  shift towards the outlet for all bearing designs except parallel. The 

shifting is maximum in the case of secant slider bearing. For parallel slider bearing, x  is in 

the middle of the bearing. For inclined, exponential and convex slider bearings, the position 

of x  remains the same, and it is inbetween secant and parallel slider bearings. The behaviour 

of x  remains constant with the increasing values of   for all bearing designs.  

Chapter 4 deals with the study of lubrication of circular squeeze film-bearings using 

Shliomis FF flow model with the effects of oblique radially variable magnetic field, porosity, 

slip velocity at the film-porous interface and rotations of both the discs. The squeeze film-

bearings are made up of circular porous upper disc of different shapes (exponential, secant, 

mirror image of secant and parallel) and circular impermeable flat lower disc. While deriving 

the modified Reynolds equation, the validity of the Darcy’s law is assumed in the porous 
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region (matrix or layer). The use of continuity equation is also made in the film as well as 

porous region.  

The magnetic field taken in this case is  

                                            ( ) (cos 0 sin ), ( )H r θ , , θ θ θ r , z H                                     (23) 

where,  θ  is the inclination to the radial direction and is assumed to be small. 

In order to consider active contact area in the neighbourhood of r = 2a1/3, the 

magnetic field strength of radially VMF should be chosen as 

2

2 1( )H K r a r  ,                                                       (24)                                      

where, 
2K  being the quantity chosen to suit the dimensions of both sides of equation (24). 

Such a field attains maximum at r = 2a1/3 and vanishes at r = 0 and r = a1. For other active 

contact areas, suitable form of magnetic field strength should be chosen. 

Slip boundary condition is used as  

                             u=0 when z=0,  
rηk

s
z

u

s
u

5
;

1





  when z=h                                  (25) 

where,  k is permeability of the porous matrix, rη is porosity of the porous matrix in                

r-direction and s is the slip constant.   

Using Reynolds equation, general form of dimensionless pressure equation is derived 

as 

1

sinh
ln

R

* F
p μ dR

ξ G


  

                                          

(26)  

where, 
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,
)1)(1(

)4(
12

23

τhs

hτsδhsh
ψG






 

2 2 3 2(3 2 ) {(18 3 ) (14 4 ) (8 3 ) }
( 6 12 ) ,

6 (1 )(1 ) 10 (1 )(1 )

f f f fδsτh SR SRh sh sh sh
F ψS R

sh τ sh τ

         
    

     

where,   

2*

0 0
03

0 0 1 0

3
* 0

2

1 0

,

, , , , , ,

3 tanh
,

2 tanh

u
sq

u sq

l B
f

u

h hkH h r
h s sh R V S

h h a h V

nk Th

a h





 

  
  

  


      


  



 

where, 
*H  is a thickness of the porous matrix, k is a permeability of the porous matrix, h is 

the film thickness, 
0h  is the central film thickness, s  is a slip constant,  

1a  is the radius of the 

circular disc, 0h is squeeze velocity 
0 /dh dt ,

u is a rotational velocity of the upper disc, 
l  

rotational velocity of the lower disc,  is fluid density,   is viscosity of the suspension, n  is 

the number of particles per unit volume, 
Bk  is Boltzmann constant, T  is temperature,   is 

the volume concentration of the particles,   dimensionless field strength(Langevin’s 

parameter).

 

Expression for dimensionless load-carrying capacity can be obtained as 

    

1 1 2

0 0

1

2

R F
W RpdR μ I dR

G

    
                                            

(27)

  

where,  

dRξ
ξ

RR
λ

I  









1

0

3 coth
1

)32(
2
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and 

3

0 2 1

B

mK a

k T


 

 

where,  
0  is the permeability of free space,  m  is the magnetic moment of a particle. Using 

this expression, results for different bearing design systems (due to different shapes of the 

upper disc) are computed and compared for variation of different parameters. 

Using subscripts e, s, is, p for the concerned quantities when the squeeze film-bearing 

designs are of exponential, secant, mirror image of secant and parallel shapes, respectively,  

equations for the film thickness for computation are taken as 

2 2

1 1; 0 1R

eh h e β β a R    β                                     (28) 

2 2

1 1sec ( ) ; 0 1sh h γ R γ γ a R     ,                             (29) 

2 2

1 12 sec ( ); 0 1ish h α R α α  a R      ,                          (30) 

10;1  Rhh p .                                            (31) 

where, 1  is the curvature of the mirror image of the secant upper disc, 
1  is the curvature of 

the exponential upper disc, 1  is the curvature of the secant upper disc. 

The results for the dimensionless load-carrying capacity W  are computed using 

Simpson’s one-third rule with step size 0.1. 

The following conclusions can be made from the results and discussion. 
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1. W  is maximum when 1f   ; that is, either 
u  is rotated in counterclockwise direction 

and 
l  

in clockwise direction, or 
u  is rotated in clockwise direction and 

l  in 

counterclockwise direction with the same speed. But getting 1f    for faster rotation 

results moderate reduction in W . 

2. Using subscripts e, s, is, p for the concerned quantities when the bearing design are of 

exponential, secant, mirror image of secant and parallel respectively,  maximum load 

carrying capacity W is obtained in the case of exponential squeeze film-bearing while 

minimum in the case of secant shape with .e is p sW W W W    

3. Concave (with respect to lower flat disc) shape of the upper disc with more curvature at the 

center has more impact on the increase of W  as compared to convex shape. Moreover, in 

convex shape with less curvature at the center in upward direction has more impact on the 

increase of W . 

4. W  increases even if rotation of the lower disc is zero and irrespective of the decrease of  

rotation of the upper disc. 

5. W  increases when dimensionless porous thickness parameter ( ) approaches to 0.  

6. W almost remains constant  when squeeze velocity parameter increases.  

Chapter 5 theoretically derived generalized ferrofluid lubrication equation from basic theory 

for variable as well as uniform (transverse) strong magnetic field, and  studied application of 

variable and strong magnetic field to axially undefined porous journal bearing (AUPJB) 

using equation of continuity in film as well as porous region and assuming validity of the 

Darcy’s law in the porous region. The variable magnetic field (VMF) is used to retain all 
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magnetic terms of the Shliomis model. Moreover, it has advantage of generating maximum 

magnetic field at the required active contact zone of the bearing design system. Following 

equations are derived theoretically. 

Equation of motion:  

2 1
( ) ( )

2

D
p

Dt
        

q
q M H M H  

                             
(32)

 

where, p  is fluid pressure,   is the viscosity of the suspension, q is the fluid velocity vector, 

M is the magnetization of the suspension, H is the magnetic field vector,  is the fluid 

density. 

Moreover, two well-known concept of magnetic relaxation time are discussed, namely  

Brownian relaxation time  described by  

3
,B

B

V

k T


 

                                                           

(33)

 

and Neel relaxation time described by 

1

0 exp ,N

B

KV
f

k T
   

  
                                                    

(34)

 

where, Bk  Boltzmann’s constant, T is the absolute temperature, V particle volume,  0f  is the 

Larmour frequency of the magnetization vector in the anisotropy field of the particle and K  

is the anisotropy constant of the magnetic particle. 

Magnetization dynamic equation:  
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0

1 1
( ) .

B

D
M

Dt I H

 
    

 

M H
S M M

                                   

(35)

 

where,  S is the internal angular momentum density of particles, 
B  is the Brownian 

relaxation time, 
0M is the equilibrium magnetization given by Langevin formula, H  is the 

magnitude of the magnetic field. 

Also discussed the expression for rotational and effective viscosity of the suspension 

in the case of applied magnetic field and it is found to be  

For rotational viscosity, 

if the magnetic field is oriented parallel to the flow and perpendicular to the flow, 

                             (36)  

respectively. 

For effective viscosity 

0

4 tanh
( ) 1

tanh
e

 
   

 

 
  

                                            

(37)

  

where, 
0   is the viscosity of the carrier liquid,  is the volume concentration of  all 

suspended material,   is the magnetic field parameter.  

In Mathematical Modelling of the ferrofluid based axially undefined porous journal 

bearing, external oblique radially variable magnetic field taken similar to   

( )(cos ,0,sin ),H x  H                                            (38) 

3 tanh 3 tanh
and

2 tanh 4 tanh
rv rv

   
   

   

 
 

 
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where,   is the inclination of the magnetic field with the x-axis. 

The magnetic field strength as  

 2

3 2H K x R x 
                                                

(39) 

where,  R is the journal radius, 
3K  is the quantity chosen to suit the dimensions  of both sides 

of equation (39). 

According to the Darcy’s law, the velocity components in the porous region in x and 

z- directions, respectively taken as 

1
0 1

1

sinh 1
ln

4

x
B

u
u P nk T M H

x z z

 
 

 

      
       

                                

(40)

 

1
0 1

1

sinh 1
ln

4

z
B

u
w P nk T M H

z x z

 
 

 

      
       
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(41)

 

where,  

 0
1 1 1

01
1

1
coth , ,

1

B

B sB

mH
M nm

k T
M H

I

 
  

  

 
    

  

 

Here, 
x  and 

z are permeability components of the porous facing in the x and z-directions, 

respectively. u, w are the velocity components in the film region in x and z- directions, 

respectively. ,u w  are the velocity components in the porous region in x and z- directions, 

respectively. P is the fluid pressure in the porous region, n is the number of magnetic 

particles, 
0 is the permeability of free space, m is the magnetic moment of the particle.  

 Slip boundary condition taken as  

0 when z = 0, and

1 5
when ;

z h x x

u

u
u z h s

s z  



 
    

                                    

(42)
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where, s is the slip constant and x is the porosity in x-direction.

 

The modified Reynolds equation for AUPJB is derived considering continuity 

equation in film as well as porous region and by assuming the validity of the Darcy’s law. 

The pressure equation derived as  

* 1

1 0

sinh sin
ln 12p d

G


 

 


  
                                         

(43)

 

where,  

 

23 2
*

2
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3 3 2

12( ) ( 4)
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1 (1 ) 1
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c c c c dt

   


  

   
   

  
  

  

       

Here, 
*H is the thickness of the porous region, c  is radial clearance, s is slip constant,   is 

eccentricity ratio,  is rotational viscosity parameter, h  is the film thickness. 

The expression for dimensionless load carrying capacity can be obtained as 

2
2

* *

0

sin
12 ,W I d

G

 
   

                                               
(44)

 

where, 

1
2

1*

0

1
sin coth

( ) .
(2 )

I d


 


   
  

 
 

  



 

and  studied for different parameters. 

The Results show that dimensionless load-carrying capacity increases with the 

increase of eccentricity ratio     and for the anisotropic case x z    where x  is the 

dimensionless permeability parameter in x-direction and z  is the dimensionless 
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permeability parameter in z-direction. The above behaviour of dimensionless load-carrying 

capacity is more significant for thin layer of porous matrix. 

Chapter 6 deals with the static and dynamic performance of ferrofluid lubricated long 

journal bearing with constant magnetic field.  Based on ferrofluid flow and continuity 

equation Reynolds equation is derived for the study of static and dynamic performance of 

journal bearing under the constant magnetic field. Using Reynolds equation, we have 

obtained the pressure equation for steady-state (static) as  

2 2

5
12 (1 )(1 ) sin (2 cos )

2

(2 )(1 cos )
p

      

  

  


                                   

(45) 

and the pressure equation for dynamic condition as 

2 2 2 2

5 sin (2 cos ) 1 1 1
ˆ 12 (1 )(1 )

22 (2 )(1 cos ) (1 cos ) (1 )
1

p


      

      



  
    

       
      

   
 

                                                                                                                                             (46) 

where,   is the angular coordinate related to a fixed direction,   whirling motion of the 

journal,  is the volume concentration of particles,  is the rotational viscosity parameter,   

is the eccentricity ratio,   is squeeze velocity parameter  /d dt ,  is angular velocity of 

the journal. 

With the help of these pressure distribution expression, we obtained fluid film 

reaction forces Rf  and Tf  in radial and tangential direction, respectively, for both static and 

dynamic cases separately. 
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From the fluid reaction forces, for the static case we have obtained dimensionless load 

carrying capacity as 

2

1
2 2 2

5
12 1 (1 )

2

(2 )(1 )
W

   

 

  
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  
  
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(47) 

dimensionless frictional forces at the journal  as 

2 2

2 2

5 4 (1 2 )
1

2 (2 ) 1
F

 


 

 
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(48) 

and dimensionless  frictional coefficient as  

2(1 2 )

3(1 )
f



 




                                                           

(49)

 

For the dynamic loading condition, we have discussed the increase in the fluid force 

components 
Rf  and 

Tf  
in radial and tangential directions, respectively over their equilibrium 

value and using the Taylor’s series expansion we obtained the dimensionless stiffness matrix 

as 

R R T

T T R

f f f

k
f f f

   

   

  
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  
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(50) 

  and dimensionless damping matrix as  
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We also obtained analytical expression for the stiffness and damping coefficients as  

Non-dimensional 

stiffness and damping 

coefficients 

Equivalent derivative 

in terms of Non-

dimensional pressure 

force components 

Analytical expression of stiffness and 

damping coefficients 
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 For the steady-state (Static) the effect of variation of dimensionless eccentricity over the load 

carrying capacity, frictional force and coefficient of friction are studied. It is observed that the 

load carrying capacity is increasing without significantly increase in the frictional force with 

the use of FF lubricant in the presence of transverse magnetic field. Also for the dynamic 

condition, variation of dimensionless eccentricity over dynamic coefficients are studied. It is 

observed that the bearing performance improves with the use of FF lubricant than 

conventional lubricant, which leads to added advantages to various types mechanical devices. 
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List of Symbols 

a            
1

2

h

h
 

c        radial clearance(m) 

A            bearing length (m) 

f           dimensionless coefficient of friction  

F           dimensionless frictional force  

h        film thickness (m) 

    21 , hh       minimum and maximum values of h (m) 

   1 0,h h         squeeze velocity 01 ,
dhdh

dt dt
respectively(ms1) 

    H             magnetic field strength (Am1) 

    H             magnetic field vector  

I              sum of moments of inertia of the particles per unit volume (Ns2m2
 ) 

m             magnetic moment of a particle  (A 2m ) 

M            magnetization vector 

0 1,M M    saturation magnetization (A m1 ) 

n              number of particles per unit volume (m3)   

f0  Larmour frequency of the magnetization vector in the anisotropy field of the     

 particle     

    p            dimensionless film pressure  

    p̂            dimensionless film pressure in dynamic condition 
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q             fluid velocity vector 

t              time (s)  

T             temperature ( 0 K )   

U            slider velocity (ms1)             

W           dimensionless load-carrying capacity  

x,y,z        coordinates 

x            dimensionless center of pressure  

X           
A

x
 

   
1a      radius of the circular discs (m) 

   FF     ferrofluid 

   h0            central film thickness (m) 

 H*             thickness of the porous matrix (m) 

 kB              Boltzmann constant (J 1o )K(  ) 

  k              permeability of the porous matrix (m2) 

K     anisotropy constant 

S    sum of angular momentums of particles per unit volume (K m2 s1) 

V    volume of the particle (m3)  

 MF    magnetic fluid 

  P            fluid pressure in the porous matrix (N m2) 

  r             radial co-ordinate (m)  
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 s  slip constant (m1) 

 Vsq  dimensionless squeeze velocity parameter  

VMF  variable magnetic field 

Rf   fluid film reaction forces in radial direction 

Tf           fluid film reaction forces in tangential direction 

Greek symbols 

           inclination of the magnetic field with the x-axis 

           squeeze velocity parameter  

           central thickness of the convex pad (m) 

            viscosity of the suspension (N s m2) 

0           viscosity of the liquid carrier (N s m2) 

            magnetic field strength parameter  

0           permeability of free space 

1,         dimensionless field strength (Langevin’s parameter) 

, rv        rotational viscosity parameter(N s m2)  

e           effective viscosity parameter(N s m2) 

x    porosity in the x-direction. 

x    permeability of porous facing in x-direction (NA2) 

z    permeability of porous facing in z-direction (NA2) 

x    dimensonless permeability parameter in the x-direction 
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z    dimensonless permeability parameter in the z-direction 

N          Neel relaxation time (s) 

B          Brownian relaxation time (s) 

s         magnetic moment relaxation time (s) 

         1
2

q  

    volume concentration of the particles 

           inclination of the magnetic field vector to the radial direction and also in the case    

 of journal bearing angular coordinate related to a fixed direction  

1         curvature of the mirror image of secant upper disc (m2) 

         curvature of the exponential upper disc (m2) 

1       curvature of the secant  upper disc (m2) 

α           
2

1 1a  ,  dimensionless curvature parameter defined in equation (30) 

β         
2

1a  , dimensionless curvature parameter defined in equation (28) 

γ          
2

1 1a  , dimensionless curvature parameter defined in equation (29) 

r          porosity of the porous matrix  

 ρ          fluid density (N s2m4) 

ψ          dimensionless porous thickness parameter  

f        dimensionless  rotational parameter  

u         rotational velocity of the upper disc (rad. s1) 
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lΩ         rotational velocity of the lower disc (rad. s1) 

          attitude angle 

          whirling motion of the journal 

           eccentricity ratio 

          angular velocity of the journal 

 

   


