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In this chapter, we study the non-adiabatic gravitational collapse of a spherical 
distribution of matter accompanied by radial heat flux on the background of a pseudo 
spheroidal spacetime. The spherical distribution is divided into two regions: a core
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Bharat S Ratanpal 3.1. INTRODUCTION

consisting of anisotropic pressure distribution and envelope consisting of isotropic 
pressure distribution. Various aspects of the collapse have been studied using both 
analytic and programming approach.

3.1 Introduction

When a thermonuclear sources of energy in a star are exhausted it begins to collapse 
due to absence of outward force to balance the inward gravitational force. The final 
stage of such massive stars is either a white dwarf, a neutron star or a black hole, 
depending upon the mass of the configuration.

The gravitational collapse problems of spherical distribution of matter, like stars, 
are important problems in relativistic astrophysics. If the collapse is accompanied 
by heat flux which radiates out through the surface of the star, then the problem 
is realistic in nature. The first attempt in this direction was made by Oppenheimer 
and Snyder [67], when they studied an idealized problem of the gravitational col­
lapse of a spherical dust distribution for adiabatic flow. Thereafter several authors 
have worked on problems of gravitational collapse considering different idealized 
situations.

The junction conditions for a more relativistic gravitational collapse with non - 
adiabatic heat flow has been first studied by Santos [77]. An important consequence 

of this study was that, at the boundary, the pressure is proportional to the magnitude 
of the heat flow vector. Based on this approach Oliveira, Santos and Kolassis [66] 
proposed mathematical model for a collapsing radiating star with unpolarized out­
going radiation and studied the physical conditions and thermodynamic relations. 
Gravitational collapse solutions with shear and radial heat flow were first obtained 
by Glass [27]. Dynamical equations governing the gravitational non-adiabatic col­
lapse of a shear-free spherical distribution of anisotropic matter in the presence of 
charge has been studied by Tikekar and Patel [92].

When we consider the gravitational collapse of spherical distributions consisting of 
superdense matter distribution, the pressure may not be isotropic throughout the 
distribution. For such stars the core region may be anisotropic in pressure (Rud- 
erman [76] and Canuto [8]). Therefore study of models by with isotropic pressure
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Bharat S Ratanpal 3.2. THE INTERIOR SPACETIME

throughout the distribution may not be physically realistic. Keeping this in view 
we have studied the gravitational collapse of spherical distribution of perfect fluid 
accompanied by heat flux in the radial direction. The whole region is divided into 
two parts - a core surrounded by an envelope. The core consisting of matter with 
anisotropic pressure distribution and the envelope with isotropic pressure distribu­
tion.

3.2 The Interior Spacetime

The spacetime in the interior of non-adiabatically collapsing fluid sphere with out­
going radial heat-flow is denoted by M(*j. The spacetime metric of M(*) is taken as 
spherically symmetric metric in the form:

dsl) = e^dt2 - (ex(-r)dr2 + r2d92 + r2 sin2 9d<j>2) (3.2.1)

with an ansatz
e\{r) = 1 + KJf (3.2.2)

1 + 5*

where K and R are geometric parameters.

When n = 0, the spacetime reduces to the static pseudo spheroidal spacetime used 
for describing static core-envelope models of superdense fluid spheres described by 
Thomas, Ratanpal and Vinodkumar [87].

The energy-momentum tensor for the interior spacetime M(i) is taken as

Tij = (p + p) UiUj - pgij + tTij + qtUj + qjUt (3.2.3)

where p, p, ul and (f denote the matter density, isotropic fluid pressure, components 
of unit time-like flow vector field of matter and components of space-like radial heat 
flux vector orthogonal to u\ respectively. The anisotropic stress tensor 7Ty is given 
by:

TTia = Vi S CiCj (UiUj Pij) (3.2.4)
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' Bharat S Ratanpal 3.2. THE INTERIOR SPACETIME

where S — S(r) denotes the magnitude of anisotropy and

(7 = (0,-e~A/2,0,0) , (3.2.5)

which is a radial vector. For a comoving observer

u* = (e-^2,0,0,0) (3.2.6)

and
9i = (0,g,0,0). (3.2.7)

The heat flux vector (f is orthogonal to ul with magnitude q = q(r,t).

The energy-momentum tensor (3.2.3) has the following non-vanishing components 

TS = P r1I = -(p+^) If = Tf = -(p-J=) If = 9e"/2. (3.2.8) 

The pressure along the radial direction

2 S
p'=p+vi’

is different from the pressure along the tangential direction

S
P±-P

The magnitude of anisotropy is given by:

(3.2.9)

(3.2.10)

S Pr~P±
V3

(3.2.11)

Equations (1.1.2) corresponding to metric (3.2.1) with the energy-momentum tensor 
(3.2.3) is equivalent to the following set of four equations:

8np
K-l 

R2

8-Kpr = 1 + R?

h^hi+4)
r2 \ -1

e-** + ye" V, (3.2.12)

r2 \ v' K — 1
R? 1 + K

(lU

(3.2.13)
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Bharat S Ratanpal 3.3. THE EXTERIOR SPACETIME

8tt\/3S

(3.2.14)

)(
-l

(3.2.15)

Here a dot and a prime denote differentiation with respect to t and r, respectively.

We shall divide the interior M($) of the star into two parts core and envelope of the 
interior.

1. The region 0 < r < b as the core of the star characterized by anisotropic fluid 
distribution.

2. The region b < r < a as the envelope of the interior of the star characterized 
by isotropic fluid distribution.

Further discussion of the core and envelope of the interior spacetime is done in 
sections 3.6 and 3.7 respectively.

3.3 The Exterior Spacetime

The spacetime in the exterior of non-adiabatically collapsing fluid sphere with out­
going radial heat-flow is denoted by M(c). We consider Vaidya [98] metric in the 
exterior M(e) of the star

where m = m(v) denotes the total mass enclosed within the spherical region. 

The energy-momentum tensor in M(e) is given by

(3.3.1)

Tf=e ?(it (3.3.2)
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Bharat S Ratanpal 3.4. BOUNDARY CONDITIONS

where Q = (1,0,0,0). The non-vanishing components of Tf is

Tq1 = e, (3.3.3)

where e is the radiation density.

A time-like 3-hypersurface separates- the interior from the exterior and the 
dividing hypersurface E deistinguishes the two spacetime manifolds M(q and M(e), 
both of which contain E(&) as a part of their boundaries. The intrinsic metric on 
E(6) is:

dsl = dr8 - R (r) (dd2 + sin2 9d<p2). (3.3.4)

3.4 Boundary Conditions

We follow the method of Israel [38] in matching the interior with the exterior on 
the boundary E(6). In order to have, a unique intrinsic geometry at the boundary 
hypersurface E(&), we must have

dsh = ds%) = dsfb)- (3-4.1)

This conditions guarantee the continuity of metric coefficients across the boundary 
surface E(b-,.

The second boundary condition imposed on E(fe) is

ftij(e) ftij(i) 0) (3.4.2)

where /ty are components of the extrinsic curvature. This guarantees the continuity 
of the first derivatives of the metric coefficients in M(e) and M(q across E(&). The 
components of the extrinsic curvature /% are given by (Eisenhart [22]):

JC = „ „ vadrd^_ ,ftij Qa Q£iQ£j dat ab Q£i ' {6JL6}

where £* are coordinates 0, A r on E(fe), xa are coordinates appropriate to M(q and 
M(e) and rja are unit normals to E(&) in M(q and M(e).
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Bharat S Ratanpal 3.4. BOUNDARY CONDITIONS

The equation of the boundary surface £(fe) in terms of the interior coordinates is 
given by

f(r,t)=r-r{b), (3.4.4)

where rb is a constant. The equation of the boundary surface in terms of the exterior 
coordinates is given by

/ (y, v)=y- r(b) (v). (3.4.5)

The unit space-like normals rfa(i) and r?a(e) to £(6) in M(*) and M(e), respectively, are 
given by

Van = (o,e^,0,o), (3.4.6)

( dy dv \
Va(e) = • (3.4.7)

The boundary conditions (3.4.1) give the following relations:

fr = P'48>

(re^/2) (6) = t/(6) (v) = R (r),

dv -2 [2^ + 1- 2m
dr Cb) dv y J

Equations (3.4.2) and (3.4.3) yield the following equations

(3.4.9)

(3.4.10)

-m v
d? v
dr2__________
^ V2 dr

re 2 =

- (b)

(6)

V)dr

m dv

(b)

2m\ dv

(b)

(3.4.11)

(3.4.12)

Using (3.4.10) and (3.4.12), we get the total mass m(v) of the collapsing fluid sphere 

as
m(v) re

M/2
1 _ e-A +

r2efi-iy

-n
(b)

(3.4.13)

Substituting equations (3.4.10) and (3.4.11) in equations (3.2.13) and (3.2.15), we 
can obtain

(3.4.14)P(b)
ti‘fA

qe 2 J(5)

This relation shows that the radial pressure at the boundary is directly related to
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Bharat S Ratanpal 3.4. BOUNDARY CONDITIONS

the heat flux q at the boundary. The pressure at the boundary becomes zero only 
when there is no heat flux along the radial direction across the boundary.
The energy density of radiation measured by an observer on S(6) with four-velocity 
ua is given by (Lindquist, Schwartz and Misner [54])

£ = (3.4.15)

where
*■=(£.*0,0

dr dr
(3.4.16)

The Einstein’s field equations (1.1.2) for the spacetime metric (3.3.1) and energy- 
momentum tensor (3.3.2) yield

(3.4.17)

as the only surviving component of Einstein tensor. Now equation (3.4.15) becomes

2 dm (dv\2

The total luminosity for an observer at rest at infinity (Lindquist, Schwartz and 
Misner [54]) is:

Loo = lim Aix y2e = ——. (3.4.19)
dv

The luminosity observed on E(6) is:

(3.4.18)

L = 47iy2e.

The boundary red shift is given by

dv
dr — 1 +

Prom (3.4.18) and (3.4.19), we can write

Loo = 47r y2e =
vA

(3.4.20)

(3.4.21)

(3.4.22)
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Bharat S Ratanpai 3.5. SOLUTION OF FIELD EQUATIONS

From (3.4.12) and (3.4.9), we get

(3.4.23)rePl2 — 2m

It is observed from equation (3.4.22) that L^ -*• 0 as v -> oo. That is when re^2 -> 
2m. Thus when the collapsing star becomes a black hole i.e. when re1*/2 = 2m, the 
boundary redshift becomes infinity.

3.5 Solution of Field Equations

If p(t) = 0 and v (r, t) = i/(r) in the spacetime metric (3.2.1), we get the usual 
spherically symmetric static metric in Schwarzschild coordinates. If the matter 
content of the spacetime is in the form of perfect fluid, then the field equations are:

(3.5.1)

(3.5.2)

where po and po are the proper density and radial pressure of the fluid.

Equations (3.2.12), (3.2.13) will become

(3.5.3)

(3.5.4)

On using the equation (3.4.14) in (3.5.4), we get

(3,5.5)

if we choose f(t) = e^2 equation (3.5.5) reduces to

2// + /2 — 2af — 0 (3.5.6)
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Bharat S Ratanpal 3.5. SOLUTION OF FIELD EQUATIONS

where

a.
v—e 2

(*>)

Equation (3.5.6) possesses a first integral

■ 2a 1 — by/J
1 b V7 ’

and admits the solution

<-<0 = 5; + ^ + s'"|6'/7_11'

where 6 and to are arbitrary constants of integration.

(3.5.7)

(3.5.8)

(3.5.9)

We choose 6 = 1 and re-parametrize t, to get

/ = -^(l-V/7), (3.5.10)

(=i+ir+bn (* “ ^7) ■ (3-5'n)

Here t — —oo corresponds to / = 1. When t gradually increases from —oo (i.e 
/ = 1) the fluid gradually starts collapsing. Further we note that the spacetime 
metric (3.2.1) corresponds to a static metric when t = —oo.

Equation (3.4.13) gives the total mass of the collapsing fluid sphere as

m{v) 2aVe ^ (l ~ \/7) + mo f (3.5.12)
m

where

m0 (l ~ e~A)
(6)

(3.5.13)

is the mass inside when t = —oo (i.e. / = 1). The expression for luminosity 
(3.4.22) in this case reads

£cc =
ar2e ^v' (l — -sf]) [re^2 — 2m]

rf (e t - r/j
(3.5.14)

(&)

It follows from equation (3.5.14) that when the collapsing body becomes a black
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Bharat S Ratanpal 3.6. THE CORE OF THE STAR

hole, that is, re= 2m, = 0.

3.6 The Core of the Star

The core of the spherically symmetric fluid distribution is considered to be anisotropic. 
Hence .in the core region 0 <r <b the radial pressure pr is different from the tan­
gential pressure p±, and hence S(r) ^ 0. Defining new variables z and -0 as

1 + =

a.v/2

& r (1 -K + Kz2)l/i 

equation (3.2.14) assumes the closed form

(i2ijj

(3.6.1)

dz2 +
2 K (2 K - 1) (1 - K + Kz2) - 5 K2z2 8a/3tt R2S (1 -K + Kz2)

4(1 -K + Kz2)2 z2 — 1
= 0,

(3.6.2)
choosing

8.V35 _ _ («» - 1) P* <2* - 1) (1 - * + Kf') - 5K2z2]
4R2(1-K + Kz2f v '

the second term of equation (3.6.2) vanishes and solution of the resulting equation 
takes the simple form

■4> = Cz + D, (3.6.4)

where C and D are constants of integration. From equation (3.6.1) for a particular 
choice of curvature parameter K = 2 we get

Hence the spacetime metric in the core (0 < r < b) is described by

*»<., -
1+2&\ci1+w+D) dt2

r2f2 [d62 + sin2Odd?') .

fV
.1 + wj

(3.6.6)
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Bhaxat S Ratanpal 3.6. THE CORE OF THE STAR

Utilizing equation (3.6.5), the matter density, fluid pressure, anisotropy parameter 
and heat flux takes the form

8 itp
3 + 2

R?(l + 2§) P +
12a2 (i-v7):

v'1 + 2f (c\fi+i + D) P
(3.6.7)

8irpr 1
+m (1 + 2 f )2 (cyTTf + a) p

______ (i-v7)4aJ
yruf (c-yTT^+B /5/2 (3.6.8)

8?rpx
C,V/^(3 + 4S)+Z? &(2-&)

i?2 (1 + )2 (c^l + gr + .d) i?2(1 + 2^)3

(i-V7)

i
P

4 a2

\A+2f
/5/2 (3.6.9)

8 iry/ZS
r2 fo  r2 \
j?2 a2 y 1

i?2(l + 2^)3/2’

87rg = 4a r
l2 P+i

(l + 2f)9/‘

c(2 + 3g)+J5y77f (i-V7)
/7/2

(3.6.10)

(3.6.11)

Continuity of pressure and metric coefficients across the core boundary r = b will 
give the expression of the constants C and D, and this is done in section 3.8.
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Bharat S Ratanpal 3.7. THE ENVELOPE OF THE STAR

The polytropic index 7 = at the centre is given by

[hhf3/2 + a2R2 (5 - V7)] kk*f + 12a2R2 (l - V?)S

7o

where,

Vf [hhVf + 4a2R? (1 - V7)] [6*2/ + 12a2R? (l - yfj) (3 - 2jf)} ’
(3.6.12)

fci = A -\- B
(ln[V2 +1] T

k2 = A + B^ln[V2 + 1] 1

3.7 The Envelope of the Star

The envelope of the star is characterized by the isotropic distribution of matter. So 
throughout the enveloping region b < r < a the radial pressure pr is equal to the 
tangential pressure p±, so that S(r) — 0. Then equation (3.2.14) reduces to

v" I/'2 1/2 +T_2rJ l1 + li) {1 + Kh

IK-1) /V A K-lf, „r2
~&~T V2 + r) + l1 + KW (3.7.1)

Choosing new independent variable z and dependent variable defined by

z = \ 1 + R2'

F = e^2,

equation (3.7.1) takes the form

(PF dF(1-K + Kz2) - Kz—+ K(K-l)F-0.
dz2 dz

Equation (3.7.4) admits a closed form solution

(3.7.2)

(3.7.3)

(3.7.4)

F = e‘v/2 A\ll + — +B 1L(r)-^y i+2r* (3.7.5)
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Bharat S Ratanpal 3.7. THE ENVELOPE OF THE STAR

for K = 2, where A and B are constants of integration and

L<rWl + XvVl + W1+4 (3.7.6)

Hence the spacetime metric in the envelope region b < r < a is described by

2

dSl)(e) ~ \A\/1+ft2+B l^V1+4 dt2

l±lk ) fdr2 _ r2 f (,id2 + sMdcj^)
. 1 + w J

(3.7.7)

The density, pressure and heat flux are given by the expressions

87vp = R2 3 + 2
R2 1 + 2 R? 

12a2
P

+

{Ay 1 + jp + B L<r) - is 41 + 2 n2

2 (1 fP . (3-7.8)

8-np
A^j l + + B L(r) + 7I+ 1

#(l + 2&) (+/1 + £ + B Ur) - ^\A + 2£ j/2

4a2

+

(1-VJ)

Sir q = 4a

j^^/l + jjS + B L(r) — + 2

yiTf (71 + Bin + + + £ ^

{V

(3.7.9)

R2 l + 2§ Ur)-^yjl + 2i
/7/2 ■

+ g + jBL
L J ^ (3.7.10)

The constants A and B are to be determined by matching the static solution with 
Schwarzschild exterior spacetime metric

ds2 1 - “1 <u>
r

2m dr2 — r2 (dQ2 + sin20d<j)2) , (3.7.11)

45



Bharat S Ratanpai 3.7. THE ENVELOPE OF THE STAR

at the boundary surface r = a of the distribution when static term of pressure is 
zero i.e (po)s = 0. The continuity of the metric coefficients give

ryt=V1+$+B(Lw-^V1+4
where

a2 , / /r L a2 L a2L(a) - y 1 + -jgln ( V2y 1 + ^ + y1 + 2R2

(3.7.12)

(3.7.13)

The continuity of pressure across r = a requires, p0 to vanish on the boundary 
implying that

A\l 14- -jg — —B I L(a) + 1 T 2-^- I •a* (3.7.14)

The constants A and B are determined from equations (3.7.12) and (3,7.14) as:

l(«)+
A =

B

a2

JR2
V5(l + 2f)

\A + i
2

J?
V2(l + 2 §)'

(3.7.15)

(3.7.16)

The polytropic index 7 = at the surface is given by

[uavafm + a2R2w2a (5 - 4V?)] [(2 + w2a) v2J + 12a2.R2w* (l - v7)5
Is

Vf [u«t>o\/7 + 4a2i22u;2 (l - V?)] [2 (2 + w2) v2f + 12a2R2w* (l - V?) (3 - 2>/7)] ’
(3.7.17)

where,

ua — A\j 1 + —+B a*
~R? In y/2\l 1 + -^ + 1 + 2

R2
+^V1+2«“

va — Ay 1 + +J5

and

i + ^ln V2 , a 1 + W + 1 + 2 R2
— a/1 + 2— 
V2\ R2

Wa 1 + 2 A2'
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3.8 Physical Plausibility

Since our approach does not assume any equation of state for matter, it is necessary 
to examine the physical plausibility of the solution in the light of energy conditions. 
A physically plausible solution for the core-envelope model is expected to fulfil the 
following requirements:

(i) The spacetime metric (3.6.6) in the core should continuously match with the 
spacetime metric (3.7.7) in the envelope across the core boundary r = b.

(ii) p > 0, j? < 0 for 0 < r < a,

(hi) Pr > o, p± > 0, < 0, p - pr - 2px > 0 for 0 < r < 6,

(iv) < 1, < 1 for 0 < r < b,

(v) p > 0, g < 0, fp < 1, p - 3p > 0 for b < r < a.

At the core boundary r = b, the anisotropy parameter vanishes hence from equation 
(3.6.10) we get || = 2. The continuity of matric coefficients and the continuity of 

static pressure across r = b of the distribution leads to

where

11VSC + D = 55

\/3C + £> = 5-4

V§A + B (l(6) +

V3A + B (L(6)-

'2.5

2lf

L(6) = \/Zln + -\/6^ .

Equations (3.8.1) and (3.8.2) determines C and D in terms of A and B

(3.8.1)

(3.8.2)

(3.8.3)

C
2A + B^h(b) + VfI

c504
(3.8.4)

D = 3V34 + fl(3y)-8^5)|

54

substituting these values of C and D in (3.6.8) and (3.6.9) we get radial and tan­
gential pressure in the core of the star. Owing to the complexity of expressions, 
programming is used to verify requirements (ii) to (v).
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Bharat S Ratanpal 3.9. DISCUSSION

3.9 Discussion

We have discussed certain aspects of a non-adiabatically collapsing spherical dis­
tribution of matter associated with radial heat flow. We found that the density 
p(r,t). radial pressure pr(r,t). tangential pressure p±(r,t) are positive throughout 
the distribution during its collapse from equilibrium to blaekhole. Density and radial 
pressure and decreases along the radially outward direction.

The plots showing variations of pressure, density and sound speed for the model 
with A = 0.05 and / = 0.7 are shown in Figures 3.1 - 3.3 respectively.

0 06

0 05

0.04

0 03

0 02

0 01

0

Radial pressure in the awe 
TaiMjenBal pressure in foe csve 
Pressure <n foe envelope

0 5

2 -2 
Figure 3.1: Variation of pr, px against in the core and variation of p against

in the envelope for / = 0.7.
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Figure 3.3: Variation of against •p in the core and variation of ^ against
§3? in the envelope for / — 0.7.

Figure 3.2: Variation of p against 4 throughout the distribution for / = 0.7.

dp /sip in the core 

dp./dp in the mm 

dtVdp tn the envelope



Bharat S Ratanpal 3.9. DISCUSSION

Figure 3.4 indicates that strong energy condition is satisfied throughout the distri­
bution. The variation of the polytropic index 7 with respect to time function f(t) is 
calculated numerically for the model with A = 0.05 at centre and on the boundary 
and these variations are shown in figure 3.5. The polytropic index at the centre 
is less than § and at the boundary is much larger than | during the initial stage 
of collapse. This indicates that the central region is dynamically unstable. The 
collapsing star becomes a black hole when / takes the value 0.5356.

vp.-2p. in the core- 
j-3p sn Bw envelope!

Figure 3.4: Variation of p — pr — 2p± against -p in the core and variation of p
■7

against in the envelope for / = 0.7.
3p
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Figure 3.5: Variation of polytropic index 7 at the centre and at the siuface against

/■

For temperature, we assume the evolution of heat flow governed by the Maxweil- 

Cattaneo transport equation

r0fcaVfc <r..Kha0 (Tg - Tilg) . 3.9.1)

where hai3 = ga0 - uaug is the projection tensor, K is the thermal conductivity 
coefficient, r0 is the relaxation time arid iig = U0.cuc. For the spacetime metric 

(3.2.1), transport equation (3.9.1) takes the form,

T„, + . ;:i.9.2)

If the neutrinos are generated by thermal emission the tq depends on tempeiatuK

tiS

t0 oc T~3,/2. (3.9.3)

Following J. Martinez [62], thermal conductivity K = §KF3r0 and b0 = IfL, where 

do = 6.252 x 10-64 cm~2fc~4 is a radiation constant. r0 can be expressed in dimen­

sionless form as
To ~ A

Mo
ox/yTF'

'3.9.4)

3.9. DlSpJSifcW {/£

f 1 ,v' ■

"...

Bharat S Ratanpal
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Bharat S Ratanpal 3.9. DISCUSSION

where A = 109i^3^2m x, M0 is the initial mass of star in meters, T is the kelvin 
temperature, p is dimensionless energy density and 0.2 < Ye < 0.3.
Now equation (3.9.2) takes the form:

The temperature profile can be obtained by solving equation (3.9.5) using appropri­
ate initial conditions.
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