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In this chapter, we have discussed dynamical stability of superdense stars on parabol­
oidal spacetime under radial modes of pulsation. The paraboloidal spacetime metric 
is a particular case of Duorah and Ray [20] spacetime metric. Duorah and Ray space- 
time metric was discussed in detail by Finch and Skea [26]. Our analysis indicates 

models with 0.26 < ^ < 0.36 are stable for radial modes of pulsation. Here mass m 
and radius a are in kilometers as per geometrization convention. The paraboloidal 
geometry for its spatial sections t = constant thus admits the possibilities of de­
scribing spacetime of superdense stars in equilibrium. The field equation and its 
solution is discussed in section 4.2. The dynamical stability of superdense star is 
discussed in section 4.3.
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Bharat S Ratanpal 4.1. INTRODUCTION

4.1 Introduction

The solution of Einstein’s field equations for a perfect fluid sphere in thermodynamic 
equilibrium is not sufficient as the equilibrium may be stable equilibrium or unstable 
equilibrium. Buchdahl’s theorem for stable star says that

a > ~RS,~9

where a is radius of star and Rs is the Schwarzschild radius. Hence the radius of a 
stable star exceeds the Schwarzschild radius. Buchdahl’s theorem is independent of 
any equation of state p = p(p).

Chandrasekhar considered the perturbation the solution of the star in stellar equi­
librium resulting in non-zero off-diagonal elements in energy-momentum tensor by 
considering non-zero radial velocity for the fluid. Chandrasekhar assumed ampli­
tude of oscillations £ in the time dependent form elcTt and applying Rayleigh-Ritz 
method of variational approach, Chandrasekhar then obtained pulsation equation. 
In that Pulsation equation if the frequency o2 is negative then the amplitude £ does 
not have an upper bound. Hence for stable stars frequency must be positive.

We investigate the stability of models of superdense stars on paraboloidal spacetime 
under radial modes of pulsation. Tikekar and Jotania [89] have shown that the 
paraboloidal spacetime metric

ds2 — e^dt2 — ^1 + dr2 — r2 (dd2 + sin29d4>2) (4.1.1)

is suitable for describing the interior of strange stars (star consisting of strange 
matter). The spacetime metric (4.1.1) is a particular case of spacetime metric used 
by Duorah and Ray [20] which has the form

ds2 = A2y2 (x) dt2 — Z 1 (x) dr2 — r2 (d92 + sin29d4>2) , (4.1.2)

with
x = Cr2.

In spacetime metric (4.1.2) if we set A2y2 (x) = e’yi-r>, G = and Z 1 (x) = 1 + x, 
we get spacetime metric (4.1.1).
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Finch and Skea [26] showed that stellar models of Duorah and Ray [20] do not 
satify Einstein’s field equations and they obtained solution satisfying Einstein’s field 
equation.

4.2 Solution of Field Equations

We take the energy-momentum tensor of the form

%t = (p + p)<‘t"i~PSii, u‘ = (e-"/2,0,0,0) (4.2.1)

where p and p respectively denote the matter density and fluid pressure. The Ein­
stein’s field equations for spacetime metric (4.1.1) in view of (4.2.1) takes the fol­
lowing form:

1 / r2 \ 2

-0
87rp;

r2 \ -i v' 1
—t-

(4.2.2)

(4.2.3)

4 2rj oz?2 ‘ r?4 (4.2.4)

Following Finch and Skea [26] and Tikekar and Jotania [89], the solution of field 
equations (4.2.2) - (4.2.4) is given by,

1 + R2
v" i/'2 u'

+
/ 9

TV T
+ o.

o"12 (B — Az) cos z + (A + Bz) sin z, (4.2.5)

where z = \J 1 + and A and B are constants of integration. Hence the matter

density and fluid pressure take the following explicit forms,

8 Tvp =
1\(z2 + 2 

R2)\ z4

8rrp —
(A — Bz) sinz + {Az + B) cosz

z2R2 l(A + Bz) sinz — (Az — B) cosz\ ’ 

and the spacetime metric (4.1.1) takes the form

(4.2.6)

(4.2.7)

ds2 — [(R — Az) cosz + (A + Bz) sinz]2 dt2 — z2dr2 — r2 (dd2 + sin29d(j)2) , (4.2.8)
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at the boundary of the star r = a, the interior spacetime metric (4.2.8) should 
continously match with Schwarzschild exterior spacetime metric

ds2 i
1 _ ~m) dr2 — r2 [dO2 + sm20dtf>2), (4.2.9)

and pressure must vanish at the boundary of the star r = a. These two conditions 
determines the constants of integration A and B as

yj 1 - v (zasinza - cosza)

(sinza + zacosza) (cosza + zasinza) - (sinza - zacosza) (cosza - zasinza) ’
(4.2.10)

sinza + zacosza ’
B

zasmza - cosza
A, (4.2.11)

where za = \Jl + Substituting the values of A and B in (4.2.3), we get the 

expression for the pressure profile of the distribution. The expresssion for ^ is 

given by

z2 (Bcosz + Asinz) T (z)dp
dp {z2 + 4) (Asinz + Bzsinz + Bcosz — Azcosz) 2>

(4.2.12)

where T(z) = (z2sinz + sinz — z cosz) A + (z2 cos^ + cosz + zsinz) B and A, B 
are given by (4.2.10) and (4.2.11).

The scheme given by Tikekar [88] is used to compute mass and size of the star. The 
density at the centre of the star is given by

87rp(0)
R2'

and at the surface of the star is

8irp(a) = ±(3 + ^
R2 V R2

2 \ -2

1 + R2

The density variation parameter A = is then given by

a = 4$=H + a2 \ /_ . a‘2\ -2

1 +

(4.2.13)

(4.2.14)

(4.2.15)
p(0) V 3R2J \ R2,

The continuity of interior spacetime metric (4.2.8) with Schwarzschild exterior space-
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time metric (4.2.9) determines the mass radius relation,

m a2 / a2 N 1 
~a = 2R2 \1+R2 (4.2.16)

Equations (4.2.15) and (4.2.16) give jp and — in terms of density variation param­
eter A as

and
1 - 6A + Vl + 24A
2 (l ~f- VT+24A)

Further we can express A in terms of — in the form

R2

m
a

1 - 6A + VI + 24A 
6A

2m
3a )

(4.2.17)

(4.2.18)

(4.2.19)

4.3 Dynamic Stability

A sufficient condition for the dynamic stability of a spherically symmetric distri­
bution of matter under small radial adiabatic perturbations has been developed by 
Chandrasekhar [9]. A normal mode of radial oscillations for an equilibrium config­
uration

5r = Z(r)eicrt, (4.3.1)

is stable if its frequency a is real and is unstable if a is imaginary. Chandrasekhar’s 
pulsation equation for the spacetime metric (4.1.1) is given by

a
re(3A+,)/2(p+P)^dr2 = r

J 0 r Jo

(
J 0

,(A+3t')/2_f (dp \ „.2

dr
fA+3^/2 1 1

vrdr

dp
r2 p + p \dr

u2dr +

jre(A+3,)/2 (E + Ej 8ire^dr +

(’-$*)Id)’*. <«■»
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Bharat S Ratanpal 4.3. DYNAMIC STABILITY

where u = ^r2e~^2 and eA = 1 + jp- The boundary condition to be satisfied at 

r = o is that Lagrangian change in pressure should vanish at r = a that is,

where 7 is the adiabatic index. Therefore we must have,

^ = 0 at r = a. - (4.3.3)
dr

Following the method of Bardeen et al. [4], we choose

u = i?3x3//2 (l -f aix + b\x2 +.... ) ,

as a trial function, where x = The boundary condition = 0 at r = a yields

3 + 5aii> 4- 76i&2 +.... = 0, (4.3.4)

2where b = and ax, bx.... are parameters. We consider here a three term approx­
imation of (4.3.4). The pulsation equation (4.3.2) for the metric (4.1.1) now takes 
the form,

^rn+p)pr r m IT:, + T4)} {{(TsTgTio) - (TuTiaTu)
Jo
f {TXT2 (T3 + T4)} {(T16T17)} dr,

Jo

+ T14] T15} dr + 

(4.3.5)

where, 
t — 1
11 2R?z2 >

T2 = z2 + 3 (B — Az) cosz + 3 (Bz + A) sinz,
rp _ (A—Bz)sinz+(Az+B)cosz 

3 (A+Bz)sinz—(Az—B)cosz *

rp _ z2+2 XA z4 )

T5 = 2 Ti,
T$ = Bcosz + Asinz,
Tf = Az2sinz + Asinz -f Bzsinz — Aztosz + Bz2cosz + Bcosz,' 
T8 = (Asinz + Bzsiz + Bcosz — Azcosz)2,

rp _ 1A 10 T3+T4 »
rp __ 4r2
-111 — R4zA )

58



Bharat S Ratanpal 4.4. DISCUSSION

TU = I?o,
T'   T®13 — 1 9 ;

T>   87r<7i
14 jji ■* 3)

2i5 = r4 ^1 + ai-p- + ,

= (4i)
Tn — r2 (s + ^ + Yb^y.

4.4 Discussion

We have evaluated the integral on the right side of equation (4.3.5) numerically 
for different choices small, large, positive and negative values of the constants a1} 
b\ . It is found that the integral admits positive value for the strange star models, 
0.26 < ^ < 0.36. Table 4.1 presents these numerical computations for certain 
specific choices of a\ and b\ for the model with ^ = 0.27. This analysis indicates 
that these models with 0.26 < ™ < 0.36 will be stable for radial modes of pulsation. 
The static paraboloidal spacetime metric (4.2.8) for its spatial sections t — constant 
admits the possibility of describing spacetime of superdense stars in equilibrium.

Table 4.1: The Values of the integral on the right side of the pulsation equation 
(4.3.5) for some specific choices of the constants a*, &i with = 0.27.

ax h Integral

0.000 -0.717 10.4332

-0.776 0.000 4.8092

-0.858 1.000 34.8663

1.000 -1.641 22.3521

5.000 x 102 -4.627 x 102 6.6213 x 10®

-5.410 x 102 5.000 x 102 7.7009 x 10®

1.000 x 10® -9.240 x 104 2.6303 x 1010

-1.000 x 10® 9.240 x 104 2.6303 x 1010
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