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In this chapter, we study two core-envelope models of superdense stars on based on 
paraboloidal spacetime metric. Both the models satisfy all the physically plausible 
conditions. Core-envelope models with thin envelope are useful in the study of 
glitches and star quakes. The comparative study of both the models is done. A 
noteworthy feature of these models is that they admit thin envelope.
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Bharat S Ratanpal 5.1. INTRODUCTION

5.1 Introduction

The non-linear nature of Einstein’s field equations is a consequence of the self inter
action of the gravitational field. This makes it difficult* to obtain relativistic models 
of spherical stars based on exact solutions of Einstein’s field equations. The stan
dard method for studying cold compact stars consists of integrating the Tolman, 
Oppenheimer and Volkoff (TOV) equation assuming an equation of state p = p(p), 
where p is the proper pressure and p is the proper density, for the matter distri
bution. The integration continues till pressure drops down to zero for some value 
r = a which is taken as the radius of the spherical distribution.

When the density exceeds twice nuclear density, the equation of state becomes un
certain. A widely accepted alternative approach to deal with such situations is the 
one suggested by Vaidya and Tikekar [99]. In this approach one assigns a geometry 
to the physical three space in place of the equation of state.

Tikekar and Jotania [89] have shown that the paraboloidal spacetime metric is suit
able for describing relativistic models of strange stars and hybrid neutron stars. In 
this chapter we present two core-envelope models on paraboloidal spacetime.

The assumption of taking isotropic pressure distribution in the core and anisotropic 
pressure distribution in the envelope may not be unphysical in the case of core 
consisting of degenerate fermi fluid while its outer envelope may consist of fluid 
having anisotropic pressure. Further the study of glitches and quakes is important 
in stars having thin envelope. We investigate whether paraboloidal spacetime is 
usefull in describing spherical distribution of matter with isotropic pressure in the 
core and anisotropic pressure in the thin envelope.

The field equations for anisotroic models are described in section 5.2. Two different 
core-envelope models are discussed in sections 5.3 and 5.4. The physical plausibility 
conditions are checked in section 5.5 which also includes comparative study of the 
thickness of core and envelope of both the models.
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5.2 The Core and Envelope of the Star

We consider the static spherically symmetric paraboloidal spacetime metric

ds2 = ev^dt2 — ^1 + dr2 — r2 (d62 + sin29d(j)2) . (5.2.1)

Following Maharaj and Marteens [59], we write the energy momentum tensor for 
anisotropic fluid distribution in the form:

Tij = (p + P) UiUj - PQij + 7Ti:j, UiU3 = 1,

Wy = Vss CiCj g (tljUj (]ij)

(5.2.2)

(5.2.3)

The magnitude of anisotropic stress tensor is S = S(r) and C% = ( 0, —V>+S’0’0
is a radial vector. For equilibrium models iq = (e^2,0,0,0) and the non-vanishing 
components fo energy momentum tensor are

T° — a T Jo — Pi P +
25 rp2 _ rpZ

X2 ~ ±ZVST \P y/3j'

The pressure along the radial and tangential direction respectively are given by

(5.2.4)

+S4,
11

eS (5.2.5)

and
p^=p~vi- (5.2.6)

Hence the magnitude of anisotropy is given by

87tV3S = pr-px- (5.2.7)

The field equations for the spacetime metric (5.2.1) and energy-momentum tensor 
(5.2.2) are equivalent to the following three equations

87rp = i?2[l + f]2’ (5.2.8)
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and

8lTpr = 11 + B?

-l r 1/ 1 
+ —z (5.2.9)

8irVZS 1 +

1 +

B?

B?

v' 1
_ _j_

-l r

1 1
+ B?

v" i/2 u'
--- ~|_----- f- ---2 4 2r

1 + B?
v'r

1 + -

(5.2.10)

(5.2.11)

(5.2.12)

d2Fx _ 2dF\ ( 8ttV3SB?z4 + z2 - 1

dz2 z dz y z2 — 1

The core of the star extends up to the radius r = b(< a), where S(r) — 0 and the 
radius of the star is taken asr = a.

The isotropic pressure distribution is considered in the core region 0 < r < b, hence 
magnitude of anisotropy parameter S = 0 in the core and the solution of field 
equations lead to the spacetime metric (4.2.8) and the expressions of density and 
pressure respectively are given by (4.2.2), (4.2.3).

We choose anisotropic pressure distribution in the envelope, hence the anisotropic 
parameter S(r) ^ 0 for b < r < a, where a is the boundary of the star.

JFX = 0. (5.2.13)

By applying transformation.

and

1 + R2'

Ft = evl\

The nonlinear equation (5.2.10) takes the form

5.3 Core-Envelope Model - 1

On prescribing

8 iry/SS =
(.z2 - 1) (9 - 4z2) 

4zeB?
(5.3.1).
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Bharat S Ratanpal 5.3. CORE-ENVELOPE MODEL - 1

the equation (5.2.13) takes the form

4*2^r “ 8z^ + 9i?i = 0, (5-3.2)

which admits the closed form solution as

ev/2 = Cz3/2logz + Dz3/2, (5.3.3)

where C and D are constants of integration. Therefore the spacetime metric in the 
envelope region b < r < a is described by:

ds2 = (Cz3/2logz + Dz3^2)2 dt2 — z2dr2 — r2 [d02 + sin2Odd)2) . (5.3.4)

The matter density, radial pressure and tangential pressure take the following forms:

2 + z2

8tm

8*p = tPz* '

(3logz + 2 — z2logz) C + (3 — z2) D

Sirpx

R?z4 {Clogz + D)

{3logz + 2 — z2logz) C + (3 — z2) D 9 — 4z2

(5.3.5)

(5.3.6)

(5.3.7)R2z4 {Clogz + D) 4R2z6 '

At the boundary of the star r = a, the spacetime metric in the envelope (5.3.4) 
should continously match with Schwarzschild exterior spacetime metric

2m 2 mds2 = ^1 — dt2 — ^1 — ~~J dr2 ~ r2 (d92 + sin2 0d<p2) . (5.3.8)

Also radial pressure (5.3.6) must vanish at the boundary of the star r — a. The 
conditions yields the following relationships:

m z2 — 1

a 2’

and
D

r_4~ 3 

2z5J2 ’

3logza + 2 - z2log~a

2 zt5/2

(5.3.9)

(5.3.10)

(5.3.11)
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where za = yl + jg. Substituting the value of C and D in (5.3.6) and (5.3.7) we 

get radial and tangential pressure in the envelope of the star.

At the core-envelope boundary r = b, due to assumption (5.3.1) gives core radius as 
b = *j-R. Also at the core-envelope boundary, coefficients of the spacetime metric 
(4.2.8) must continuously match with spacetime metric (5.3.4) and p(b) = pr(b) = 
p±(b). These conditions lead to the following values for A and B in terms of C and 

D as
A = 1.3367(7 + 1.1928D, (5.3.12)

B = —0.2850C + 0.4938D. (5.3.13)

Substituting the values of A and B in equation (4.2.3), we get pressure in the core 
of the star.

5.4 Core-Envelope Model - 2

By choosing

(5.4.1)

where z is given by (5.2.11), Tikekar and Jotania [90] have obtained solution of 
(5.2.13) in the form

e^2 = Ez2 - 2Fz, (5.4.2)

where E and F are constants of integration. The spacetime metric in the envelope 
region is described by the metric

ds2 — (Ez2 — 2Fz)2 dt2 — z2dr2 — r2 (d£2 + sin29d<p2) (5.4.3)

The expressions for density, radial pressure and tangential pressure in the envelope 
are respectively given by

87TJP,

2 + z2

S7rp=w
Ez (i-z2)~2F(2-z2)

8ttp±

R2z2 [.Ez3 - 2Fz2} ’

Ez (4 — z2) — 2F (2 — z2) 2 -z2
R2z2 \Ez3 - 2Fz'2} R?ze '

(5.4.4)

(5.4.5)

(5.4.6)
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Equation (5.4.1) determines the core boundary as b = R. The constants E and F 
are to be determined by matching the spacetime metric (5.4.3) with Schwarzschild 
exterior spacetime metric (5.3.8), across the boundary r = a, where pr(a) = 0, which 
gives

m ■ z\-l 
a 2 zl ’

(5.4.7)

z2 — 2
E = a24 ’

(5.4.8)

aiid
(5.4.9)

where za = "\/l + #2 ■

Substituting the values of E and F in (5.4.5) and (5.4.6), we get expressions of radial 
and tangential pressure in the envelope. At the core-envelope boundary r = b, the 
spacetime metric (4.2.8) must continuously match with spacetime metric (5.4.3) and 
p(b) = pr(b) =px(b). This gives

( sinspL — y/2cos'/2j A + (cosp2 + \f2sin\fPj B — 2E — 2splF, (5.4.10)

and
^sinp2 + \/2cos\/2j A + (cosV2 — pIsinpTj B = 2E. (5.4.11)

Solving (5.4.10) and (5.4.11) for A and B we get,

A - 1.9755# - 1.2410#, (5.4.12)

B = 0.31185E - 1.2083# (5.4.13)

Substituting the values of A and B in equation (4.2.3), we can obtain the expression 
of pressure in the core of the star.

5.5 Discussion

Since we have not assumed any equation of state, the matter distribution in the core 
and envelope should satisfy the following conditions:
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(i) p > 0, §] < 0 for 0 < r < a,

(ii) p > 0, f; < 0, ^ < 1, p - p > 0 for 0 < r < b,

(iii) Pr > 0, P± > 0, < 0 for b < r < a,

(iv) ^ < 1, ^ < 1, p-Pr > 0,p-p± > 0 for b < r < a.

The scheme given by Tikekar [88], which is described in section 4.2 is used to deter
mine the mass and size of the superdense star. It follows from the expression (5.3.5) 
that p > 0, ^ < 0 for 0 < r < a for both core-envelope models. The expressions 
of ^ and density variation parameters A are described by equations (4.2.17) - 
(4.2.19) respectively.

In Finch and Skea [26] approach, the ratio ^ is restricted by the limits 0.217958 < 
d < 6.406980. This restriction, in view of the arguments described in section 4.2 
leads to the constraint ^ < 0.3614955. If ^ > 0.3614955, then ^ > 1 in the core, 

and therefore the models with ™ > 0.3614955, physical plausibility condition (ii) is 
not satisfied in the core. Further for core-envelope model - 1 having ^ > 0.36 it is 
observed that > 1 in the envelope violeting the condition (iv). Following Sharma 
et al. [81], we choose central density as p(0) = 4.68 x lO^ymcm 3. From (5.3.5) 
it is observed that density is decreasing throughout the distribution. It is observed 
that conditions (ii) - (iv) are satisfied for the stars for which 0.28 < ^ < 0.35 for 
the first model and 0.26 < — < 0.36 for the second model, using programming and 
graphical methods.

Numerical estimates of the radius of the star (in kilometers), the core-radius (in 
kilometers), the mass of the star (in kilometers) and the thickness of the envelope 
(in kilometers) for the first model are given in table 5.1 and for the second model 
are given in table 5.2. The mass of the star in grams is obtained as M = 
These models admit thin envelopes and the thickness of the envelope increases as ~ 
increases.
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Table 5.1: Masses and equilibrium radii of core-envelope model - 1 of superdense 
stars corresponding to p(Q) = 4.68 x 1015gm/cms:

m
a a m 6(= fR) Thickness of

the envelope

0.28 6.617267 1.852835 6.557918 0.059349

0.29 6.892874 1.998934 6.557918 0.334956

0.30 7.183840 2.155152 6.557918 0.625921

0.31 7.492298 2.322612 6.557918 0.934380

0.32 7.820774 2.502648 6.557918 1.262856

0.33 8.172285 2.696854 6.557918 1.614367

0.34 8.550480 2.907163 6.557918 1.992561

0.35 8.959822 3.135938 6.557918 2.401904

Table 5.2: Masses and equilibrium radii of core-envelope model - 2 of superdense 
stars corresponding to p(0) = 4.68 x 1015<?m/cm3.

m
a a m

SfII
V

w
»• Thickness of

the envelope

0.26 6.105090 1.587323 5.865581 0.239509

0.27 6.355196 1.715903 5.865581 0.489616

0.28 6.617267 1.852835 5.865581 0.751687

0.29 6.892874 1.998934 5.865581 1.027294

0.30 7.183840 2.155152 5.865581 1.318259

0.31 7.492298 2.322612 5.865581 1.626718

0.32 7.820774 2.502648 5.865581 .1.955194

0.33 8.172285 2.696854 5.865581 2.306705

0.34 8.550480 2.907163 5.865581 2.684899

0.35 8.959822 3.135938 5.865581 3.094242

0.36 9.405854 3.386107 5.865581 3.540274
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Figure 5.1: Variation of p against 2 throughout the distribution

The plots showing variation of p throughout the distribution, p in the core, pr and 
p± in the envelope, ^ in the core, ^ and ^ in the envelope against z for core

envelope model - 1 and model - 2 with f = 0.29 are depicted in Figures 5.1 - 5.5. 
Figure 5.2 shows that the pressure in the core for core-envelope model - 1 is always 
greater than that of model - 2. Figure 5.3 shows that tangential pressure is always 
greater than radial pressure in the envelope for both the models. It is also observed 
from figures 5.4 and 5.5 that speed of sound is less than speed of light.
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Figure 5.2: Variation of p against 2 in the core
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Figure 5.3: Variation of pT and in the envelope
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Figure 5.4: Variation of & against z in the core

Figure 5.5: Variation of ^ and against 2 in the envelope
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These models axe falling under Type I and Type II strange stars (Tikekar and Jotania 
[89]). From table 5.1 and table 5.2, it is obsereved that the first core-envelope model 
has very thin envelope. Thus we have presented core-envelope models with isotropic 
pressure in the core and anisotropic pressure in the envelope. A noteworthy feature 
of these models is that they admit thin envelope. Hence these models are significant 
in the study of glitches and star quakes.
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