
Chapter 3. A wavelet based MRA technique for 
approximating a discrete signal

3.1. Introduction

Discrete Wavelet Transform and Multi Resolution Analysis using Wavelet Filters are 

now very widely used in the areas of feature extraction [3,4]. But very little work is 

found in the literature [14, 15, 32] about making use of these techniques for signal 

approximation or interpolation.

The approximation of a signal is relevant in the context of OCR system development 

also. Digital images are two dimensional digital signals. In cases where there is 

insufficient number of images of symbols, these methods of interpolation can be used 

to generate additional images for the test set or the training set.

Approximating a given signal to double its length for better identification of the 

locations of the peaks in the signal is a common procedure in industrial applications 

for the local analysis of the signal as explained below:

To take a specific industrial application, we may consider the problem of identifying 

the existence and quantity of a particular element in a metal block by the use of 

atomic mass spectroscopy where a CCD camera is used for obtaining the spectrum. 

The presence of a peak in the spectrum may indicate the presence of a particular 

substance/element but this peak may fall in between two pixels in the spectral image. 

The idea is to upsample the spectral data corresponding to subsampling in CCD. This 

can be done in either of the following two ways:

1. The device with higher resolution of CCD camera may be used

2. Some techniques of digital signal processing can be applied to the current 

data.
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Since the first option is not always feasible, the second option is often preferred. In 

this paper we discuss a novel approach for interpolating a given digital signal to 

double its length by using Multi Resolution Analysis of Discrete Wavelet Transform.

This chapter is divided in to six sections. After giving an introduction in the first 

section, we discuss the analysis of Fourier and Wavelet transform in signal processing 

terms in the second section. The effect of applying low-pass filters and high-pass 

filters to the discretized (finite length) signal is described in the third section. In the 

fourth section, we highlight the characteristics of the approach presented earlier by 

applying it on various numerical examples. While the properties of this approach are 

to be discussed in the fifth section. At the end we conclude the results in the sixth 

section.

3.2 Analysis of Fourier and Wavelet transform in signal processing

It is well known from Fourier theory that a signal can be expressed as the sum of a, 

possibly infinite, series of sine and cosines. This sum is also referred to as a Fourier 

expansion. The big disadvantage of a fourier expansion however is that it has only 

frequency resolution and no time resolution. This means that although we might be 

able to determine all the frequencies present in a signal, we do not know when they 

are present. To overcome this problem in the past 4 to 5 decades several solutions 

(Fast Fourier Transform (FFT), Windowed Fourier Transform (WFT) etc.) have been 

developed which are more or less able to represent a signal in the time and frequency 

domain at the same time.

The idea behind these time-frequency joint representations is to cut the signal of 

interest into several parts and then analyze the parts separately. It is clear that 

analyzing a signal this way will give more information about the when and where of 

different frequency components, but it leads to a fundamental problem as well: how to 

cut the signal? Suppose that we want to know exactly all the frequency components 

present at a certain moment in time.
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The problem here is that cutting the signal corresponds to a convolution between the 

signal and the cutting window. Since convolution in the time domain is identical to 

multiplication in the frequency domain and since the Fourier transform of a Dirac 

pulse contains all possible frequencies the frequency components of the signal will be 

smeared out all over the frequency axis. In fact this situation is the opposite of the 

standard Fourier transform since we now have time resolution but no frequency 

resolution whatsoever.

The underlying principle of the phenomena just described is due to Heisenberg's 

uncertainty principle, which, in signal processing terms, states that it is impossible to 

know the exact frequency and the exact time of occurrence of this frequency in a 

signal. In other words, a signal can simply not be represented as a point in the time- 

frequency space. The uncertainty principle shows that it is very important how one 

cuts the signal.

The wavelet transform or wavelet analysis is probably the most recent solution to 

overcome the shortcomings of the Fourier transform. In wavelet analysis the use of a 

fully scalable modulated window solves the signal-cutting problem. The window is 

shifted along the signal and for every position the spectrum is calculated. Then this 

process is repeated many times with a slightly shorter (or longer) window for every 

new cycle. In the end the result will be a collection of time-frequency representations 

of the signal, all with different resolutions. Because of this collection of 

representations we can speak of a multiresolution analysis.

Chapter 3. A wavelet based MRA technique for approximating a discrete signal

3.3. Discretization and Filter Process

In this section, we present the basic result of signal transformation and signal 

reconstruction using MRA. Consider standard lemma [1.3] regarding the 

reconstruction of a signal using MRA (figure-1.5) discussed in the chapter 1. In the 

following section, we introduce the use of wavelets for the Approximation of a signal 

to double its length.
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3.3.1. Signal Approximation Using Wavelets

In this section we recall; the lemma-1.3 of chapter 1 which demonstrates the analysis 

phase (discrete wavelet transform) and synthesis phase (inverse discrete wavelet 

transform) for a given function/ e L2 (R). Consider the resolution level of the 

function is (/+/), so we denote this function by yJ+1. For each J e z, define sequences

x i = (xy(^))tez and yj ~ (yj(k))kez by Xj=D(yJ+l * v) and

y} = D(yJ+l * u). Where D is the downsampling operator on /2 (z). u - (u} (&))fez and 

v = (Vj (k)) kez are scaling and wavelet sequence respectively. And u and v are the dual 

sequences of 11 (approximation coefficients) andv (detailed coefficients) defined as 

u (n) = u(N — n) v(n) = v(N — n) where N is the length of the signal.

The reconstruction of yj+1 using one analysis phase and one synthesis phase can be 

given by

yJ+i =U(yj)*u + U(Xj)*v 

Where U is the upsampling operator on l2 (z).

We extend this result by adding one more level of synthesis phase for the purpose of getting 

approximated double length signal as follows:

The use of wavelets to interpolate a given digital signal is a less studied area. The 

pictorial representation of the above equation is shown in figure-1.5 of chapter-1 

which is made up of one analysis and one synthesis phase and yields reconstruction of 

a signal. In order to approximate the signal to its double length, one more level of 

synthesis phase is applied to figure-1.5.

Consider a signal / e Zr (R) of length m (number of sample points). Upon applying 

one analysis phase and two synthesis phases on f we get one level higher resolution
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of/(say w/+2^m^) wMch will be of doubled length compared to the original signal 

values of length m.

Mathematical form of Wj+2 in terms of detail and approximation components, 

Xj and y. reSpectjvejy^ can (,e obtained from figure- 3.1 as follows :

w/+2 =U(U(yj)*u)*u+ U(U(Xj)*v)*u]+ U(U(yj)*u)*v+ U(U(Xj)*v)*v (3.1)

In section 3.4, we will prove that Wj+2 is equal to ^J+2 (the actual higher resolution of 

y^i) These computations were implemented in Java.

Following section demonstrates the applicability of a new approach using the 

equation (3.1) of Approximation using numerical examples of some finite length 

signals.

3.4. Numerical Examples

We have carried out some experiments with a few discretized signals and applied 

Haar, Daubechies D4, D6 discrete wavelet transforms on them with the objective of 

Approximation. The following sections present the results of the numerical 

experiments.
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3.4.1 Approximation of a sinusoidal function

Consider the function sin(x) where xe [0,2k]. The interval was divided in to 127 equal 

sub-intervals and the function was sampled at the 128 points (say m = 128) of 

discretization.

/(*)
xg[0,2k]

= 0 , otherwise

A graph of the function with the sampled values is as shown in figure-3.2. The graph 

of the wj values obtained from equation 3.1 is shown in figure-3.3 (a).

Fig.3.2. Original sin(x) at 128 sample points

Fig. 3.3(b). Graph of high pass components

It is observed from these graphs that the process specified in equation (3.1) leads to 

two types of distortions to the original signal, namely (i) there is a distortion in the 

graph due to the presence of values near horizontal axis and (ii) the amplitude of the

signal increases by a factor of about V2 . It is further observed that these distortions
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occur due to the presence of high frequency components (figure-3.3(b)). Due to these 

observations we propose to have only the low frequency components (highlighted 

region in figure-3.1) for the purpose of approximating the signal to double its length 

(2m).

Therefore we consider the following expression rJ+2 extracted from equation (3.1) 

for being the form for the interpolated signal:

r^=yl2iU(U(yj)*u)*u] (3.2)

where ^ is a scaling parameter ( estimated from the above mentioned observations)

Equation (3.2) yields, desired Approximation of sin(x) to its double length (2m = 256 

sample points), where xg[0,2tt]. Figure-3.4 , 3.5(a) and 3.5(b) shown below 

demonstrate the graphs of 256 sample points vs. sin(x) with the help of equation (3.2) 

by using Daubechies D4, Haar and D6 wavelets coefficients respectively.

Fig. 3.4.256 Sample points vs. sin(x) with D4
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Fig. 3.5(a) 256 Sample points vs. sin(x) by Haar Fig. 3.5(b) 256 Sample points vs. sin(x) by D6

3.4.2 Approximation of a linear signal

Now consider a linear signal f(x) = x in L2(R) such that,

. M
- x , xe[Q, 31] 

j= 0 , otherwise

Dividing the signal in to 31 equal parts, the 32 discrete values are as shown in figure- 

3.6(a). Hence the length of the signal is m=32. Figure-3.6(b) exhibits the interpolated 

graph of this signal to double its length (2m = 64 sample points) by applying equation 

3.2 by using Daubechies D4 wavelets. Similarly figure-3.6(c) and 3.6(d) shown below 

gives interpolated graph of the signal using Haar and Daubechies D6 respectively.
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Fig. 3.6(c). interpolated line graph by Haar Fig. 3.6(d). interpolated line graph by D6

3.4.3 Approximation of a parabolic signal

Let/(x) = x2bea parabolic signal in L2(R) such that,

f = x2 , xe[0, 3.1]

m 1L = 0 , otherwise

Dividing the signal in to 31 equal parts, the 32 discrete values are as shown in figure- 

3.7(a). Here also the length of this signal is m~32. Up on applying equation 3.2, the 

signal is getting interpolated to double its length. Figure-3.7(b) shows the sharp 

feature of the curvature using Daubechies D4 wavelets.
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Fig. 3.7(c) and 3.7(d) exhibit the interpolated graphs obtained by equation (3.2) by 

using Haar and Daubechies D6 wavelets coefficients respectively.

It is observed from these three illustrations that sinusoidal function gives perfect 

Approximation while non periodic functions (linear and parabolic) shows some kind 

of distortion at the boundary points which arise due to the lack of information near 

boundary points.

3.4.4 Approximation of a highly Non-linear signal

We have collected a sequence of observations of the length 32 (see figure-3.8(a)) 

from the industry. Figure-3.8(b) demonstrates the resultant interpolated double length 

signal of the length 64 by applying equation (3.2).
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The graph in figure-3.8(a) is highly nonlinear in nature. Discrete Wavelet Transform 

captures the features quite efficiently at the time of Approximation.

In the next section, we will discuss an interesting relationship, which is observed 

during above mentioned process using figure-3.1.

3.5. Properties of the Proposed Approximation Method using 
Wavelets

If we apply one more level of analysis phase on Wj+2 ((j+2)th resolution of original 

signal), we get original signal at (j + 1 )th resolution (i.e. yj+i) back. Hence we can 

rewrite equation (3.2) as below:

yJ+2=U(U(y,)*u)*u+ U(U(Xj)*v)*u+ U(U(yj)*u)*v + U(U(Xj)*v)*v (33)

Equation (3.2) gives yj+2, which represents the signal at a resolution one level higher

than that of ^J+1 for the original signal f Additionally, we observe that the detail and 

approximation coefficients obtained when this additional level of analysis phase is 

applied are equal.

These observations are consolidated in the following lemma. 

sy\ „Lemma 3.1: Let 1 Ji}nz be an MRA. Suppose /e L (R) is a signal and for 

eachJGZ, sequences yj+l = (yj4.l(k))k^ and yj+2 = (y;+2(A:))tez form (j+1 )* and 

(j+2)th level resolutions of the signal f respectively.

Let Xj=D(yJ+l * v) , yj=D(yj+1 * u), 

wJ+2=U(U(yj)*u)*u+ U(U(Xj)*v)*u]+ U(U(yj)*u)*v+ U(U(Xj.)*v)*v

Tf Pj+\ = d(wj+2 * v) w;+i=^(wi+2 * u)

then, pM - M’i+1 and naturally equal to yJ+l.

U is an upsampling operator and * denotes convolution
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Proof:

We have
wJ+2 = U(U(yj)*u)*u+ U(U(Xj)*v)*u+ U(U(yj)*u)*v+ U(U(xj)*v)*v

Therefore, U\U(yJ)*u+U(xJ)*v]*u + \U{U(yJ)*u)*v + U(U(Xj)*v)*v] 

(Distributive property of convolution)

Substituting the value of^j+1, from equation (1.21) of chapter 1 we get,

■wJ+2 = U(yj+l)*u + U(U(yJ)*u)*v + U(U(Xj)*v)*v (3.4)

It is clear from lemma (1.3) of chapter 1 that the reconstruction of a signal at (j+2)th 

level of resolution can be expressed as follows :

y'j+i = U(yJ+1)*u + U(xm)*v ' (3.5)

Using one-one property of wavelet transform [11], it is obvious that both, yJJt2 and 
wj+2, form a signal at one higher level of resolution than yJ+l.

Hence, yj+2 = wj+2 (3.6)

Equating (3.4) and. (3.5) by canceling-identical terms, we get

U(xJ+1)*v = [U(U(yJ)*u)*v]+ ,[U(U(Xj)*v)*v] (3-7)

Application of downsampling operator D on both the sides of equation (3.7), gives 

D[U(xJ+l)*v]= (U(jj)*u)*v+ (U(Xj)*v)*v

- W (yj )*u + U(Xj) * v] * v (Distributive property of convolution)

D[U (xJ+l) * v] = y;+1 * v

Applying upsampling operator U on both the sides, we get

U(xJ+l)*v = U(yJ+l)*v

Applying deconvolution followed by downsampling, we get

Xjn=yM' (3.8)
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Now,

wJ+1(k)=D(wj+2*u)(k)

=y,-+2 *u(2k) (from 3,6)

=^u(2k~m)yj+2(m)
k

k
=< /» X“(m “ 2k')(Pj y'} tm >

k
= <f’<Pj+l,k>

= yJ+i&) (3-9)

Similarly, pj+l (k) = xj+l {k)

But, using (3.8), we get
PjAk) = y]+m (3.10)

Therefore from (3.9) and (3.10) we have

PJ+X - w/+1 = yJ+] Q.E.D. (3.11)

It is interesting to note that the high pass and low pass coefficients become identical.

For instance consider the following illustrations in which a finite length signal is 

given as an input and yields double length approximated signal as an output using 

equation (3.1). Up on allowing this new signal to one more analysis phase as shown in 

figure-3.1, we get two signals of the same length as the original one. These two 

signals are found to be identical to each other as well as the original signal.

Illustration 1:

Consider a signal of finite length {1,4,-3,0) to beyj+i [13], the 0+l)th level resolution 

of size n = 4. From equation (3.1), the 0+2)th level resolution of this signal obtained 

by using Daubechie’s D4 wavelets turns out to be yJ+2 ={0.16485, 2.21605, -1.5783, 

4.47608, 1.95723, -4.47607, -0.54301, 0.61237). Upon passing this new signal 

through one more analysis phase (see figure-3.1), we get detail coefficients pj+i = 

{0.99936, 4.0000, -2.99999, 0} and approximation coefficients = {1.00037, 

4.0000, -2.99999, 0} which are identical (ignoring the small variations resulting from
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[fig. 3.9(a) The approximation coefficients ofy = x2]

round off errors and the method of storing floating point values in computers). These 

identical signals are also the same as the original signal {1,4,-3,0}.

Illustration 2:

Consider f(x) = x2 be a parabolic signal (as discussed in section 3.4.3) in L2(R) such 
that,

f" = x2 , xe[0, 31]

m 1 ' .L = 0 , otherwise

Dividing the signal in to 31 equal parts, the 32 discrete values are as shown in figure- 

3.7(a). The double length approximated signal obtained using equation (3.1) is 

allowed to pass one more analysis phase. The approximation coefficients and detailed 

coefficients are obtained and portrayed as shown in the figure 3.9(a) and 3.9(b) 

respectively.

Approximation coefficients
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[fig. 3.9(b) The detailed coefficients ofy = x2\

It is observed from the figures 9(a) and 9(b) that the graphs are identical to each other 

and same as the figure 3.7(a).

3.6. Conclusions

In this chapter we highlight a novel Approximation technique using MRA with DWT. 

The method has been verified on finite length signals obtained from standard 
functions like sine x, cos x, exp(x), x, x2. Numerical experiments using discrete 

wavelet transforms like Haar, Daubechies D4, D6 were carried out and it has been 

observed that this method for interpolating a signal works best with the D4 wavelets.

If the given signal is subjected to analysis phase once and synthesis phases twice, then 

the signal is decomposed into four components each of size twice that of the original 

signal. The algebraic sum of all these four components yields a new double length 

signal. In order to interpret this new signal, it is passed through one more stage of 

analysis phase. The two branches of this stage produce two signals of length equal to 

that of the original signal which have been found to have the following properties : (i) 

the detail and approximation coefficients become identical and same (ii) each of 

these signals is the same as the original signal. Hence it leads to the conclusion that
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the intermediate signal Wj+2 contains the original signal approximated to double its 

size.

This technique can be applied to industrial problems involving digital signal 

processing. The method can be extended to two-dimensional signals like digital 

images. This extended method can be useful in generating more digital images for a 

glyph from given samples to aid in the development of the OCR systems.
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