Chapter 3. A wavelet based MRA technique for
' approximating a discrete signal

3.1. Introduction

Discrete Wavelet Transform and Multi Resolution Analysis using Wavelet Filters are
now very widely used in the areas of feature extraction [3,4]. But very little work is
found in the literature [14, 15,' 32] about making use of these techniques for signal

_approximation or interpolation.

The approximation ofa signai is relevant in the context of OCR system development
‘also. Digi'talt images are two dimensional digital signals. In cases where there is
insufficient number of images of symbols, these methods of interpolation can be used

to generate additional images for the test set or the training set.

ApproXin*lating a given signal to double its length for better identification of the
' locations of the peaks in the signal is a common procedure in industrial applications

for the local analysis of the Sign‘él as explained below:

To téke a specific industrial application, we may consider the pmbleﬁl of identifying -
~ the ‘existence and (‘;uanti‘ty'of a particulaf elerfieht in a metal block by the use of
afomic mass spectroscopy where a CCD camera is used for obtaining the spectrum.
The. presence of a peak in the spectrum may indicate the presence of a particular
substance/element but this peak may fall in between twé pixels in the spectral image.
The idea is to upsample the spectfal data corféspond’ing to subsampling in CCD. This

can be done in either of the following two ways:

1. The device with higher resolution of CCD camera méy be used

2. Some techniques of digital signal processing can be applied to the current
data. ‘
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Since the first option is not always feasible, the second option is often preferred. In
“this paper we discuss a novel approach for interpolating a given digital signal to -
double its length by using Multi Resolution Analysis of Discrete Wavelet Transform.

This chapter is divided in to six sections. After giving an introduction in the first
section, we discuss the analysis of Fourier and Wavelet transform in signal processing
terms in the second section. The effect of applying low-pass filters and high-pass
ﬁltérs to the discretized (finite length) signal is described in the third section. In the
fourth section, we highlight the characteristics of the approach presented earlier by
applying it on various numerical examples. While the properties of this approach are

to be discussed in the fifth section. At the end we conclude the results in the sixth

section. .
- 3.2 Analysis of Fourier and Wavelet transform in signal processing

‘ If is»well known from Fourier theory that a signal can be expréssed as the sum of a,
posSibly infinite, series of sine and _cosiﬁes. This sum is also referred to as a Fourier
| éxpansibn. The big disad\)éntagé of a fouﬁér exp’ansion‘hoWever is thﬁt it has only
- frequency resolution and.no time resolution. This means that although we might be
able to determine all the frequencies present m a signal, we 'do not know when they
are present. To overcome this problem in the past 4 to 5 decades several solutions
(Fast Fourier Transform (FFT), Wihdowed Fourier Transform (WFT) etc.) have been
developed which‘ér‘e more or less able to represent a signal in the time and frequency

domain at the same time.

The idea behind these time;frequendy joint representations is to cut the sigrxai of
interest into several parts and then analyze the parts separately. It is clear that
anélyzing a signal this way will give more information about the when and where of
different frequency components, but it leads to a fundamental problem as well: how to
cut ;he signal? Suppose that we want to know exag:tly‘ all the frequency componenis

present at a certain moment in time.
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The problem here is that cutting the signal corresponds to a convolution between the
signal and the cutting window. Since convolution in the timne domain is identical to
multiplication in the frequency domain and since the Fourier transform of a Dirac
pulse contains all possible frequencies the frequency components of the signal will be
smeared out all over the frequency axis. In fact this situation is the opposite of the

standard Fourier transform since we now have time resolution but no frequency

resolution whatsoever.

The underlying principle of the phenomena just described is due to Heisenberg's
_uncertainty principle, which, in signal processing terms, states that it is-impossible to
know the exact frequency and the exact time of occurrence of this frequency in a
signal: In other words, a signal can simply not Be represented as a point in the time-
frequency space. The uncertajnty principle shows that it is very irnpim:é.nt how one

cuts the signal.

" The wavelet transform or wavelet ana1y51s is probably the most recent solutlon to
- overcome the shortcommgs of the Fourier transform. In wavelet analy81s the use of a
fully scalable modulated wmdow solves the 31gna1-cuttmg problem The window is
~ shifted along the 31gna1 and for every position the spectrum is calculated Then this
- process is repeated many times with a slightly shorter (or longer) window for every
new cycle. In the end the resﬁlt will be e cbllecﬁon oyvf time-frequency represeﬁtations
of 'the signal, all with different resolutions. Because of this collection of

© representations we can speak of a multiresolution analysis.

3.3. Discretization and Filter Process

In this section, we present the basic result of signal transformation and ‘signal
reconstruction using MRA. Consider standard lemma [1.3] regarding the
' reconetruction of a signal using MRA (figure-1.5) discussed in the chapter 1. In the
* following section, we introduce the use of wavelets for the Approximation of a signal
to double its length. '
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3.3.1. Signal Approximation Using Wavelets

In this section we recall the lemma-1.3 of chapter 1 which demonstrates the analysis
phase (discrete wavelet transform) and synthesis phase (inverse discrete wavelet

transform) for a given. function f € I?(R). Consider the resolution level of the

function is (j+1), so we denote this function by y,,. Foreach J € Z | define sequences
v x; :(xj(k))‘kez and Y :(yj(k))kez by x; =D(yj+1 * ¥) ~and

y;=D(y;; * u).WhereD is the downsampling operator on / @ .u=(u (k) e, and
v =(v; (k)  are scaling and wavelet sequence respectively And ¥ and‘ 12 are the dual

sequcnces of ”(apprommatlon coefﬁcxents) andV(detaﬂed coefﬁc1ents) deﬁned as

u (n) u(N —n) zmd v (n) V(N n) where N is the length of the 51gna1

'The reconstruction of y Ul usmg one analysis phase and one synthes1s phase can be

g1venby . o
‘yjlfi=U(yj).*u+U(xj)*v :

Where U'is the upsampling operator on I*(z).

HWe extend. this result by adding one more level of synthesis phase for the purpose of getting
approximated double length signal as follows: | '

The use of wavelets to interpolate a given digital signal is a less studied area. The
pictorial representation of the above equation is shown in figure-1.5 of chapter-1
which is made up of one analysis and one synthesm phase and yields reconstruction of
a signal. In order to approximate the s1gna1 to its double length, one more level of

synthesis phase is applied to figure-1.5.

Consider a signal fe I’(R) of length m (number of sample points). Upon applying

one analysis phase and two synthesis phases on f; we get one level higher resolution
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of f(say Wi (2m)) which will be of doubled length compared to the original signal

values of length m.

Mathematical form of "/*? in terms of detail and approximation cemponents,

x; and y; respectively, can be obtained from figure- 3.1 as follows :

Xi
b2 b2 125
% b y2 |,
__________________ i o Wi+

’ F1g 3.1 Apprommatlon usmg filter bank of DWT

| —U(U(y )*u)*u+ U(U(x )* )*u]+ U(U(yj)*u)*v%— U(U(x )* )*v 3.1

In sectlon 3.4, we Wﬂl prove that i+ is equal to - Vi (the actual higher resoluuon of

Vi +l) These computations were unplemented in Java.

Following section demonstrates the applicability of a new approach using the
equation (3.1) of Approximation ﬁsing numerical examples of some finite length

signals.

3.4. Numerical Examples

We have carried out some experiments with a few discretized signals and applied
Haar, Daubechies D4, D6 discrete wavelet transforms on them with the objective of
Approximation. The following sections present the results of the numerical

experiments.
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3.4.1 Approximation of a sinusoidal function

Consider the function sin(x) where x&[0,2x]. The interval was divided in to 127 equal

sub-intervals and the function was sampled at the 128 points (say m = 128) of

discretization.

= sin(x) , x€[027]
flx o

=-0 , otherwise

A graph of the function with the sampled values is as shown in figure-3.2. The graph

of the w; values obtained from equation 3.1 is shown in figure-3.3(a).

o

Fig.3.2. ,'Origin_alms n(x) at 128 éample pots

it Eae S e Shgtas

It is observed from these graphs that the process specified in equation (3.1) leads to
two types of distortions to the original signal, namely (i) there is a distortion in the

graph due to the presence of values near horizontal axis and (ii) the amplitude of the

signal increases by a factor of about+/2 . It is further observed that these distortions
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occur due to the presence of high frequency components (figure-3.3(b)). Due to these
observations we propose to have only the low frequency components (highlighted

region in figure-3.1) for the purpose of approximating the signal to double its length
(2m).

Therefore we consider the following expression 7+, extracted from equation (3.1)
for being the form for the mterpolated signal : _
Be=2UUGY ™ (6D

where V2 is a scaling parameter ( estimated from the above mentioned observations)

Equatmn (3.2) ylelds desired Apprommanon of sin(x) to its double 1ength (Zm 256
vsample pomts) where xe [0,27]. F1gure—3 4, 3. 5(a) and 3 5(b) shown below
- demonstrate the graphs of 256 sample pomts vs. sm(x) with the help of equation (3 2)
by usmg Daubeches D4, Haar and D6 wavelets coefﬁclents respectxvely

F 4.256 ample ots vs. in(x) with D4 _
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342 Approximatioxi of a linear signal

Now consider a linear signal f{x) = x in L*(R) such that,
(= x, xelo, 311
) | L
= 0 , otherwise
Diw)iding the signal in to 31 equal parts, the 32 discrete values are as shov&_ri in figure-
;3 .6(a). Hence the length of the signal is m=32. Figure-3.6(b) exhibits the interpolated
' gfaph of this signal to double its length 2m = 64 s.ample p‘oiﬁts) by applying equation
32 by using Daubechies D4 wavelets. Similarly ﬁgure—3.6(c) and 3.6(d) shown below
gives-interpolated graph of the signal using Haar and Daubechies D6 respectively.

Fig. 3.6(a). f(x) =x is a line graph.
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5

F1g 3 6(c) mterpolated line graph by Haar F1g 3. 6(d) mterpolated hne graph by D6
3.4.3 Approxnnatio'n of a parabolic signal

Let f(x) x} bea parabohc mgnal inI? (R) such that

i

x* , xe[0, 31]
Ve ¥
' =0 ',.'Otherwise '

Di\}iding the sxgnal in to 31 eqﬁal parts, the 32 discrete {zalues afe as shown in ﬁgure,-
3.7(a). Here also the length of this signai is m=32. Up on épplying equation 3.2; the
signal is getting interpolated to double its length Figure-3 7(b) shows the sharp

* feature of the curvature using Daubechxes D4 wavelets

Fig. 3.7(a). Graph of y = x Fig. 3 7(b) mterpolated graph of y =x" by D4
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Fig. 3.7(c). interpolated graph by Haar ig. 3.7(d). interpolated graph of y=7? by D6

- »Flg 3. 7(c) and 3.7(d) exhibit the mterpolated graphs obtained by equation (3.2) by

“using Haar and Daubechies D6 wavelets coefﬁcwnts respectlvely

oIt 1s observed from these three 111ustrat10ns that sinusoidal functlon gives perfect
- Approximation while non penodlc functions (hnear and parabohc) shows some kind

of distortion at the beundary points which arise due to the lack of mfonnanon near

’ boundary pomts
| "3.4.4 Approximation of a highly Non—lixi_ear signal
‘We have collected a sequence of 0bservat1ons of the length 32 (see ﬁgure—o 8(a))

' : from the industry. Figure-3.8(b) demonstrates the resultant interpolated double length
signal of the length 64 by applying equation (3.2).

Flg. 3:8a). ongmal:lgnal of size ‘;;:2 Fig..8(b5. iﬁfefpdlated mgnal of size 2n=64
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The graph in figure-3.8(a) is highly nonlinear in nature. Discrete Wavelet Transform

captures the features quite efficiently at the time of Approximation.

In the next section, we will discuss an interesting relationship, which is observed

during above mentioned process using figure-3.1.

~3.5. Properties of the Proposed Approximation Method using
Wavelets ’ '

- If we apply one more level of analysis phase on "2 ((7+2)% resolution of original
sfgnal), we get original signal at (j+1)® resolution (i.e. yj+'1) back. Hence we can

- rewrite equation (3.2) as below: -
Vi =UU@)*u)*u+ UUE,) ) *ut+ UUG,)*0)*v+ UUE) ) *y  (33)
- Equation (3.2) gives /2, which represents the éighal at a resolution one level higher

than that of 77+ for the original signal f. _Additionally, we oBservé that the detail and
1approximatidn'coefﬁcients_obtained when this additional level of analysis phase is

. -applied are equal.

These observations are consolidated in the following lemma.

Lemma 3.I: Let ke be an MRA. Suppose fe I*(R) is a signal and for

each’/ <%, sequences ;= (¥4 (s, a0 ;i = (7,12 (K))ye, form G+D™ and
(3+2)th level resolutions of the signal f respectively.
cLet X, =D, * V), y,=D, * W),

W, =UU(y)*u)*u+ UU(x,) *v)*u]+ U(U(y)*u)*v-!— UU(x;)*v)*v.

If P =Dlw;, * V) , Wi =D(w;,, * )

2

then, p,,; = w,,, and naturally equaito y,,,.

U is an upsampling operator and * denotes convolution
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Proof:

Wehave
U(U(yj)*u)*u-!- UU(x )*v)*u—t— U(U(yj)*u)*v-k U(U(x )*v)*

Therefore, Wi U[U(yj)*u“*'U(xj)*v]*u+»[U(U(yj)*u)*v+ UU(x;)*v)*v]

(Distributive property of convolution)

. Substituting the value of Yin , from equation (1.2 of chapter 1 we get,

“ UGk U(U(y,)*u)*vw(v(x)*v)* B (4

A It is clear from lemma (1. 3) of chapter 1 that the reconstructlon ofa s1gna1 at (}+2)th

. level of resolution can be expressed as follows

y,+2 U,0)* u+U(x,+1) v B € 2

Usmg one-one property of wavelet transform {11], 1t is obvmus that both Y2 and
Wigs form a 31gna1 at one hlgher level of resolutlon than Vi g

Hence, ., =_wj+2 S - ! o (3.6
. Ecjﬁaﬁng (3.4) and.(3.5) by canceling identical terms, we get .
U(x,u,l)*V?[U(U(Y})*u)*}’]+ WUE)*v)*v] o (3.7)

Application of downsampling operator D on both the sides of equation (3.7), gives
DIU(x,,)*v]= U() *u)*v+ U (x,) ¥ ) *v

=[U(y)*u+U(x;)*v]*v (Distributive property of convolution)
2. DIU (%) ¥¥]= 0 v
Applying upsampling operator U on both the sides, we get
Uley) v =U,)*v
Applying deconvolution followed by downsampling, we get

Xi = Vin . - (3.8
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Now,
Win (k) = D(Wj+2 *u)(k)
=y, *u(2k) (from 3.6)
= u(2k~m)y,,,(m)
k
=Y u(m =261 60
k .
=< f, Y ulm—2k)p,,,,, >
k
=< f H ¢j+1,k > . :
=¥ ®) G
Similarly, p, (k) = 2,1 (%)
But, using (3.8), we get , R o :
: - P (k) =Vin (k) - ' . - (310)
| Therefore from (3.9) and (3.10) we have
Pj=Wm=ya QED. . e
R is interesting to note that the high péss and low pass coefficients become identical.
For instance cohsider the following illustrations in which a finite length signal is |
" given as an input and yields double length approximated signal as an output using
4equation (3.1). Up on allowing this new signial to one more analysis phase as shown in

figure-3.1, we get two signals of the same length as the on'ginal one. These two

signals are found to be identical to each other as well as the original signal.

illustration 1:

‘Consider a signal of finite length {1,4,-3,0} to be y;+; [13], the (+1 )"’ Ievél resolution
of size n = 4. Froni equation (3.1), the (j+2)" level resolution of this signal obtained
by using Daubechie’s D4 wavelets turns out to be yj., ={0.16485, 2.21605, -1.5783,
- 4.47608, 1.95723, -4.47607, -0.54301, 0.61237}. Upon passing this new signal
through one more analysis phase (see figure-3.1), we get detail coefficients p;.; =
{0.99936, 4.0000, -2.99999, 0} and approximation coefficients wj; = {1.00037,
4.0000, -2.99999, 0} which are identical (ignoring the small variations resulting from
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round off errors and the method of stering floating point values in computers). These

identical signals are also the same as the original signal {1,4,-3,0}.

Hlustration 2:

Consider f{x) = Fbea parabolic signal (as discussed in section 3.4.3) in L*(R) such

that,
= x* xe[(rj,‘31’}
J® {

= 0 , otherwise

,Dividing the signal in to 31 eqﬁal parts, the 32 discrete values are as shown in figure-
3.7(a). The double length aj)proximated signal 6btained using equation (3.1) is
' i_allowcd, to pass éné lfnoré éﬁaly.sis phase. The approximatioh coefficients aﬁd detéiled

coefficients are obtained and portrayed as shown in the figure 3.9(&5 and 3.9(b)

- . respectively.
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[fig. 3.9(b) The detailed coefficients of y=x1

V It is observed from the ﬁgures 9(a) and 9(b) that the graphs are 1dent1ca1 to each other .
~and same as the ﬁgure 3. 7(a)

o 3;6.'Con¢lilsions

A In :i‘his ’chapter Wé highlight a novel App‘ro}cimation teg:hﬁique using MRA with DWT. _
'The method has been verified on finite length signals obtained from standard

ﬁmctionS like sine x, cos x, exp(x), x, x*. Numerical experimerits‘using discrete
‘ wavelet transforms like Haar, Daubechies D4, D6 were carried out and it has been

observed that this method for interpolating a signal works best with the D4 wavelets.

If tfle given signal is subjected to analysis phase once and synthesis phases twice, then
the signal is decomposed into four components each of size twice that of the original
signal. The algebraic sum of all these four components yields a new double length
signal. In order to interpret this new signal, it is passed through one more stage of
ahalysis phase. The two branches of this stage produce two signals of length equal to
that of the original signal which have been found to have the following properties : (i)
the detail and ap?roximation coefficients become identical and same (ii) each of

these signals is the same as the original signal. Hence it leads to the conclusion that
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W

the intermediate signal ~/*?contains the original signal approximated to double its

size.

This technique can be applied to industrial problems involving digital signal
processing. The method can be extended to two-dimensional signals like digital
images. This extended method can be useful in generating more digital images for a

glyph from giveﬁ samples to aid in the development of the OCR systems.
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