
Chapter 1. General Introduction to Wavelets and Artificial

Neural Networks

1.1. Introduction

The work that is to be presented in this thesis is related to the exploration of the 

methods of wavelet transforms and various neural network architectures as applied to 

signal processing and pattern recognition in developing an Optical Character 

Recognition (OCR) system for the Gujarati script. Optical Character Recognition is 

used to convert the digital images of printed documents in to files of editable text by 

using computers.

Development of Optical Character Recognition (OCR) systems for various scripts 

used by different societies is among the most important tasks that are grouped under 

the title of Natural Language Processing Systems. Much work has gone in to the study 

and development of these systems in the past 50 years and, as a result, quite reliable 

OCR systems are now available for the European and some other scripts.

But the scenario regarding the OCR systems for Indian (or Indie) scripts is not a very 

happy one since there are almost no commercially successful OCR products for these 

scripts available in the market. This is partly because of the fact that these scripts with 

the numerous conjuncts and the vowel modifiers occurring in all directions of the 

basic symbol are much more complex in comparison to the linear European scripts. 

There have been many documented efforts, mainly at research level, regarding the 

development of OCR technology for Indie scripts during the past 35 years. But, 

regarding the OCR technology for the Gujarati script, there had been only one 

documented effort [ 1 ] before 2005.

In this thesis, we have explored the usage of Wavelets and Artificial Neural Networks 

(ANN) for the development of an Optical Character Recognition (OCR) system for 

the Gujarati script. Wavelets with the important characteristics of space and frequency 

localization are found to be good for. extracting features of images. Artificial Neural
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Networks with their generalization capabilities are good for the construction of a 

robust classifier. This introductory chapter is organized as follows:

This chapter contains five sections. After giving an introduction in the first section, 

we present the general introduction to bandlimited functions and Shannon’s sampling 

theorem in the second section. Section 3 highlights the advantages of Wavelets over 

the Fourier transform followed by the introduction of continuous and discrete wavelet. 

In section 4, we describe the applicability of various Artificial Neural Network 

architectures and ultimately present detailed discussion of two of the most widely 

used ANN architectures viz. Multilayer Perception and Radial Basis Funciton 

networks. At the end a brief summary and organization of the thesis is presented in 

section-5.

1.2. Shannon’s theorem

The use of Shannon’s theorem which is based on bandlimited functions plays a vital 
role in Wavelets. A function/ in L2(R/ is called bandlimited if its Fourier transform

/
A Tf_- ]/(£) = —== dt e m f{t) has compact support, i.e. /(£) = 0 for |£| >-fl , where

v 42.itJ

Q is a finite real number.

Let us suppose, for simplicity, that Q = n. Then / can be represented by its Fourier 

series,

/© = Sc.e-"{
neZ

where f(&
2 K

f(n) (Inverse Fourier transform: /(n) = j dg emSf (£))

t L2(R): Set of square integrable function. Let/and g are in L2(R) then L2-inner product is defined as

{f,g) = j dx f(x) g(x)
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From the inversion of Fourier transform, it follows that

1

=lfe"

-inf

i(x~n)f

1 m
$m7t{x-n)

!t{x-n) (1.1)

Formula (1.1) tells us that/ is completely determined by its “sampled” values f(n).

If we lift the restriction Q = K and assume support / c [-0,0], with O arbitrary 

real number, then equation (1.1) becomes

/w=X/( it 'l sin(£2x - nit)
Qx — nn

The function in equation (1.2) is now determined by its samples /
' it'' 

n—V Q' )

(1.2)

, neZ.

Shannon’s theorem states that an Q -bandlimited function can be reconstructed 

completely from its values

.{f(kT)\keZ), T = ~

sampled at the discrete points kT. “Completely” means at all points teR we get back 

the exact original value f(t).

1.3. Wavelets

Due to the localization properties of wavelets in time and frequency domain, they are 

widely used in the field of image analysis, feature extraction etc.

The wavelet transform is a tool that cuts up data or functions or operators into 

different frequency components, and then studies each-component with a resolution 

matched to its scale. In this chapter, we emphasize only on signal processing. The
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wavelet transform of a signal evolving in time (e.g. the amplitude of the pressure on 

an eardrum, for acoustical applications) depends on two variables: scale (or 

frequency) and time; wavelets provide a tool for time-frequency localization [11].

A brief description of the progression of concepts from Fourier transforms to wavelet 

transforms via the Windowed Fourier transform is provided below:

• In many applications, given a continuous signal f(t), one is interested in its 

frequency content locally in time. This is similar to music notation, for example, 

which tells the player which notes (= frequency information) to play at any given 

moment Standard Fourier transform,

(F/)(®) = -^=|^e-‘*/(0

gives a representation of the frequency content of f but it can not provide the 

information concerning time-localization of f.

• Time-localization can be achieved by first windowing the signal f so as to cut off 

only a well-localized slice of f and then taking its Fourier transform:

{T^f){(0,t) = \dsmg{S-t)e-^=g(04

This is the windowed Fourier transform, which is a standard technique for time- 

frequency localization.

• The wavelet transform provides a similar time-frequency description, with a few 

important differences. The wavelet transform ( to be explained in the following 

subsection) of a function/results in an expression of the following type involving 

two parameters a and b called the dilation and translation:

(T™f)(a,b) =| a r,/2 J dt f{t)

(Twavf)(a,b) = ldtf(t)Wa’b

a.b II— (t~b\ 

where ¥ ’ — a 2 ¥
l a )

In this case ^satisfies

is called analyzing wavelet.
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J<fcyr(f) = 0

[Fig. 1.1 Windowed Fourier transform gWJ\

The difference between the wavelet and windowed Fourier transforms lies in the 

shapes of the analyzing functions gWyt and ys,J as shown in the figures 1.1 and 1.2. The 

functions gWyt all consist of the same envelope function g, translated to the proper time 

location, and “filled in” with higher frequency oscillations. All the gWit, regardless of 

the value of to, have the same width. In contrast, the y/‘,J have time-widths adapted to

their frequency: high frequency \g'J are very narrow, while low frequency W‘J are 

much broader (in the case of continuous wavelet transform). As a result, the wavelet 

transform is better than the windowed Fourier transform to “zoom in” on very short 

lived high frequency phenomena, such as transients in signals.

In the following subsections, we discuss Continuous Wavelet Transform and Discrete 

Wavelet Transform in some detail.

1.3.1 Continuous Wavelet Transform

In many applications, given a signal f(t) (/ e L2 (R) )5 0ne is interested in its 

frequency content locally in time. The wavelet transform provides time-frequency 

description.

The Continuous Wavelet Transform can be defined as below:
't-b'(T™f)(a,b) = (.f,yra*) =\« P"2 J* fW
i a \ j

(1.3)

where a and b are the dilation and translation parameters respectively which vary 

continuously over R (with the constraint a^O) and V G ^ (-R).
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The wavelet transform is given in equation (1.3) and a function can be reconstructed 

from its wavelet transform by means of the resolution of identity formula [11]:

•dadb

O-b^
where Wa’b (0 -M V

\ a J
and {>) denotes the L2 — inner product. The

constant depends only on and is given by

Cv=2n]d^W^)\%-1 < - (1.4)

where y/ is the Fourier transform of the function^. The condition C¥< °° is known as 

the admissibility condition.

A function W.R-^C satisfying the conditions *FgL2(R), |^/j| = l and Cv<°° is 

called a mother wavelet or simply a wavelet.

The following example is an illustration of compactly supported Continuous Wavelet 

Transform (CWT).

Example: Mexican Hat

' . JlThe Mexican Hat function is the second derivative of the Gaussian function e 2. It was

first used in computer vision to detect multiscale edges [29]. The use of Mexican hat 

function is extended as a nonlinear activation function in the field of Artificial Neural 

Networks (to be discussed later in this chapter). The branch of ANN in which all the 

neurons of hidden layers possess continuous wavelets as an activation function is 

known as Wavelet Neural Networks (WNN). Mexican hat function is used quite 

frequently in WNN. If we normalize the second derivative of the Gaussian function so 
that its L2 - norm becomes 1, we get

-1/4 (l-?2) exp ~r 12

and its Fourier transform is
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Jgw{m) = -T=7t~l,4a)1 exp
V3

2 ,
A

Figures 1.3 and 1.4 demonstrate W and the magnitude of its Fourier transform ¥.

[Fig. 1.3 Graph of Maxican Hat W[ [ Fig. 1.4 Graph of |^|]

1.3.2 Discrete Wavelet Transform

Shannon’s sampling theorem (equation 1.2) accomplishes the full reconstruction of a

7tbandlimited time signal / from a discrete collection | ke Z), T = — 0f

sample values [32].

Suppose B={vo, vi, ...,vn-i} is a basis for 12(Zn) such that all the basis elements of B are 

localized in space. For a vector ze l2(Z^), we can write

* = X«„v. (1.5)
n=0

for some scalars ao, ai, a^.j- Suppose that we wish to focus on the portion of z near

some particular point no- Terms involving basis vectors that are 0 Or negligibly small 

near no can be deleted from relation (1.5) without changing the behavior near no 

significantly. Thus we may be able to replace a full sum over N terms by a much 

smaller sum when considering only the portion of z near no [12],

More generally, a spatially localized basis for expressing a signal is useful in signal 

processing because it provides a local analysis of the signal: if a certain coefficient in
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the expansion of z is large, we can identify the location with which this large 

coefficient is associated. We could then, for example, focus on this location and 

analyze it in more detail. One example is to look closely at a potential tumor. Another 

is radar or sonar imaging, for example in oil prospecting, to identify the boundary of 

an oil pocket, or in archeology to locate artifacts.

Our ultimate goal is to obtain a basis whose elements are both spatially and frequency 

localized. Then a vector expansion coefficients in this basis will provide both spatial 

and frequency information. The scaling function for wavelet series expansion can be 

described as below:

Scaling functions:

Consider the set of expansion functions composed of integer translations and binary 
scalings of the real, square-integrable function <p(x); that is, the set (x)jwhere

’ 7.

<t>jk (x) = 22 0(2y x — k) for all/,k e Z.

Here, k determines the position of (pj k (x) along the x-axis, j determines<pJ k (x) ’s 

width - how broad or narrow it is along the x-axis and the term 2!n controls its height 

or amplitude [13]. Because the shape of $j,k(x) changes with j, <j){x) is called a scaling 

function. By choosing 0(x) wisely, {<pJk (x)}can be made to span 1} (R), the set of all 

measurable, square-integrable functions.

If we restrict j to a specific value, say j = y'o, the resulting expansion set \_<pJotk (x)}, is a 

subset of {(pj k (x)}. It will not span il (R), but a subspace within it. The subspace can 

be defined as
>. = span{ <pji)tk (x)}

That is, Vj is the span of (ph J, (x) over k. If /(x) e Vh, it can be written as

/(*)=
k

More generally, we will denote the subspace spanned over k for any j as
Vj=span{t}Jk(x)\

Chapter 1 : General Introduction to Wavelets and Artificial Neural Networks
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The following two subsections demonstrate the formation of the coefficients u and v 

for Haar and Daubechies wavelets respectively.

1.3.2(a) Haar wavelets

Haar scaling function:

Let (jr.R-^R be defined by

1 xe [0,1)
0 otherwise

Define (j>jJc: R —» R as (as shown in section 1.3.2)

j
$j,k(x) = 22 0(2^x—fc) 

Here, <f>j k is known as the father wavelet.

Define the vector space VJ as

Therefore VJ can be expressed as a linear combination of $JJk as follows:

where uj(k) is called approximation coefficients at level j..

Since 0€ V° c V1, the above expression implies that

tf>(x) = £ ux (kyplk (x) = ^ Mj (&)V2 <p(2x - k) and hence <j> is called scaling function.

Haar wavelet function:

Let y/:R -> R be defined by

1 xe [0,1/2)
r(x) = i-l xe [1/2,1)

0 otherwise
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The wavelet function \j/ can be expressed in terms of scaling function (p as

keZ

L
Define yrjk :R->R as y/Jk(x) = 22y/(2jx-k)

Here y/j k is known as the mother wavelet.

Define the vector space WJ as

WJ = span {Wj,k }ij<=2 

Therefore WJ can be expressed as

= (v(fc))„2 E /2(Z)j

where vj(k) is called detail coefficients at level j

Since 0=<pOfi e V° c V1, ^(x) will be expressed as below :

w=X«wi(x)
fa=Z

= Yu(k)j2</>{2x~k)
fcZ

where u(k) = (<p,<pl!k) and u(k)=uj(k)

Scaling coefficients u(k) =

and wavelet coefficients v(k) =

\l/*j2 if n = 0 or n-l 

[0 otherwise

l/-s/2 if n = 0 

-1 lS if n = 1 

0 otherwise

are low pass and high pass filters respectively. It can be seen that 

v{k) = (~l)i_!m(1 -k). Where n(l-k) is a complex conjugate of u(\-k).
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1.3.2(b) Daubechies wavelets

Even though the Haar wavelets are providing local analysis of a signal in frequency as 

well as in spatial domain, they are not smooth in nature due to their step function 

behavior. Daubechies has discovered new wavelet bases [II] which overcome the 

limitation of the Haar wavelets. The formulation of Daubechies wavelets is detailed 

below:

Since <j) - <po,o£ Vo c- Vu and the <pX n are an orthonormal basis in F/, we have

^ = (1.6)

with

Xhf=i '(i-7)mZ

As defined in tire definition of the scaling function <p discussed in 1.3.2(b), we can 

rewrite equation (1.6) as

<p(x) = ^2jrun^(2x - n)

The fourier transform of (1.8) results in

1

(1.8)

(1.9)

The equation (1.9) can be rewritten as

fe) = m0(£/2W£/2j (1.10)

where, mo(£) = ^p^jLiUne ‘ ^ (1.11)

Equality in (1.10) holds pointwise almost everywhere (a. e.). As (1.7) shows, mo is a 

2 ^"-periodic function in L2([0, 2n]).

Hence, the orthonormality of the <p(. - k) leads to special properties form# [11]. We 

have

h(<D|2+h(£+*of =i a-e■ (i.i2)
With the help of orthonormality of <j) and \ff, the equation (1.11) should be of the form

[11],

11



Chapter 1: General Introduction to Wavelets and Artificial Neural Networks

m. x®
2 ,

A© (1.13)

with N > 1, and L%- a trigonometric polynomial.

Now considering M0(£) ^=j m0(%) f, we find that -^o(£) is a polynomial in cosg, 

satisfying the property

M0(£)+M0(£ + ;z:) = l (1.14)

By taking modulus, the equation 1.13 can be written as

«o(£)| 1 + e -a

J_
2n

1

1^01

[(1 + cos g)2 + sin2 2 |h(£)|

N \2 + 2 cos £]2 ]LX (£)|

= 2 2 [H- cos^] 2|A(^)| 

= 2^[2cos2i]%1(d

Therefore,

:[C0S2|] %®\
r 2%\n
cos — m

where L(0 = \Li(Q\2 is also a polynomial in cost;. For our purpose it is convenient to 

rewrite L(£j) as a polynomial in sin2(fy2) = (l-cos^)/2. Therefore,

Af0(£);
/ j: \N ( ^ ^
cos sin

In terms of P, the constraint (1.14) becomes

(l-yfP(y)+yNP(l-y) = l (1.15)

where, >*-suC
V2y

12
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This formula is valid for ye [0,1] , hence for all 3; e/C

To solve equation (1.15) for P, by using Bezout’s theorem [11] there exist a 

polynomial Pm of degree < (N-l) such that the equation takes the form

(1 ~yfPN(y) +yNPN(l-y) = i (1.16)

where

Daubechies D4 (scaling function 2^) Wavelet

N-l

*=o

(N+k-l
(1.17)

We begin with the equation (1.17) by considering the value of N—2.

P2(y)-
fi

1°;
+

(2
y = l + 2y

and consequently from equation (1.15),

P2 (sin2 —) = 1 + 2(sin2 —) 
2 2

71=1

= 2-.cos£ = a0 cosO^ + flj cos£ = cosk%
' ■ .■ ' . . k=0

The following lemma of Riez [32] gives an important relationship among the 

trigonometric polynomials, which can be stated as below:

Lemma 1.2 (Riez): Let A(B) be a positive trigonometric polynomial invariant under 

the substitution £to -%;A is necessarily of the form

A(& = 2akcoskf, akeR.
k=0

Then there exists a trigonometric polynomial B of order n,

a© = iV*f.
A=0

such that,

A(0=B($B(-$

identically in $

So, using equation (1.18) in our problem, we get

(1.18)
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(b0 +V^)(&0 + V*)=2-i(e,{ + e^\ 

By simplifying, we get two equations

b20+b?= 1,

Solution of these two equations leads to £>0 =~(l + V3 }i,= i(i
2V -Vs).

Now, using equation (1.13), we can have

m0(%) = ^l + e~(? ^
0

2
A(£)

\ ^
—(l’+2e‘ 
4 ^ + e~2iS

)(*o+V -«)
i(l + 2*f )(i+Vb + (1- S)e*)

= j (l + # + (3 + S)e-* + (3 - S)e~2* + (1 - )

When mo(0)=l is also satisfied.

By comparing the value of m{) (g) of equation (1.11) with the values obtained above, 

we get

= - (l + S + (3 + V3)e“i# + (3 - S)e^ + (1 - S)e~^)
-v/2 „ 8

Hence, we get only four nonzero components of approximation coefficient u which 

are mentioned in table 1. This table demonstrates the scaling (high pass) coefficients 

u(k) and wavelet (low pass) coefficients v(k) of Daubechies D4 wavelets for scaling 

function 2® and wavelet function 2 r respectively.

14



Chapter 1: General Introduction to Wavelets and Artificial Neural Networks

Table 1. Daubechies D4 low pass and High pass filters

k u(k) v(k) = (-l)k~1u(l-k)

A \-SU 4S 4V2

1
3+V3 3-V2

i 4^2 ' 4a/2

o
3-V3 3 + ^/3
4^2 4 S

1-V3 1 + V3
4V2 " 4V2

Daubechies D6 (scaling function 3*) Wavelet

We can obtain low pass and high pass coefficients for Daubechies D6 wavelets for by 

substituting N=3 in equation (1.17). Table 2. gives a list of the scaling (high pass) 

coefficients u(k) and wavelet (low pass) coefficients v(k) of Daubechies D6 wavelets 

for scaling function 3^ and wavelet function 3¥ respectively.

Table 2. Daubechies D6 low pass and high pass coefficients

k u(k) v(k) = (—1)M «(1 - k)

0 0.3326705529500825 0.0352262918857095

1 0.8068915093110924 0.0854412738820267

2 0.4598775021184914 -0.1350110200102546

3 -0.1350110200102546 -0.4598775021184914

4 -0.0854412738820267 0.8068915093110924

5 0.0352262918857095 -0.3326705529500825

Thus, table 1 and 2 specify the first stage wavelet basis for Daubechies D4 and D6 

respectively.
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1,3.3 Series Expansion and Multiresolution Analysis (MRA)

A multiresolution analysis, formulated in the fall of 1986 by Mallat and Meyer, 

provides a natural framework for the understanding of wavelet bases, and for the 

construction of new examples. A multiresolution analysis (or MRA) with scaling 

function (p is a sequence z of subspaces of L1 (R) having the following

properties:

1. Monotonicity: The sequence is increasing, that is, Vjc Vj+j for all jeZ.

2. Existence of the scaling function: There exists a function (peVo such that the set
1 is orthonormal and

K=hz(k)<p0y.Z = (Z(k))k^el1(Z)
{ke7.

3. Dilation property: F or each j, f(x) <= Fo if and only iff(2x) eVj,

4. Trivial intersection property: V\js7 V. = {o}.
5. Density: UysZ Fy is dense in l}(R).

. MRA plays a major role in the development of series expansions of a signal for the 

local analysis of that signal. The description of series expansion of a signal using 

MRA technique of DWT is given below:

A signal or function f(x) can often be better analyzed as a linear combination of 

expansion functions [13]

f(x) = y£,akVk (lla)

where k is an integer index of the finite or infinite sum, the are real-valued 

expansion coefficients, and the <pk(x) are real-valued expansion functions. If the 

expansion is unique-that is, there is only one set of a* for any given f(x) - the (pt(x) are 

called basis functions, and expansion set, {cpk (x)}, is called a basis for the class of 

functions that can be so expressed. The expressible functions form a function space 

that is referred to as the span of the expansion set, denoted

V = Span{<pk (x)} (1.2a)

Chapter 1 : General Introduction to Wavelets and Artificial Neural Networks
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Therefore, any f(x)eV can be written in the form of Equation (1.1a).

For any function space V and corresponding expansion set {(pk (x)}, there is a set of 

dual functions, denoted (x)}, that can be used to compute the coefficients of 

equation (1.1a) for any f(x)eV. These coefficients are computed by taking the inner 

product of the dual (pk (x) ’s and function f(x). That is,

«* = {vk(xhf(x)) (1.3a)

Depending upon the orthogonality of the expansion set, this computation assumes one 

of three possible forms.

Case 1: If the expansion functions form an orthonormal basis for F, meaning that

(<Pj{x\<Pk(x)) = Sjk= jj j.*kk . . (1.4a)

the basis and its dual are equivalent. That is, (pk (x) = (pk (x) and equation (1.3a) 

becomes

(*)>/(*)). (1.5a)

Case 2: If the expansions are not orthonormal, but are an orthogonal basis for V, then

, (<Pk(x),<Pj(x)) = ° J*k

and the basis functions and their duals are called biorthogonal. The £& are computed

using equation (1.3a), and the biorthogonal basis and its dual are such that

/ ~ \ fO j*k(cPj(x),(pk(x)) = SJk , = k

Case 3: If the expansion set is not a basis for V, but supports the expansion defined in 

equation (1.1a), it is spanning set in which there is more than one set of for any set 

f(x)eV. The expansion functions and their duals are said to overcomplete or 

redundant. They form a frame [11] in which

(1.6a)

for some A > 0,0 <B < and all f(x)eV. The norm, | • |, of f(x), is defined as the 

square root of the inner product of f(x) with itself.
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Dividing this equation by the norm squared of f(x), we see that A and B “frame” the 

normalized inner products of the expansion coefficients and the function. If A = B, the 

expansion set is called a tight frame and it can be shown that

/(*) = “Xfe (*) (1 -7a)
A k

Except for the A1 term, which is a measure of the frame’s redundancy, this is 

identical to the expression obtained by substituting equation (1.5a) (for orthonormal 

basis) into equation (1.1a).

Let V1 be an inner product space and let V° be subspace of the space V1. Let IP0 be an 

orthogonal compliment of V° in V1 so that W° is also a subspace of V1 . Then

V° ®W° ={v0 + w0,v0 g V°and w0 e W0} is called the orthogonal direct sum of V° and

In particular, if we say V°®W°=V1, we mean that V° and IT0 are subspaces of V1, V° 

© W° and every element of x e V1 can be written as x = u + v for some u eV° and v

Vw°
.-. V1 = V° ®W° (1.19)

We define the wavelet series expansion of function f(x) e L2 (^) relative to wavelet 

W(x) and scaling function ^(x) using first stage wavelet basis as below:

f(x) = <h,. + Xvo(k)Vo,k(x)
k k

Equation (1.19) can be generalized using the first and fourth properties of MRA 

(stated above) as Vj+l = VJ ®WJ and form a Multiresolution Analysis [12, 13]. 

Therefore, the above equation will take the following form

(see fig.,) (1.20)

where j0 is an arbitrary integer called the starting scale.

The coefficients uj and vj in this expansion are called the approximation and detail 

coefficients respectively.
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The computational aspect of equation (1.20) can be stated by the following lemma 

[12]:

Lemma 1.3: Suppose {VJ}jeZ is a Multi resolution Analysis (MRA) with scaling function cp 

and scaling sequence u = («y (/c))tez • Suppose v = (v; (k))kGZ is defined by 

v(k) = (-l)i! w(l - k), and \j/ = v(k)<p{ , where <p( = 2jn <p(2j -k). Suppose
keZ

f e £2 (R) and, for. each je z, define sequences x} = (Xj (k))kez and y. — (yj (/c))tez by 

x,(£) = {/,¥/) where ^ =2jnyr{2J-k) and y]{k) = {f,WJk)-

Then Xj=D(yJ+i * v) and y} = D(yJ+l * u), where downsampling operator 

(D) and convolution (*). are on /2(z) and u(k) = u(-k) and v(k) = v{-k) are duals of 

tt(approximation coefficients) and v(detail coefficients) respectively by considering 

approximation coefficients u = uj and detail coefficients v = y,-.

Also . yJ+l =U(yj)*u + U(Xj)*v (1.21)

where Uis the upsampling operator on l2 (z).

The computation described by the above lemma is pictorially represented by the 

following diagram:
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Yj+i

Analysis phase Synthesis phase

[Fig. 1.5 analysis and synthesis phase of a signal]
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1.4. Artificial Neural Networks

Work on artificial neural networks, commonly referred to as “neural networks”, has 

been motivated right from its inception by the recognition that the human brain 

computes in an entirely different way from the conventional digital computer. The 

brain is a highly complex, nonlinear and parallel computer (information-processing 

system). It has the capability to organize its structural constituents, known as neurons, 

so as to perform certain computations (e.g. pattern recognition, perception, and motor 

control) many times faster than the fastest digital computer in existence today [18].

To visualize the complexity of biological neural processing, consider the sonar of a 

bat. Sonar is an active echo-location system. In addition to providing information 

about how far away a target (e.g. a flying insect) is, a bat sonar conveys information 

about the relative velocity of the target, the size of various features of the target, and 

the azimuth and elevation of the target. The complex neural computations needed to 

extract all this information from the target echo occur within the bat’s brain having 

the size of a plum.

Artificial Neurai networks are computational algorithms that can broadly be defined 

as follows:

A neural networks is a massively parallel distributed processor made up of simple 

processing units, which has a natural propensity for storing experiential knowledge 

and making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning 

process
2. Intemeuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge.

Processing units are known as neurons.
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ANN can be applicable in several areas like Pharmaceutical problems [2], medical 

diagnosis, weather forecasting etc. The work to be presented in the thesis explores the 

use of various ANN architectures for the purpose of classifying the symbols that 

occur in Gujarati language:

The history of ANN starts from 1946, McCulloh Pits have developed the first neural 

network model which simply takes binary inputs and computes the output using only 

one neuron in the hidden layer. Hard limit function was used as an activation function 

in the hidden layer.

Some 15 years after the publication of McCulloch and Pitt’s classic paper, a new 

approach to the pattern recognition problem was introduced by Rosenblatt (1958). He 

has proposed the perceptron as the first model for learning with teacher (i.e. 

supervised learning). The perceptron is the simplest form of a neural network used for 

the classification of patterns said to be linearly separable (figure 1.6) (i.e., patterns 

that lie on opposite sides of a hyperplane). Rosenblatt proved that if the patterns used 

to train the perceptron are drawn from two linearly separable classes, then the 

perceptron algorithm converges and positions the decision surface in the form of 

hyperplane between the two classes. The algorithm is trained with the help of Least 

Mean Square (LMS) algorithm. LMS algorithm behaves like a low-pass filter, passing 

the low frequencey components of the error signal and attenuating its high frequency 

components (Haykin, 1996).

Chapter 1: General Introduction to Wavelets and Artificial Neural Networks
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The proof of convergence of the algorithm is known as Perceptron Convergence 

Theorem. The Perceptron Convergence Theorem is stated as below:

Let the subsets of training vectors Xi and X2 be lineraly sepearble. Let the inputs 

presented to the perceptron originate from these two subsets. The perceptron 

converges after some no iterations, in the sense that

w(no)z=w(no+l)=w(no+2)=... 

is a solution vector for no < nmax

Perceptron Convergence Theorem converges after some n0 iterations provided the 

training vectors are linearly separable. The limitation of Rosenblatt’s model of 

Perceptron is it does not converge for the non separable training vectors.

In 1986 the development of the back-propagation algorithm was reported by 

Rumelhart, Hinton, and Williams which is playing a major in the most popular 

learning algorithm for the training of Multilayer Perceptron Significant (MLP). Also 

in 1988, Broomhead and Lowe described a procedure for the design of layered 

feedforward networks using Radial Basis Function (RBF), which provide an 

alternative to MLP. Specht D. F. in 1991, has brought the idea of General Regression 

Neural Networks (GRNN). The theory is based on non-parametric estimator of 

Statistics and estimates the output without any kind of training. In the early 1990s, 

Vapnik and Coworkers invented a computationally powerful class of supervised 

learning networks, called Support Vector Machine (SVM).

The description of MLP network is to be discussed in the next section of this chapter 

while in the fourth chapter MLP is used as a classifier for the development of Gujarati 

OCR. The Mathematical and computational aspects (algorithmic aspects) of General 

Regression Neural Network will be presented in chapter 5. While kernel based 

techniques Radial Basis Function and Support Vector Machine, in which the 

classification of the patterns is based on ftmction-separable space, will be described in 
the 6th chapter of the thesis.
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Now, in the following two subsections we describe two widely used architectures of 

ANN viz. Multilayer Perceptron networks (MLP) and Radial Basis Function networks 

(RBFN).

1.4.1. Multilayer Perceptron (MLP):

The MLP is the most widely used neural network architecture. Typically, the network 

consists of a set of sensory units (source nodes) that constitute the input layer, one or 

more hidden layers of computation nodes, and an output layer of computation nodes. 

The input signal propagates through the network in a forward direction, on a layer-by- 

layer basis. These neural networks are commonly referred to as multilayer perceptron 

(MLPs).

Multiplayer perceptrons have been applied successfully to solve some difficult and 

diverse problems by training them in a manner with a highly popular algorithm 

known as the error backpropagation algorithm is based on the error-correction 

learning rule.

Basically, error back-propagation learning consists of two passes through the 

different layers of the networks: a forward pass and backward pass .In the forward 

pass , an activity patterns (input vector) is applied to the sensory nodes of the 

network, and its effect propagates through the layer by layer . Finally, a set of output 

is produced as the actual response of the networks. During the forward pass the 

synaptic weights of the networks are all fixed. During the backward pass, on the other 

hand , the synaptic weights are all adjusted in accordance with an error-correction 

rule. Specifically, the actual response of the networks is subtracted from a desired 

(target)response to produce an error signal. This error signal is then propagated 

backward through the networks against the direction of synaptic connections-hence 

the name “error back -propagation”. The synaptic weights are adjusted to make the 

actual response of the network move closer to the desired response in a statistical 

sense. The error back-propagation algorithm is also referred to in the literature as the 

back-propagation algorithm, or simply back -prop .Henceforth we will refer to it as

Chapter 1: General Introduction to Wavelets and Artificial Neural Networks
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the back-propagation algorithm. The learning process performed with the algorithm is 

called back-propagation learning.

Figure 1.7 shows the architectural graph of a multilayer perceptron with one hidden 

layer and an output layer. To set the stage of a description of the multilayer perceptron 

in its general form, the network shown here is folly connected. This means that a 

neuron in any layer of the network is connected to all the nodes/neurons in the 

previous to right and on a layer-by-layer basis.

Figure 1.8 depicts a portion of the multilayer perceptron. Two kinds of signals are 

identified in this network:

1. Function Signals: A function signal is an input signal (stimulus) that comes in at 

the input end of the network, propagates forward (neuron by neuron) through the 

network, and emerges at the output end of the network as an output signal. We 

refer to such a signal as a “function signal” for two reasons. First, it is presumed to 

perform a useful function at the output of the network. Second, at each neuron of 

the network through which a function signal passes, the signal is calculated as a 

function of the inputs and associated weights applied to that neuron. The function 

signal is also referred to as the input signal.

2. Error Signals: An error originates at an output neuron of the network, and 

propagates backward (layer by layer) through the network. We refer to it as an 

“error signal” because its computation by every neuron of the network involves an 

error-dependent function in one form or another.

Chapter 1 : General Introduction to Wavelets and Artificial Neural Networks
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Input Layer Hidden layer Output layer

[Fig. 1.7 Architecture of a multilayer perceptron]

> Function signals

...... gjj-o,. signal

[Fig. 1.8. forward propagation of function signals and back-propagation of error-signal]

Determining the number of hidden layers and the number of neurons in these hidden 

layers for a given problem in the case of MLP networks are very critical decisions for 

applications involving large networks. In such conditions following theorem leads to 

important information regarding hidden layers.

The Universal Approximation theorem for Multilayer perceptron is as under[l 8]:

“Let <p(.) be a nonconstants, bounded and monotone-increasing continuous function. 

Let / denote the mo-dimensional unit hypercube [0,1]'”°. The space of continuous
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functions on Img is denoted by C(ImJ . Then, given any function / e C(/B%) and s >

0, there exist an integer M and sets of real constants cm, bi, and wy, where i =* 1 

such that we may define

3, “j,F(xvx2,...xmJ = 2^ai<p(£wyXj +6f) (L22)
i~l j=1

as an approximate realization of the function f(j ; that is,

|F(x1,x2,...xbjJ~/(x1,x2,...x^)|<£ 

for all x,, x2 ,...xmo that lie in the input space”

The universal approximation theorem is directly applicable to multilayer perceptrons. 

We first note that the logistic function (sigmoid) used as the nonlinearity in a neuronal 

model for the construction of a MLP is indeed a nonconstant, bounded and monotone- 

increasing function; it therefore satisfies the conditions imposed on the function cp{.). 

Next, we note that equation (1.22) represents the output of a MLP described as 

follows:

(i) The network has m0 input nodes and a single hidden layer consisting of mi 

neurons; the inputs are denoted by x,, x2 ,...xmo '

(ii) Hidden neuron i has synaptic weights wa, wa,...wmg and bias bt

(iii) The network output is a linear combination of the outputs of the hidden neurons

with cq, a2 , defining the synaptic weights of the output layer.

The universal approximation theorem is an existence theorem in the sense that it 

provides the mathematical justification for the approximation of an arbitrary 

continuous function as opposed to exact representation. Theorem states that a single 

hidden layer is sufficient for a multilayer perceptron to compute a uniform s 

approximation to a given training set represented by the set of inputs x/, xj, xmo 

and a desired (target) output_/(x;, X2, ..., xmo).

The usage of the term “back-propagation” appears to have evolved after 1985, when 

its use was popularized through the publication of the seminal book entitled Parallel 

Distributed Processing (Rumelhart and McClelland, 1986). Back-propagation
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algorithm is playing an important role in the development of Multilayer perceptron 

classification technique of ANN. The algorithm can be summarized as below:

Error-Backpropagatiou algorithm:

Consider the N training samples {(X(«),D(n))}f=1 where X(n) and D(n) are input and

desired output vectors. The algorithm can broadly be described as follows:

1. Initialization: Assuming that no prior information is available, pick the synaptic 

weights and thresholds from a uniform distribution whose mean is zero and whose 
variation is chosen to make the standard deviation of the induced local fields of the 

neurons lie at the transition between the linear and saturated parts of the sigmoid 

activation function.

2. Presentations of Training Examples: Present the network with an epoch of training 

examples. For each example in the set, ordered in some fashion, perform the 

sequence of forward and backward computations described above.

3. Forward Computation: Let a training example in the epoch be denoted by 

(X(n), D(;i)), with the input vector X(n) applied to the input layer of sensory nodes 

and the desired response vector D(n) presented to the output layer of computation 

nodes. Compute the induced local fields and function signals of the network by 

proceeding forward through the network, layer by layer. The induced field 

vf («) for neuron j in layer l is

vfin) =
i=0'

where y-M) (n) is the output (function) signal of neuron i in the previous / — 1 at 

iteration n and w{j) (n) is the synaptic weight of neuron j in layer l that is fed from 

neuron i in layer / - 1. The computed output of (l-l)th layer can be given by 

(n) - +1 for some particular i=0, and the corresponding weight vector of the 

link from /h neuron of the /th layer to 0th neuron of the (/ - l)th layer can be given
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by wLP (n) = b(p (n). Assuming the use of a sigmoid function, the output signal of 

neuron j in layer l is
yf=q{vj{n))

If neuron j is in the first hidden layer (i.e. / = 1), set

yf=Xj(n)

where xj{n) is the /h element of the input vector X(ri). If neuron j is in the output 

layer (i.e. / = L, where L is referred to as the depth of the network), set

yf^ojin)

Compute the error signal

ej(«) = dj(n) - Oj(«)
where dj(n) is the/11 element of the desired response vector D(«).

4. Backward Computation: Compute the 4 (i.e. local gradient) of the network defined 

by

e{p (n)(p. (vjP («)) for neuron j in output layer L

(f>j {yP («)] ^ 5(kl+l> («)vr|+l- in) for neuron j in hidden layer l
k ' . .

where the prime tp] (.) denotes differentiation with respect to the argument. For the

necessary correction in the synaptic weights, the generalized delta rule can be used 

as shown below:

Sf{n)-

The total error energy hfn) is obtained by £(«) = — ^e) (n), where set C includes
' /eC

all the neurons in the output layer of the network. The correction Awjfn) applied to 

Wji(n) in the layer is denoted as Awj,,(«) and defined by the delta rule

AWji(n) = -V ^jn)
d^jfn) ’

where fj is a learning rate parameter

Therefore the correction in the links of the synaptic weights connecting neuron j in 

layer l and neuron i in layer / — 1 is given by

w(P (n+1) = w|5 (n)+AwiP (n)
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w»>+l) = w»-7
dWjtin)

Therefore, wf (» +1) = wf («)+V8f (n)yf~l) (n)

4. Iteration: Iterate the forward and backward computations under points 3 and 4 by 

presenting new epochs of training examples to the network the absolute rate of 

change in the average squared error per epoch is sufficiently small.

1.4.2. Radial Basis Function Networks (RBFN) :

The design of RBFN can be viewed as a curve fitting (approximation) problem in a 

high-dimensional space. In the context of neural networks, the hidden units provide a 

set of “functions” that constitute an arbitrary “basis” for the input patterns (vectors) 

when they are expanded into the hidden space; these functions are called radial-basis 

functions.

RBFN have following two major properties which make it suitable for our 

classification problems:

• A pattern-classification problem cast in a high dimensional space is more 

likely to be linearly separable than in a low-dimensional space (Cover-1965)

* RBF networks using exponentially decaying localized nonlinearities (e.g. 

Gaussian functions) construct local approximations to nonlinear input-output 

mappings.

Cover’s Theorem on the Separability of Patterns:

When a radial basis function network is used to perform a complex pattern- 

classification task, the problem is basically solved by transforming it into a high 

dimensional space in a nonlinear manner. The Cover’s theorem on the separability of 

patterns can be stated as below:
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“A complex pattern-classification problem cast in a high-dimensional space 

nonlinearly is more likely to be linearly separable than in a low-dimensional space”

Consider a family of surfaces where each naturally divides an input space into two 

regions. Let % denote a set of N patterns (vectors) Xi,X2,...,XN, each of which is 

assigned to one of two classes %i and %2. This dichotomy (binary partition) of the 

points is said to be separable with respect to the family of surfaces if a surface exists 

in the family that separates the points in the class %i from those in the class %2. For 

each pattern Xe%, define a vector made up of a set of real-valued functions 

{<Pi(K)\i=l,2, as shown by

q)(X)=[(p1(X),(p2(X),...,<|)mi(X)]T

Suppose that the pattern X is a vector in an mo-dimensional input space into 

corresponding points in a new space of dimension nij. We refer to <Pi(X) as a hidden 

function, because it plays a role similar to that of a hidden unit in a feedforward 

neural network. Correspondingly, the space spanned by the set of hidden functions

fe(X)£ is referred to as the hidden space or feature space.

A dichotomy [%i, %2] of % is said to be cp-separable if there exists an my-dimensional 

vector w such that we may write

wr(p> 0, Xezi

wr(p < 0, Xe%2

The hyperplane defined by the equation

wT(p=0

describes the separating surface in the <p-space (i.e., hidden space).

To illustrate the significance of the idea of <p-separablity of patterns, consider XOR 

problem. In the XOR problem there are four points (patterns): (1,1), (0,1), (0, 0) and
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(1, 0), in a two-dimensional input space, as depicted in Fig. 1.9. The requirement is to 

construct a pattern classifier that produces the binary output 0 in response to the input 

patterns (1, 1) or (0, 0) and the binary output 1 in response to the input pattern (0, 1) 

or (1, 0).

Define a pair of Gaussian hidden functions as follows:

^(X) = e-ix"tl|2,t|=[l>lf

^2(X)=e“|X“t2l2,t2=[0,0f

where the norm used here is the Euclidean norm.

[Fig. 1.9. Linearly nonseparable in X1-X2 plane]
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[Fig. 1.10. Linearly separable in (pi-ty plane]

The input patterns are mapped onto the <pj-<p2 plane as shown in figure 1.10. Here we 

observe that the input patterns (0, 1) and (1, 0) are linearly separable from the 

remaining patterns (1,1) and (0, 0). The functional relationship between the input and 

output pairs is sometimes referred to an interpolation problem, which may be 

described as below:
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Table 3. Specification of the Hidden Functions for XOR

Input Pattern, First Hidden Function, Second Hidden Funciton,

X 4>i(X) <h(X)

(U) l 0.1353

(0,1) 0.3678 0.3678

(0,0) 0.1353 1

(1,0) 0.3678 0.3678
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Interpolation Problem

In a practical situation, the surface F is unknown and the training data are usually 

contaminated with noise. The training and generalization phase of the learning 

process may be respectively viewed as follows (Broomhead and Lowe, 1988):

• The training phase constitutes the optimization of a fitting procedure for the 

surface F, based on known data points presented to the network in the form of 

input-output patterns.

• The generalization phase is synonymous with interpolation between the data 

points, with the interpolation being performed along the constrained surface 

generated by the fitting procedure as the optimum approximation to the true 

surface F

Thus we are ied to the theory of multivariable interpolation in high-dimensional 

space. The interpolation problem maybe stated as follows:

Given a set offN different points {xiG Rm° I * ” 1>2,...,1V] anci a corresponding set of N

real numbers {^i e |i=T,2,...,/V]5 f[nci a function F:RN -»Rlthat satisfies the 

interpolation condition:

m> = du i=

For the strict interpolation, the interpolating surface (i.e., function F) is constrained to 

pass through all the training data points.

The radial-basis functions (RBF) technique consists of choosing a function y — F(X) 

that has the following form (Powell, 1988):
■ * ,, „v

XX)=Xw#|X-t,||) (1.22)
1=1

where {^>(j|X—X; |) j / = 1,2,..., N} is a set of N arbitrary nonlinear functions, known as 

radial basis functions, and j|. || denotes a norm that is usually Euclidean. The known 

data points X, e Rm°, i = 1,2,...,N are taken to be the centers of the radial basis 

functions and {\v\} are the unknown coefficients (weights).

Chapter 1 : General Introduction to Wavelets and Artificial Neural Networks
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Inserting the interpolation conditions of the interpolation problem in the equation 

(1.22), we obtain the following set of simultaneous linear equations:
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9a ' " 9w 'wl ' A
$21 $22 9lN w2 =

A

9m 9n2 * ‘ * 9m. 3c A.

where 9p ~9(xj~xt) JJ —1,2,...,N 

Let <l> denote an N x Nmatrix with elements (pp.

In vector form the above matrix equation can be expressed as :

. <i»w = d
where N x 1 vectors d and w represent the desired response vector and linear weight 

vector, respectively, where N is the size of the training sample. •

Assuming that <E> is nonsingular and therefore that the inverse matrix <&_1 exists, we 

may go on to solve for the weight vector w as shown below:

■ w = «r‘d

In order to ensure the nonsingularity of the interpolation matrix d>, we may lead to 

the following theorem, known as Micchelli’s theorem.

Micchelli’s Theorem

In the article of Micchelli’s (1986), the following theorem regarding the interpolation 

matrix <i> is proved:

Let {X j} fit be a set of distinct points in Rm\ Then the NxN interpolation matrix f, 

whose ji-th element is (pp =<p(\\ Xj - Xi||), is nonsingular
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There is a large class of radial basis functions that is covered by Micchelli’s theorem: 

it includes the following functions are of particular interest in the study of RBF 

networks:
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a. Multiquadrics:

(p(r) = (t? + c )l/2 for some c > 0 and reR

b. Inverse multiquadrics:

(p(r) = (r2 + c2)'I/2 for some c> 0 and reR 

c Gaussian functions:

f
<p(r) = exp

V la2 for some o > 0 and reR

r -%N
For the radial basis functions listed above to be nonsingular, the points \xiSM must all 

be different (i.e., distinct). That is all that is required for nonsingularity of the 

interpolation matrix <&, whatever the values of size N of the data points.

The Radial basis function networks can be categorized in to the two networks viz. 

Regularization networks and Generalized network. Both the networks are introduced 

in the following subsections.

(a) Regularization network

The regularization network is a universal approximator in that it can approximate 

arbitrarily well any multivariate continuous function on a compact subset of Rm°, 

given a sufficiently large number of hidden units. The regularization network 

architecture can be described as below:

Equation 1.22 can be written by using Gaussian function as a transfer function as 

below:

lx-«.f'
2<t?

The above equation states the following (Poggio and Girosi, 1990):

y(x)= 2* wi exP
;=i
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• The regularization approach is equivalent to the expansion of the solution in terms 

of a set of nonlinear functions mentioned above.

• The number of such functions used in the expansion is equal to the number of 

examples used in the training process.

(b) Generalized Radial Basis Function networks

The one-to-one correspondence between the training input data X; and the Green’s 

function[18] as a transfer function G(K,Xj) for i = 1,2,...,Nproduces a regularization 

network (figure 1.11) that may sometimes be considered prohibitively expensive to 

implement in computational terms for large N, specifically, the computation of the 

linear weights of the network. Furthermore, the likelihood of ill conditioning is higher 

for larger matrices; the condition number of a matrix is defined as the ratio of the 

largest eigen value to the smallest eigen value of the matrix. To overcome these 

computational difficulties, the complexities of the network would have to be reduced, 

which requires an approximation to the regularized solution. This kind of the form of 

RBF network is known as Generalized Radial-Basis Function networks (figure 1.12).
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The approach taken involves searching for a suboptimal solution of equation (1.22). 

This is done by using a standard technique known in variational problems as 
Galerkin’s method. According to this technique, the approximated solution F*(X) is 

expanded on a finite basis, as shown by

m iF#(X) = £wi<p,(x) (1.23)
i=i

where {q>i(X)\i=l,2, ...mi} is a new set of basis functions that we assume to be linearly 

independent without loss of generality. Typically, the number of basis functions is 

less than the number of data points (i.e. mi N, and the w,- constitute a new set of 

weights). With radial-basis functions in mind, we set

^.(X) = G(||X—1.||), / = 1A..JH, (1.24)

where, the set of centers {t{\i=l,2,3, ...,mi} is to be determined.

Using equation 1.24 in 1.23, we may redefine F*(X) as

m,
i=l

= 2^w1G(|X-ti|) (i.25)
!=1

To fit the training data, we require that
F*(Xj)= dj ,j = 1,2,...,N
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where Xj is an input vector and dj is the corresponding value of the desired response. 

In a matrix form equation (1.25) can be expressed as

Gw = d (1.26)

where G is a matrix of dimension N x mi, w is rnj x 1 dimensional and the desired 

output vector d is N-dimensional.

From equation (1.26), the weight vector can be computed by multiplying the 

psudoinverse of the matrix G with the vector of desired response d.

For instance, consider the XOR problem discussed above by taking number of centers 

2 <N (N=4, total number of training patterns).

To fit the training data of table 3, we require that 

yQt^dj, j = 1,2,3,4

Where Xj is an input vector and dj is the corresponding value of the desired output
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Then, using the values of table 3 in equation in 1.26, we get the following set of 

equations written in matrix form

Gw = d

where

1 0.1353 1

0.3678 0.3678 1
0.1353 1 T
0.3678 0.3678 1

d = [0 10 l]1
w= [w w b]T

The problem described here is overdetermined in the sense that we have more data 

points that free parameters. This explains why the matrix G is not square.

G=

Consequently, no unique inverse exists for the matrix G. To overcome tins difficulty, 

we use minimum norm solution i.e.
w = G+d, where G+ is the psudoinverse of the matrix G
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= (GTG)'1GTd

Note that GTG is a square matrix with a unique inverse of its own. So

and hence

G+ =

1.8392 -1.2509 0.6727 -1.2509' 

0.6727 -1.2509 1.8292 -1.2509 
-0.9202. 1.4202 - 0.9202 1.4202

w =

-2.5018 
-2.5018 
+ 2.8404

These are the desired weight which provides the desired output by using equation

(1.25) for mi = 2.

neuron
[Fig. 1.11. RBF network for solving the XOR problem]

The norm used in the equations 1.24 and 1.25 is usually a Euclidean norm. This norm 

can not useful for the large databases because the width (deviation) from the input 

pattern to the center, considered in this norm is 1. In all the cases, for instance pattern 

recognition problem, the width may not be equal to 1 hence we can thought of a 

weighted norm. Using weighted norm we can give proper justification to the distance 

calculated among the patterns by assigning suitable value of width. Chapters 5 and 6 

of the thesis contain a typical application of weighted norm in the field of printed 

character recognition problem for Gujarati script. The weighted norm can be 

described as below:
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Weighted Norm:

Ordinarily, Euclidean norm is being used. When however, the individual elements of 

the input vector X belong to different classes, it is more appropriate to consider a 

general weighted norm, the squared form of which is defined by 

|x||c2=(CX)r(CX)

= XTCrCX

Where C is an mo x nig norm weighting matrix and mo is the dimension of the input 

vector X. The equation 1.25 will take the form

m\ , \f,(X)=£w,gJx-»1||c)
1=1

where, IfX-t,!^(X-t.fC^X-tj) (1.27)

The distance defined in the equation 1.27 is known as Mahalanobis distance.

By considering input vector X - [Xi, XJT and center vector tj = [tu, tu]T, the 

equation 1.27 can be characterized as below;

Xt tn \2

<7

X —t ^2 *12

V ^ 7
where o is a covariance.

andhetice |X-t,j|2 = -hiY + (^2 ~tnf\

<r

Ux-tja-t,)]
where the covariance (o) can be characterized as below;

1. ofXj - cov(X) = ~Xf for 1-variable

2. cr(X,Y) = cov(X,Y) = “ “ Y) for 2-variable

n ,

3. cr(xl) = ~(xl-xf 
n

= °i (Singleton element)

for a single element xj
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1.5. Summary

This chapter discusses the basic introduction of different types of discrete wavelets 

transforms like Haar, Daubechies etc and various commonly used Artificial Neural 

Networks architectures like Multilayer Perceptron and Radial Basis Function 

networks. The advantages of wavelet transform over the fourier transform is discussed 

in section 2. Due to the localization property of wavelets in spatial and frequency 

domain they are sharper than the fourier transforms. The use of Weighted norm 

presented at the end of this chapter plays a vital role in chapters 4,5 and 6.

Organization of the thesis :

The work presented in this thesis involves a study of optical character recognition 

techniques for Gujarati script using various Artificial Neural Network architectures 

and wavelets. The thesis is divided in to six chapters. The following is a brief 

summary of the contents of each chapter.

(a) The current chapter, i.e, chapter 1 provides the details of Continuous and Discrete 

wavelet transforms, introduces the concepts of Artificial Neural Networks and 

describes the two most widely used Artificial Neural Network architectures viz. 

Multilayer Perceptron and Radial Basis Function networks.

(b) Pattern recognition is a typical application of Statistical learning theory. Chapter 

2 discusses the use of Statistical learning theory in pattern recognition problems. 

Moreover, the chapter explains the complexities of Gujarati script and specifies 

how it differs from the Western scripts and from the other Indian language scripts.

(c) Chapter 3 describes a novel approach for approximation (interpolation) of a 

discrete finite length signal using the Multiresolution Analysis techniques of 

Discrete wavelet transforms [5].

(d) Feature extraction and recognition are two major components of any Optical 

Character Recognition system. Chapter 4 is concerned with an application of
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wavelets for feature extraction and Multilayer Perceptron as classifier for digital 

images of Gujarati characters. The wavelet features are good in reducing the 

number of features while retaining the characteristics of the images. Multilayer 

perceptron network architecture is then used for the classification of Gujarati 

symbols, constituting the lower and middle zone glyphs [3,4j.

(e) Chapter 5 describes on the General Regression Neural Network (GRNN) 

architecture of Artificial neural networks as applied to character recognition. This 

approach of ANN is a typical application of Statistical learning theory. Applying 

GRNN as a classifier for the printed Gujarati symbols, we have got the highest 

recognition accuracy in all the three zones of the Gujarati script [30] among all 

over experiments.

(f) Two kernel based Artificial Neural Network architectures viz Radial Basis 

Function networks and Support Vector Machines are introduced in the chapter 6. 

We have explored these ANN architectures for the recognition purpose in the field 

of optical character recognition. The chapter also contains a uniform approach for 

two-class and multiclass problems in Support Vector Machine architecture.

(g) At the end of the thesis, the summary of all the chapters are provided followed by 

the references and appendix. An appendix provides a sample java code for 

wavelets and Multilayer perceptron networks.
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