
Chapter 1

Wavelets and Multiresolution Analysis

1.1 Historical Perspective

1.1.1 An Overview

The fundamental idea behind studying wavelets is to analyze according to scale. Some re
searchers in the wavelet field feel that by using wavelets, one is adopting the new perspective 
in processing the data. Wavelets are functions that satisfy certain mathematical requirements 
and are used in representing data or other functions. Approximation using superposition of 
functions as existed since the early eighteen hundreds when Joseph Fourier discovered that he 
could superpose sines and cosines to represent other functions. However, in wavelet analysis 
the scale that we use to look at data plays a special role. Wavelet algorithms process data at 
different scales or resolutions. If we look at signals with large window, we would notice gross 
features. Similarly, if we look at a signal with a small window, we would notice small features, 
i.e., the wavelet analysis see both the forest and the trees at one time. This makes wavelets 
interesting and useful.

For many decades, scientists have approximated functions by sines and cosines terms using 
the expansion (1.2). By that definition, these functions are non-local and therefore they do a 
very poor job in approximating sharp spikes. But with wavelet analysis, we can approximate 
functions that are contained in finite domains. Wavelets are well suited for approximating data 
with sharp discontinuities.

The wavelet analysis process is to adapt a prototype function, called mother wavelet. Tem-

1



1.1. Historical Perspective

poral analysis is performed with a contracted, high frequency version of the prototype wavelet 
while frequency analysis is performed with a dilated, low frequency version of the same wavelet. 
Since the original signal can be represented as a wavelet expansion, data operations can be 
performed using the wavelet coefficients, ff we further chose the best wavelet according to the 
data, the data is sparsely represented.

Other applied fields that are making use of wavelets include astronomy, acoustics, nuclear en
gineering, subband coding, signal and image processing, neurophysiology, magnetic resonance, 
imaging, speech discrimination, optics, fractals, turbulence, earthquake predictions, radar, hu
man vision, and pure mathematics application such as solving partial differential equations.

1.1.2 History from Eighteenth Century

In the history of Mathematics, wavelet analysis shows many different origins (see [Mey93]). 
Much of the work performed in the 1930!s, and at that time the separate efforts did not appear 
to be the parts of Coherent theory.

Before 1930
Before 1930, the main branch of mathematics leading wavelets begin with Joseph Fourier with 
his theories of frequency analysis, now referred to as Fourier synthesis. He asserted that any 
2n periodic function /(.r) is the sum of its Fourier series given by (1.2). The coefficients are 
calculated by (1.3). Fourier’s assertions played an essential role in the evolution of the ideas. 
After 1807, by exploring the meaning of functions, Fourier series convergence, and orthogonal 
systems, mathematicians gradually led from their notion of frequency analysis to the notion 
of scale analysis. Analyzing f(x) by creating mathematical structures that vary in scales, i.e. 
construct a function, shift it by some amount, and change its scale. Apply that structure in 
approximating a signal. Now, repeat the procedures. Take that basic structure, shift it, and 
scale it again. Apply it to the same signal to get a new approximation. It turns out that this 
sort of scale analysis is less sensitive to the noise because it measures the average fluctuation of 
the signal at different scales.

The first wavelet appears in the thesis of A. Harr (1909). One property of the Harr wavelet is 
that it has compact support. Unfortunately, Harr wavelets are not continuously differentiable 
which somewhat limits their applications.

Between 1930 - 1980
In the 1930’s, several groups working independently found the representation of the function
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1.2. Motivation for Studying Wavelets

using scale varying basic functions. In 1930, Paul Lavey, investigated Brownian motion used 
a random signal. He found the Harr basis function superior to the Fourier basis functions for 
studying small complicated details in the Brownian motion. Another 1930’s research effort by 
Littlewood Paley, and Stein involved computing the energy of a function f(x)

distributed over a larger interval. This result disturbed the scientists because it indicates that 
energy might not be conserved. The research discovered a function that can vary in scale and 
can conserve energy when computing the functional energy. Their work provided David Marr 
with an effective algorithm for numerical image processing using wavelets in 1980’s. Between 
1960 and 1980 the mathematician G. Weiss and R. Coifman studied the simplest elements of 
functions space called atoms, with the goal of finding the atoms for a common function and 
finding the assembly rules that allow the reconstruction of all the elements of the function space 
using these atoms. In 1980, Grossmann and Morlet, physicist and engineer, defined wavelets in 
the context of quantum physics. These two researcher provided a way of thinking the wavelets 
based on the physical institution.

After 1980
In 1985, Stephan Mallat gave wavelets as pioneer work in the field of digital image processing. 
He discovered relationships between quadrature mirror filters, pyramid algorithms and orthonor
mal wavelet basis. Inspired by this, Meyer constructed the first non trivial wavelet. Unlike the 
Harr wavelets, the Meyer wavelets are continuously differentiable and do not have a compact 
support. A couple of years later, Ingrid Daubechies used Mallat’s work to construct a set of 
orthonormal basis functions that are perhaps the most elegant and have become the milestone 
of wavelet application of today.

During 1995 to 1999, G. Kaiser, K. Amartunga, W. Dahman, K. Chen, J. Weiss, R. Coifman, 
and R. Pownoskwi used the compactly supported wavelets in the field of numerical solution of 
partial differential equations.

1.2 Motivation for Studying Wavelets

Many mathematical functions can be represented by sum of basis functions. Such represen
tations are known as expansion or series. A well known example being the Fourier expansion

(1.1)

The computation produce different results if the energy was concentrated around a few points or

3



1.2. Motivation for Studying Wavelets

given by:
OO

f(x) = cke‘2nk'-’ x e R (1.2)
k=—oo

which is valid for any well behaved function / with period 1. Here, the basis functions are 
complex potentials el2nkx each representing a particular frequency indexed by k. The Fourier 
expansion can be interpreted as follows:
If / is a periodic signal, such as musical-tone then (1.2) gives a decomposition of / as a 
superposition of harmonic modes with frequencies k. This is a good model for vibrations of a 
guitar string. The coefficient care given by the integral

c,= I' f(x)e'2*kxdx. (1.3)

Jo

The series on the righthand side of (1.2) is called the reconstruction of /. In theory, recon
struction of / is exact, but in practice this is rarely so. Except in the occasional event where (1.2) 
can be evaluated analytically, it must be truncated in order to compute numerically. Further
more, one wants to save computational resources by discarding many of the smallest coefficients 
Cfc which introduce an approximation error. Consider the sawtooth function given as follows 
and shown in Figure-1.1:

/(*) x, 0 < x < 1/2 
1 — x, 1/2 < x < 1 (1.4)

The Fourier coefficients q, of the truncated expansion

0.5

-0.5.

Figure 1.1: Sawtooth Function
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N/2

Y ck£i2nkxk=~{N/ 2)+l

are shown in Figure-1.2 for N = 1024.

If, for example, we retain only the 17 largest coefficients, the truncated Fourier expansion with 
only 17 terms is shown in Figure-1.3 This approximation reflects some of the behavior of /,

Figure 1.2: Fourier Coefficients of Sawtooth Function

and it does not do a good job for the discontinuity at x = 0.5. The approximation error is not 
restricted to the discontinuity but spills into much of the surrounding area. This is known as 
Gibb’s Phenomena. The reason for the poor approximation of the discontinuous function lies 
in the nature of complex exponentials, as they all cover the entire interval and differ only with 
respect to frequency. These approximation are not suitable for a discontinuous function. It 
means Fourier expansion reflects only the locality in frequency and not in time. The problem 
mentioned above is one way of motivating the use of wavelets.

To resolve the discontinuity, we need representation of the function which is both local in space 
(time) and frequency. Like complex exponentials, wavelets can be used as basis function for the 
expansion of a function /. They are able to capture the positional information about / as well 
as about scales (frequency). The wavelet expansion for a function / has the form

2Jo-l oo 2J -1

/(*) = J2 cj0,k(f>j0,k(x) + EE dj,kipj,k{x)', x € R (1.5)k=0 j=Jo k—0
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1.2. Motivation for Studying Wavelets

Figure 1.3: Sawtooth Function and its truncated Fourier expansion with 17 terms

where J0 is a non-negative integer. This is similar to the Fourier expansion (1.2). It is a linear 
combination of a set of basis functions, and the wavelet coefficients are given by

/
OO

f{x)(f)j^k{x)(h
-OO

/
oo

f(x)xl^k{x)dx.
•ooOne immediate difference with respect to the Fourier expansion is the fact that, now we have 

two types of basis functions and they both are indexed by two different integers. The 4>ja,k are 
called scaling functions and ifjik are called wavelets. Also both have compact support. We call 
j the scale parameter because it scales the width of support and k the shift parameter because it 
translates the support interval. The scaling function coefficient cj0<k can be interpreted as local 
weighted average of / in the region where 4>j0,k is non-zero. On the other hand, the wavelet 
coefficients dj^k represent the opposite property, namely the details of / that are lost in weighted 
average. In practice, the wavelet expansion (like the Fourier expansion) must be truncated at 
some finest scale which we denote as J — 1. The truncated wavelet expansion is

2J0 —1 J-1 2J — 1

/(*) = J2 Cj0,kcpj0,k{x) +
k=0 j=Jo fc=0

and the wavelet coefficients are ordered as
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Figure 1.4: Scaling
function in V2

W2

Figure 1.5: Scaling
function in V2

/I/

Figure 1.8: Wavelets in 
U 2

Figure 1.6: Scaling
function in V2

Figure 1.9: Wavelets in
it 2

which are shown in Figure-1.16. The wavelet expansion (1.5) can be understood as follows:
The first sum is a coarse approximation of /, where / has been replaced by a linear combination 
of 2J° translation of the scaling function (pj0,k- This corresponds to a Fourier expansion where 
only low frequency are retained. The remaining terms are the refinements. For each j, a layer 
represented by 23 translation of the wavelet V'j.o is added to obtain a successively more detailed 
approximation of /. It is convenient to define the approximation spaces

Vj = span{<phk}%=Q,

Wj = span{ipjjb}*Lo ■

These spaces are related such that

yJ = Kib © wJo ©' ’' © WJ-1 •
The coarse approximation of / belong to space VJo and the successive refinements are in the 
space Wj for j = J0, J0 + 1, • • • , J - 1. Together, all of these contribution to constitute a 
refined approximation of /. Figure-1.4 to Figure-1.15 show the scaling functions and wavelets 
corresponding to V2, W2 and W3.
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Figure 1.10: Wavelets 
in M3

Figure 1.11: Wavelets
in

Figure 1.12: Wavelets 
in \V3

Figure 1.13: Wavelets 
in M3

Figure 1.14: Wavelets
in W3

Figure 1.15: Wavelets 
in W3

Figure-1.17 shows the wavelet decomposition of / organized according to scale. Each graph is 
a projection of / onto one of the approximation spaces mentioned above. The bottom graph 
is the coarse approximation of / in Vo- Those labelled W$ to Wg are successive refinements. 
Adding these projection yields the graph labelled Vw.

Figure-1.16 and 1.17 suggest that many of the wavelet coefficients are zero. However, at all 
scales, there are some non-zero coefficients; and they reveal the position where / is discontinu
ous. If, as in the Fourier case, we retain only the 17 largest wavelet coefficients, we obtain the 
approximation shown in Figure-1.18. Because of the way wavelets works, the approximation 
error is much smaller than that of the truncated Fourier expansion and, very significantly, is 
highly localized at the point of discontinuity. There are three important facts to note about the 
wavelet approximations:

1. The good resolution of the discontinuity is a consequence of the large wavelet coefficients 
appearing at the fine scales. The local high frequency content at the discontinuity is 
captured much better than that with the Fourier expansion

2. The fact that the error is restricted to a small neighborhood of the discontinuity is a result 
of the locality of wavelets. The behavior of / at one location affects only the coefficients
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Wavelet spectrum

Figure 1.16: Wavelet Coefficients of f(x) 

of wavelets to that location.

3. Most of the linear part of / is represented exactly. In Figure-1.17, one can see that the 
linear part of / is approximated exactly even in the coarsest approximation space Vs where 
only a few scaling functions are used. Therefore, no wavelets are needed to add further 
details to these parts of /.

1.3 Preliminary Requirement

In this section, we present some definitions, and we state some basic theorems.

1.3.1 Some Important Spaces

• Cn(R): The space of all n-times continuously differentiable functions.

• L1(R): The space of all 1-time integrable function.

• L2(R): The space of all square-integrable functions.

• In general, LP(R): The space of all p-times integrable functions where 1 < p < oo.
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Figure 1.17: Projection onto a Coarse Space V6 and a sequence of finer spaces VF8 -
w9.

• L°°(R): The space of all essentially bounded measurable functions.

1.3.2 Inner Product Space

A complex vector space H is said to be an inner product space if for any two elements x,y € H 
there exists a complex number (x, y) (called the inner product of x and y) that satisfies

• < x,y >= < y,x >

• < x + y, z >=< x, z > + < y, z >, for all x, y, z € H

• < ax, y >= a < x, y >, for x, y 6 H and a G C

• < x, x >> 0, for all x € //.

• < x, x >= 0, if and only if x = 0.

The norm ||x|| of an element x € H is defined via inner product,

||x|| = ^/< X, X >.
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Figure 1.18: Sawtooth Function and its truncated wavelet expansion 

1.3.3 Compact Support of a Function

The support of a function / denoted by supp(f), is the closer in R of the set

{x € R : f(x) ± 0}.

The functions whose support are compact are called function with compact support.

1.3.4 Properties of Hilbert Space

A linear subspace V of a Hilbert space H is said to be closed subspace of H if V contains all 
the limiting points, i.e. if xn € V and ||xn — x|| —> 0 as n —* oc. The orthogonal complement of 
a subspace V of H is defined to be the set VL of all the elements of H that are orthogonal to 
every element of V, i.e. x € V1- if and only if < x.y >= 0, for all y € V. Note that if V is any 
subset of the Hilbert space H, then V1- is a closed subspace of H.
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1.3.5 Projection

A liner map P from a liner space V to itself is called a projection if P2 = P.

Projection Theorem: Let V be a closed subspace of the Hilbert space H and x 6 H, then

1. There is a unique element x € V such that

||x — x|| = inf ||x — y||, 
yer

2. x € V and
||.r-.r|| = inf ||.x — y||, 

yeV

if and only if x e V. and (x - x) € V~. Note that the element x is called the orthogonal 
projection of x onto V and is denoted by Pyx.

Definition 1.3.1 Orthonormal Sets and its Properties: A set {e\, A € A} of elements 
from a given space say V is orthonormal if

< es,et >= 6s.t, .s,te A.

Let {ei,e2,..... ,en} be an orthonormal subset of the space V and let M = span{ei,e2, ,e„}
then,

1. For any x G V,
n

PmX (*^> ^i) i

i=l

2. For any (ai,a2,..... ,an) and x € V

n
x - ^(x,e;)et

i=l

with equality only for a* =< x, e* > .

3. Bessel’s inequality:

| < x, e.i > |2 < || r ||2
i=1

< X

i=l
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The space V is separable if
V = span{e\, A G A}

and the set
{e>, A € A}

is finite or countable. Such a set is called a basis. Let V be a separable space with a basis 
{en,n G N}. Then,

1. For any x G V and e > 0, one can find a positive integer N large enough and constants 
sq, a2,..... fl/v such that

N
x ^ ) anen

n= 1

< 6.

2. X — 5Zn=l ^ ^n ^

3. Parseval’s identity:
oo

5^K'T’e")l2 = INI2
71=1

4. For any x, y G V,
OC

(x,y) = ^T(x,en)(en,y).
n= 1

5. If x = 0, then for all n : (x, en) = 0.

1.3.6 Fourier Transform and its Properties

The Fourier transform of a function / G Ll{R) is defined by

/(C) = r I{x)e-**dx.
J —OO

If / G Ll(R) is the Fourier transform of / G Ll(R), then the inverse Fourier transform of / is 
defined by

m = ±J hoeKxdc
at every continuity point of /. The properties are mentioned below:

1. Boundedness: / G L°°(R). H/H^ < ||/||i-
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2. Uniform Continuity: f(u) is uniformly continuous on —oo < uj < oo.

3. Decay: For / € L1, f(u) —> 0, when |u;| —> oo, (Riemann-Lebesgue lemma)

4. Linearity: F[nf(x) + /3g(x)\ = aF[f(x)] + (3F[g(x)\.

5. Derivative: F[fn(x)] = (iuj)nf(uj).

6. Plancherel’s Identity: (/,g) = A-(f,g). If g = /, we obtain Plancherel’s Identity as

2n

7. Shifting: F[f(x - x0)j = e lu>Xof(uj).

8. Symmetry: F[F[/(x)]] = 2nf(-x).

9. Convolution: The convolution of / and <7 is defined as

f*9 = J f(x — t)g(t)dt.

10. The most important properties of Fourier transform is

F[/*g(x)] = f(uj)g(uj).

11. Moment Theorem:

* = (0n
(dnf(uj)\ 
^ dwn )

UJ=0

1.4 Multiresolution Analysis

There are different types of wavelets available in the literature, for example: Haar wavelets, 
Shannon wavelets having compact support in the Fourier domain but has a slow decay in the 
spatial domain, Meyer (see [Mey92]) built wavelets which are infinitely differential and rapidly 
decreasing functions (Schwartz functions), Battle and Lamarie (see [Dau92]) built polynomial 
spline wavelets with compact support. All of the above wavelets have unified general framework 
called the multiresolution analysis.
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In this section, we discuss the multiresolution analysis which is a general framework for char
acterizing wavelets, basic scaling functions and basic wavelets with properties and examples. 
Families of functions

ipa,bix) = \a\~2ip ; a, b G R. a ^ 0,

which is derived from a single function ip by dilation and translation and forms a basis for L2(R); 
are known as wavelets. Recently, attention has been focused on these families which result in 
construction of various wavelets with variety of properties. Meyer (see [Mey93]) constructed 
orthonormal wavelets with ip G C°°(R), while Daubechies (see [Dau88]) constructed compactly 
supported wavelets for which ip G Ck(R) for arbitrary k. However, it was soon observed by 
many researchers that a general theory called multiresolution analysis is in the heart of the 
construction of wavelets. This indeed gives a unified approach that characterizes wavelets in 
a general way. A natural framework for the wavelet theory is multiresolution analysis (MRA) 
which is a mathematical construction that characterizes wavelets in a general way. MRA yields 
fundamental insights into wavelet theory and leads to important algorithms as well. The goal 
of MRA is to express an arbitrary function / € L2(R) at various levels of detail.

Definition 1.4.1 Multi Resolution Analysis: The MRA is characterized by the following
axioms:

0 C C l/_, C l/0 C Vj C ••• C L2(R) (1.6)
OC

U Vj = L\R) (1.7)
j= — oo

{cp(x — k)}kez is an orthonormal basis for Vo (1.8)

feVj^ /(2.) € Vj+1 (1.9)
oo

n v*={°} (mo)
j=—OO

This describes a sequence of nested approximation spaces Vj in L2(R) such that the closure of 
their union equals L2(R). Projections of a function / G L2(R) onto Vj are approximations to / 
which converges to / as j —► oo. Furthermore, the space V0 has an orthonormal basis consisting 
of integral translations of a certain function <j>, see (1.8). Finally, the spaces are related by the 
requirement that a function / moves from Vj to Vj+1 when rescaled by 2. From (1.8), we have 
the normalization (in the T2-norm)

IMh =(^J \4>(x)\2dx^j =1 (1.11)
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and for convenience, it is also required that (p has unit area (see [Jam94], [Dau92]) i.e.,

(1.12)

1.4.1 Spaces W3

Given the nested subspaces in (1.6), we define Wj to be the orthogonal complement of Vj in 
Vj+1 i.e., Vj J. Wj and

vi+i = vj®W> (1-13)

Consider now two spaces Vj0 and Vj with J > Jq. Applying (1.13), recursively, we find that

VJ = Yh © ( © wi] ■ (1-14)

\j=J0 J
Thus, any function in Vj can be expressed as a linear combination of functions in Vj0 and Wj, 
j = J0, J0 + 1, ■ • • , J — 1; hence it can be analyzed separately at different scales. Multireso
lution analysis has received its name from this separation of scales.

Continuing the decomposition in (1.14) for J0 —* — oo and J —> oo, we obtain in the limits
OO

0^ = L2( R). (1.15)
j= — oc

Note that all Wj are mutually orthogonal.

1.4.2 Basic Scaling Function and Basic Wavelet

The set — fc)}fceZ is an orthonormal basis for V0 by axiom (1.8). Now, it follows by repeated 
application of axiom (1.9) that {(p{2^x — k)}kez is an orthonormal basis for Vj. Note that the 
function d{23x) is translated by i.e. it becomes narrower and translations get smaller as j 
increases. The L2-norm of one of these basis functions is as follows:

/: |0(2j.t — k:)\2dx.

Setting y = 23x — k, we write = dx and hence, using (1-11), we obtain

f \4>{23x — k)\2dx ■>-i [ l^(y)l:
J—oo

dy

=

= 2~j
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Therefore, the set {2^<p(2^x — k)}k£z is an orthonormal basis for V3. We call 0 as the basic 
scaling function, since we generate a whole bunch of basis functions by using dilation and 
translation of <j>. Similarly, it is shown in [Dau92] that there exist a function ip(x) such that 
{22 ?/’(2% — k)}kez is an orthonormal basis for W3. We call ip as the basic wavelet or mother 
wavelet. Note that, it may not be possible to express either of them {<p or ip) explicitly, but 
there are efficient methods for calculating the values of cp and ip at any dyadic rational points 
that we discuss in Chapter 2. For convenience, we now introduce the following notations

<t>jAx) = 2^(2J.r - k) (1.16)

iPjAx) = 2U’(2jx-k) (1.17)

and
<Pk{x) = (poAx) (1-18)

ipk{x) = ip0,k(x) (1-19)

Since ipj,k 6 Wj, it follows that ipj,k is orthogonal to <pj,k as <pj,k 6 Vj and Vj _L Wj. Note that, all 
Wj are mutually orthogonal, and hence, the wavelets are orthogonal across scales. Altogether, 
we have the following orthogonality relations:

[ 4>jAx)<pj,i(x)dx = 6k,
J-OO

/ i>i.k{x)iPjAx)dx = 5ij5k,i,
J — oc
/OO

<pi,k(x)ipj,i(x)dx = 0 ,j>i,
•OO

where i,j-k,l £ Z and 8k,i is the Kronecker delta defined as:

c r 0, k ± 1 
<w=\ 1, k. 1.

(1.20)

(1.21)

(1.22)

(1.23)

1.4.3 Expansion of a Function in Vj

A function / € V) can be expanded in various ways. For example, there is the pure scaling 
function

OOf(x) = ^2 c-fAj,i(x), x e R. (1.24)
/=—OO

where

/
OO

f(x)<pj,i(x)dx.
•00

(1.25)
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We find that

II/nIII {In,In)
n N
(cJ>k<Pj,k, 2_j cu^j,i 
\ fc=o (=0 /

N N

EE cj,kcj,i(<j>j,k, 4>j,i)

fc=0 i=0 
JV AT

EE Cj,kCjtl$k,l

k=0 1=0 
N
£ l^l2-

fc=0

Applying dominated convergence theorem, we obtain

JV
Jta H/«||2= UmElCi..:!2.

N~+oo4
Jb=0

Prom this, it follows that

l/ll2 = E ICJ2.
fc=—O0

For any J0 < J, there is also the wavelet expansion:

OO J—l 00

where

f(x) = ^ cJo,i<i>j0il(x) + 53 X] d^hAx)^ e R,

l=—00 j~Ji0 OO

/OO
f(x)</>Jo,l(x)dx>

•OO

/
OO

f{x)^j,i{x)d X.
•OO

Further, from the orthogonality property of the wavelets, we obtain

oo J—l oo

11/111= 5] k/o.fti2 + S] 2 Kfcl2-
A:——oo j—Jo k=~~ oo

This is Parseval’s equation for the wavelet.

(1.26)

(1.27)

(1.28)
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Definition 1.4.2 Projection Spaces: Let P\i and P\y} denote the operators that project any 
f E L2(R) orthogonally onto Vj and Wj, respectively. Then

and

where

and

(PvJ)(x) = cjAjAx)’
/= —DC

(PWjf)(x) = X dJ
1— — OC

/
oo

f(x)4>j.i(x)dx,
o0

/
oo

f(x)ipjtl(x)dx.
•DC

Using decomposition of Vj in (1.14), we can easily obtain

3-1
pV]f=PvJof+J2pw,f-

3=Jo

1.4.4 Dilation Equation and Wavelets Equation

We observe that, any function in VQ can be expanded in terms of basis function of V). as V0 C V). 
Setting (p(x) — <j>o,o(^) € Vo, we obtain

DO OO

<P(X) = X (lkd>I'fc(-T) = X ak4>(2x - k), (1-29)

k=—oo k=—oo
where

/
OO

4>{x)<t>i,k{x)dx. (1.30)
•OO

The scaling function (p has compact support if and only if finitely many coefficients a'ks are 
nonzero (see [Dau92]). For compactly supported (p, we have

n-i
<p(x) = \Pl X ak<p(2x - k). (1.31)

fc=0

The equation (1.31) is known as the dilation equation where, D is an even positive integer 
called the wavelet genus and the numbers ao5ai- • • • , fto-i are called filter coefficients. We
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now write a relation for the basic wavelets tp having compact support. Since ip £ W0 and 
W0 C Vx, we can expand ■ip as

D-1

ip{x) — yft'Ebi'W* ~ ty, (1.32)

k=0
where the filter coefficient are

bk = / il>(x)(pi.k(x)dx (1.33)
J — DC

(1.32) is called wavelet equation. It turns out that bk can be expressed in terms of ak and 
this relation is given below.

Proposition 1.4.1
bk — ( — l)*a£>-i-fc, k — 0,1, • • • , D — 1

The proof of the above proposition is based on the orthogonality property of the translation 
of scaling function (for proof, see [Dau92], or [SN96], or [Nie98]). Also note that .supp((p) = 
.supp(ip) = [0.1) — 1], (see [Dau92], or [SN96]). Thus,

supp((t>jj) = supp(ipj'i) = Ijti, (1.34)

where
hi =

The formulation of the dilation equation have the following three versions:

0(x) = ^2 akd>(2x - k), 
k

4>{x) = \Z2^2ak<p(2x - k),

k
d)(x) = 2^2ak(t>{^x — k). 

k

l l + D-1 
21’ 21 (1.35)

1.4.5 Filter Coefficients

In this section, we shall use properties of (j) and tp to derive a number of relations.
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1.4. Multiresolution Analysis

1. Orthonormality Property 
For the filter coefficients, we have

where

k2(n)
^ 2n = 3o,ni n Z (1.36)

ki(n) = max{0,2n}

and
^(n) — min{Z) — 1, D — 1 + 2ra}.

Although, this holds for all n € Z, it will only yield D/2 distinct equations corresponding 
to n = 0,1,2, • • • , j — 1. Similarly, it follows from Proposition 1.4.1 that

k2(n)
Y bkh-2n = n = 0,1,2, • • • , D/2 - 1. (1.37)

k—k\ (n)

2. Conservation of Area
Recall from equation (1.12) that 4>(x)dx — 1. Integrating both sides of (1.31), we 
obtain

/
'OO D 1 «oo 2 | roo

4>{x)dx = s/2^Tak / <j>{2x - k)dx = -j= Yak / <j>(y)dy,
-OO fe=0 ^-00 V2 fe=0 ./oO

or D-1 .

5> = V2.
fc=o

(1.38)

3. Property of Vanishing Moments
One important property of the scaling function is that it is possible to represent polyno
mials exactly up to some degree P — 1. Thus, we require that

OO

xp = Y Ml<j>(x-k),xeR,p = 0,l,*-* ,P-1 (1.39)

k=—oo
where

Ml -f af(j){x — k)dx, k EZ,p = 0,1, ■ • • ,P — 1 (1.40)

We denote M%, the pth moment of <j)(x — k) and it can be computed by a procedure which 
is described in Appendix A. Equation (1.39) can be translated into a condition involving 
the wavelet by taking the inner product with ip(x). This yields

OO pE Mi /_
OO

-oo

<j>{x k)ip(x)dx = 0,
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1.4. Multiresolution Analysis

since if and d> are orthonormal. Hence, we have the property of P vanishing moments:
L xpip(x)dx = 0, x £ R; 0,1,. 1. (1.41)

The property of vanishing moments can be express in terms of the filter coefficients and 
are as follows:

D-1^(-l)Vp = 0,p = 0,l,--- ,p-i. (1.42)
/=o

Note that the condition (1.36), (1.38) and (1.42) comprise a system of (y + 1 + P) equation 
for the D filter coefficients a*, k = 0,1, • • • , D — 1. It turns out that one of the conditions is 
redundant. For example, (1.42) with p — 0 can be obtained from the others (see [New93]). 
Thus, there are a total of (y + P) equations for the D filter coefficients. The highest number 
of vanishing moments is

P =
D
~2

yielding a total of I) equations that must be fulfilled (see [Dau92]). This system can be used 
to determine filter coefficient for compactly supported wavelets or used to validate coefficients 
obtained otherwise. Finally, we note two other properties of the filter coefficients. One is

a2k = ^ 0-2k+l 

k=0 k=0
71’

and the second is
f—1 D-21-2 ^
^ ' y an<ln+2l+l = -■ 

1=0 n=0

1.4.6 Decay of the Wavelet Coefficients

The P vanishing moments have an important role to play for the wavelet coefficients given 
in (1.28). The wavelet coefficients decrease rapidly for a smooth function. Further, if a function 
has a discontinuity in one of its derivatives then the wavelet coefficients decrease slowly only in a 
neighborhood of that discontinuity and maintain fast decay where the function is smooth. This 
property makes the wavelets particularly suitable for representing piecewise smooth functions. 
Below, we discuss an important result on decay of wavelet coefficients (see [PS]).

Theorem 1.4.2 Let P = y be the number of vanishing moments for a wavelet and let 
f G CP(R). Then the wavelet coefficient given in (1.28) decay as follows:

\dj,k\ < CP2~j(p+1/V max|/p(OI
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1.4, Multiresolution Analysis

where Cp is a constant independent of j, k and f; and I^k = supp(i>jtk) — [k/2j, (k + D- l)/2J'j.

Proof: For x € Ij,k, we write the Taylor expansion for / around x = k/2j
/p-i

/(*)= E^*/2*)
\p=o pi

+ fp(0
PI

(1.43)

where £ € [k/2fx]. Note that £ depends on x. Substituting (1.43) into (1.28) and restricting 
the integral to the support of 'tpj^ we find that

/ / (x)‘4>j,k(%)dx
Jhk
(§/W(‘/2l)s/,

\p=0

+

x - i)^(x)dx
•h.fc

k\P
x~~%) i!j,k(x)dx.

Note that £ depends on x, so (£) is not constant and must remain under the last integral 
sign. Consider the integrals where p = 0,l,...P — 1. Using

k k+D-r 
2?'

Ij,k —
2?

M+D-X)/H / ky

Jk/2i \ 2V

and set y = 2jx — k then dx = For x = k/2j, we have y = 0 and for x = k + D — 1/2^, we 
have y = D — 1. Thus, we obtain

23f2ifi(2:!x — k)dx = 2^2 j {ffjj V,(y)2 7dy

= 2~j(p+1/2) f ypfj{y)dy 
Jo

= 0; p = 0,1, ....,P — 1.

Here in the last step we have used the P vanishing moments property (1.41). Therefore, the 
wavelet coefficient is determined from the remainder term alone. Hence,

p
\dj,k\ — pi

<

f{p)(0 (z - 2j/2ip(2jx - k)dx

imaxl/Wfe)!/ x ~ 2J ) 2j^(23x - k) dx

2 A-P+iPl-L max 
PI neij.

pD-lx|/(F)(p)| / 
hk Jo

\ypi]){y)\dy.
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1.5. Wavelets and the Fourier Transform

With

we find that

Cp = -j^fo ly/’V»(y)|dy,

\dj)k\ < Cp2~*p+1M max|/<p>(OI

and this completes the rest of the proof.

(1.44)

(1.45)

1.5 Wavelets and the Fourier Transform

Very often, it is useful to consider the behavior of the Fourier transform of a function rather 
than the function itself. Therefore, in this section, we derive some relations between the basic 
scaling function and the basic wavelet. For this purpose, we define the (continuous) Fourier 
transform as

rx= / <t>(x)e *xdx, (£R.
J—oo

Since, we need <f> to have unit area, hence (1.12) translates into

<p(0) = / q>{x)dx = 1 (1.46)
J — OO

We would like to express (p at other values of £ in the dilation equation (1.31). Taking the 
Fourier transform on both sides, we find that

m =
D 1 /* oc

= V2 ^2 ak / <P{ 2x - k)e~^xdx.

k=0

With change of variables, i.e., y = 2x — k. we rewrite

m

where

Some Properties of /1(£):

D-1 „x
= V2^2ak (p(y)e~l^y+k]/2dy/2

l—n J-OCk=0 
D-1

= -7r ake M/2 [ ^)e l{i/2)Vdy

V2 k=0

= A

D-1

k=0

(1.47)

(1.48)
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1.5. Wavelets and the Fourier Transform

1. A(£) is a 27r-periodic function.

2. If ij) has P vanishing moments, then

3.

,4(0) = 1

dPA(Q

de — 0,p = 0,1, ,p — l.

A(nir) = 0; when n is even, 
1; when n is odd.

Equation (1.47) can be repeated for /!(£) and then we obtain

After N such steps, we find that

It follows from (1.48) and (1.38) that |A(£)| < 1, so that the product converges for N 
hence, we obtain

3—1 ' '
Using (1.46), we arrive at the following product formula

■te=fu(|)- f£R-
j=i v '

Lemma 1.5.1
0(27rn) = 5Qttl, n G Z.

A consequence of Lemma-1.5.1 is the following basic property of <f>:

Theorem 1.5.2
00

Y. <j>j,o(s + n) = 2<0, x 6 R.
n—“OO

(1.49) 

oo and

(1.50)
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1.5. Wavelets and the Fourier Transform

Proof: See [Nie98].

The above theorem states that if 7r is a zero of the function .4(£) then the constant function 
can be represented by a linear combination of the translates of cpjt0(x), which is equivalent to 
the zeroth vanishing moment condition (1.41). If the number of vanishing moment P is greater 
than one, then a similar argument can be used to show the following more general statement 
(see [SN96]).

Theorem 1.5.3 If tt is a zero of A(£,) of multiplicity P, i.e., if

o)

d(0p (=
= 0;p = 0,1, •• • ,P - 1,

then

1. The integral translates of cp(x) can be reproduce polynomials of degree less than P.

2. The wavelet translates of tp(x) has P vanishing moments.

3. (4>)P(2nn) = 0 for ngZ, n^O and p < P. 

4- (<P)P(0) for p < P.

1.5.1 The Wavelet Equation

In the beginning of this Subsection, we obtain the relation (1.47) for scaling functions in the 
frequency domain. Using (1.32), it is straight forward to obtain a similar relation for the wavelets 
in the frequency domain, i.e., for ip as:

Let

This gives

x =
y + k 

2
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1.5. Wavelets and the Fourier Transform

Hence, we can write

1 fOO4>(£) = —JkYI bke~*k/2 / 4>{y)e~l{(‘/2)vdy
v 6 L,_A J —OO0

KIM!
where

£>-l

5(0
a/2

E6fce—ik£
fe=0

Using Proposition-1.4.1, we express £?(£) in terms of ri(0

Z>-12 
3
JL
V2£:

B(6 =

~tfe(£+7r)

fc=0
n-i
y o,D~i~ke
k=0

Let l = D — 1 — k, then

D-l
5(6 = -i(£>-l-Z)(C+7r)

Z=0

D-l
^ 2 i=0

= e~i{D-m+^A(l; + 7r).

f(£+*)

Thus, this leads to the wavelet equation in the frequency domain,

i> = e-i{D~mi2+v) A{^/2 + tt)V;({/2).

xThis leads to the following property of #

f(47rn) = 0,n€Z.

(1.51)

(1.52)
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1.5. Wavelets and the Fourier Transform

1.5.2 Orthonormality in the Frequency Domain

By Plancherel’s identity, the inner product of cp with its integral translates in the physical domain 
equals the inner product in the frequency domain (except for a factor of 2tt). Hence,

fk =
r°°
/ d>(x)0(x — k)dx

J — OO

= / 0(O0(Oe_(iWd£

1 r°° i« 2

- *jLH ^
1 °° /»2(n

- sHL
2(n+l)7r

0(0 ei?fcd£.

Let £ = £ — 27rn, then we rewrite

i /*27r 00 . 2
/*= ^ ^ |0(£ + 27rn)

n=—oc

Define

F(0= E ll0(^ + 27m)||2.^eR.
n=—oo

Then, we see from (1.53) that /*, is the kth Fourier coefficient of F(£). Thus,

OO

f(o = E /*e~^
k= — oc

Since (f is orthogonal to its integral translations, it follows from (1.20) that

0; MO,
fk =

1; k = 0.

Hence, (1.55) leads to

F( 0 = U6R.
Thus, we have proved the following Lemma 1.5.4.

Lemma 1.5.4 T/ie translates cp(x — k),k £ Z are orthonormal if and only if

F( 0 = I-

(1.53)

(1.54)

(1.55)
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1.5. Wavelets and the Fourier Transform

We can now translate the condition on F to a condition on A(£). From (1.47) and (1.54), we 
find that splitting the sum into two sums according to whether n is even or odd and using the 
periodicity of A(£), we obtain

F(2£) = ^ U(f + 27m) \A(£ + 2nn)\2 + ^ U(£ + 7r + 27m) |-d(£ + 7r + 27rn)|

= M(e)i2 £ j 0(4 + 27rn)| + |/l(£ + 7r)|2 ^ U(£ + 7r + 2irn)
71=— OC 71= — DC

= \m\2m + m+*)\2F(s+*)-

If F(£) = 1 then |T(£)|2 + |.4(£ + 7r)|2 = 1 and the converse is also true. Thus, we have the 
following lemma:

Lemma 1.5.5
F(0 = l«=*|4l(0|2+|7l(£ + 7r)|2 = l.

Finally, the Lemma 1.5.4 and Lemma 1.5.5 yields the following theorem: 

Theorem 1.5.6 The translates <j)(x — k), k G Z are orthonormal if and only if

m)\2 + m+n)\2 = i.

1.5.3 Periodized Wavelets

Up till now, we have discussed results pertaining to the functions / G b2( /f) having applica
tions in audio processing signals with unknown length. In practical applications such as image 
processing, data fitting or problems involving differential equations, the space domain is a finite 
interval which are dealt by using periodized scaling functions and wavelets which we define as 
follows:

Definition 1.5.1 Periodic Scaling Function and Wavelet: Let (p G T2(R) and ip G
L2(R) he the basic function and the basic wavelet, respectively, from a MR A as defined for 
f G T2(R). For any j,l G Z, we define the 1-periodic scaling function

OC OC

^ + n) = 2j/2 ^ </>(2j(x + n) - /), x G R, (1.56)
71= — OC 71= — DC

and the 1-periodic wavelet
OC OO

i>j,i(x) — ^ 4>j.i(x + n) = 2j/2 ^2 U(2J(x + n)-l), x G R. (1-57)
TI— — OC 7l= — OC
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1.5. Wavelets and the Fourier Transform

The 1-periodicity can be verified as follows:
OO

<i>jtl(x + l) = Y <i>j,i(x + n+ 1)
n=—oo

oo

= y 4>3AX + m)
m=—oo

= 0j,j(z) (1-58)

and similarly
+ 1) = ^j,j(x).

Some important cases of Periodized wavelets are given in the following theorem:

Theorem 1.5.7 Let the basic scaling function <t> and the basic wavelet if have compact support 
[0. D — 1], and let and tpjj be defined as in Definition-1.5.1. Then

• j < 0, l eZ. x e R :
4>jdx) = 2J/2

= 0, j < -1

• j > 0, x G R :
&j,l (*^)

y+vpix) = i>3Ax)

• j > Jo > [log2(T> - 1)], X e [0,1] :

<t>j,l(x) x 6 Ij,i
(pj,l{x+ 1) x Ij.i

x e Ij.i
-1- 1) X Ij.i

1.5.4 Periodized MRA in L2(0.1)

Many of the properties of the non-periodic scaling functions and wavelets carry over to the peri
odized version restricted to the interval [0.1]. Wavelet orthonormality, for example, is preserved
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1.5. Wavelets and the Fourier Transform

for the scales; i,j >0:
pi pi oo
/ = / Y] ipitk(x + m)ipu(x)dx

JO m=—oo

00 ^ pm+1
= Y2 Ak(y)$jAy - m)dv

m—~oo 'm 
00 /»m+l

= X) / faM'i’uWv
m=“Co m

/oo ^i,k(y)^j,i(y)dv
•00

Using (1.57) . for the second function and invoking the orthogonality relation for non-periodic 
wavelets given in equation (1.21) gives

f1 ~ ^ f°°
^i,k(x)'(p:j,i(x)dx = 2_j J 'ipi,k(x)i}j,i~2jn{x)dx

YZ 5k’>l-2in-
n=~-(Vi

If i = j, then dij = 1 and S^i^n contributes only when n = 0 and k = l because k,l € [0,2J — 1]. 
Hence,

/

i>i,k(x)i>j,i(x)dx =

as desired. By a similar analysis, one can establish the relations

(1.59)

l

l

<i>j,k(x)<i>j,i(x)dx = 5k,I, j > 0.

4>j,k(x)<j>j,t(x)dx = 0, j > i > 0.

The periodized wavelets and scaling functions restricted to [0,1] generate a multiresolution 
analysis of L2((0,1]) analogous to that of L2(R). The relevant subspaces are given by the 
following definition:

Definition 1.5.2 We can define the Periodic subspaces in the similar way as that in the non
periodic case as follows:

Vj — span 

Wj =span

I'Aj'.Zi x € [0,

{Vfci.s e [0, i]};=o
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1.5. Wavelets and the Fourier Transform

It turns out that the Vj are nested as in the non-periodic MRA (see [Dau92]),

V0 C Vi C V2 C ••• C L2([0,1]),

and that the ____
OOU^ = L2([0,1]).

3=0

In addition, the orthogonality relations imply

So, we have the decomposition

tf«oa]) = v&©(®w^.

From Theorem-1.5.7 and (1.61), we have seen that the system

(1.60)

(1.61)

(1.62)

is an orthonormal basis for L2([0,1]). This basis is canonical in the sense that the space L2([0,1]) 
is fully decomposed as in (1.61); i.e. the orthonormal decomposition process cannot be contin
ued further because, as stated in Theorem 1.5.7, Wj — {0} for j < —1. Note that the scaling 
functions no longer appear explicitly in the expansion since they have been replaced by con
stant 1 according to Theorem 1.5.7. Sometimes one wants to use the basis associated with the 
decomposition

£2([o,i]) = vo0©(©w*
\j=Jo

for some J0 > 0. We recall that if Jo > log2(L) — 1) then the non-periodic basis functions do not 
overlap. This property is exploited in the parallel algorithm described in Chapter 3.

1.5.5 Expansions of Periodic Functions

Let f EVj and let J0 satisfy 0 < Jq < J. The decomposition

Vj = Vjo ® (® '' j) >

\]=J0 )
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which is obtained from (1.60), leads to two expansions of /, namely the pure periodic scaling 
function expansion

2J-1

fix) = 53 cJ$u(x), x e [0,1],1=0

and the periodic wavelet expansion

2J0-1 J-1 23—1

/(*) = 13 EE djA})iAx)i x ^ [0> !]•2=0 j~J{) 2=0

If Jo = 0, then (1.64) becomes

J-l 22—1

/(*) = Co.o + 53 X3 di^u(x)-
j=o z=o

The MRA for periodic wavelets leads to the following expansion of /:

2,7o—l J-l 22-1

fix) = 53 cJ0,ihoAx) + 53 5] dtt$iAx)’x e [°»!]•
j=J0 Z—0z=o

If Jo = 0, then (1.66) becomes

J-1 22-1

fix) = Co,o + 53 53 d^hAx)-
3=0 1=0

Let / be the periodic extension of /, i.e.,

f = f(x - [sj), x € E.
Then / is 1-periodic, since [a;J is an integer, we have

<f>(x ~ W) = <f>ix)

and
i){x — [sj) = fj){x); ieR.

Thus, we obtain ■
2Jo-l , J-i 22-1

f iX) ~ 5 y 3,l{X) 4“ EE djjiijjix), ieRZ=0 j=Jo z=o

The coefficients are defined by

/ fix)hAx)dxi
Jo

cj,i

(1.63)

(1-64)

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)
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= / f(x)i>j,i(x)dx.
Jo

But we observe that these are in fact the same as those of the non-periodic expansion, to see 
this, we use the fact that

/(®) = /(®)» ze[o,i],

and we write
Cj,l = [ f(x)d>j,i(x)dx = 

Jo

POO

/ f(.y)hi(y)dv
f — OO

(1.70)

dj,i = f f{x)i).jj{x)dx = Jo J

poo

/ f(y)i:jAy)dy-
—OO

(1.71)

Also, periodicity in / induces periodicity in the wavelet coefficients:

cj,l+(23)p Cj,l 1 (1.72)

dj,l+(2i)p — dj,l ■ (1.73)

Definition 1.5.3 Projection Spaces in h2{[0,1]).* LetPy, and Py/j denote the operators that 
project any f 6 L2([0,1]) orthogonally onto Vj and Wj, respectively. Then

OO

l——OO

and
OO

(PwjDiA = di$iAx),
£:=—OO

where
p\

CU = / fix)<t>jAx)dx>
Jo

and
pi

dj,i = / I{x)AjAx)dx- 
Jo

Hence, we can write

Pvlf = Pv,J + Epw,f-
j=Jo
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