
Chapter 4

Wavelets and Partial Differential 
Equations

4.1 Introduction: Wavelet-Galerkin Method for Partial 
Differential Equation

In this chapter, we will discuss the wavelet method for solving linear parabolic PDE, linear 
hyperbolic PDE, and based on this, we shall discuss the wavelet method for elliptic PDEs. We 
have discussed the general wavelet method for solving PDEs in Preface. In Section 4.2 - Section 
4.7, we shall discuss the connection coefficients and the differentiability matrix with respect to 
the scaling function and wavelets. We have made an attempt to examine Wavelet - Galerkin 
method in multiresolution analysis when restricting the wavelets to a bounded domain. Finally, 
we have examined the computational methods and discussed some numerical examples. As 
discussed in Preface, the wavelet based methods for PDEs can be separated into the following 
classes:

• Methods based on scaling function expansions,

• Methods based on wavelet expansions,

• Wavelets and finite differences,

• Other methods.
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4.2. Connection Coefficients

4.2 Connection Coefficients

A natural starting point for the projection methods is the topic of two-term connection coef­
ficients. We define the connection coefficients as

rj)’tm= [ <t>i$){x)4>{£(x)dx, j,l,m€ Z
J —OO

where <h and d2 arc orders of differentiation. We will assume for now that these derivatives are 
well-defined. Substituting

<t>3Ax) = 2jl2<p(2Jx - k), 

ipjAx) = 2j/2^(2Jx - k),

we obtain
{2j/2<t){2jx - 0)(dl)(2J'/24>(2hx - m))(d2)d.x, j, l, m £ Z

J-DC

and hence,

pdi .t/21 j,l,m l)2jdl 2]/2Ad2\2Jx - m)2jd2dx. j,l,m £ Z.

Using the changes of variable x (2Jx — /), we find that

/
°°

Ad'\x)Ad2\x-m + l) —
00 2->

and hence,

rdl,t2 = 2jd I™ Adl](x)Ad2\x-m + l)dx
J —00

_ 9jdprfi»d2— z 1 0,0,m-Z

where d = d\ + d2. Since as the scaling functions have compact support repeated integration by 
parts yields the identity

p<h<h _/__ 1 \di p0,rf
1 0,0,n — V -U 1 0,0,n'

Thus,
p^l M2 __ (__1 \rii njd'pO^d
1 j,/,m — 1 z 1 0,0 ,m—!•

Therefore, it is sufficient to consider only one order of differentiation (d) and one shift parameter 
(m — l) and we define

/OO
<p{x)Ad\x)dx,l £ Z. (4.1)

•OC
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4.2. Connection Coefficients

Consequently
r%i = (-i)d^dr(4.2)

Using the changes of variable x *— x +1 in (4.1) and <j>j,k(x) = 2^2<^(2Jsc — A:), we obtain

/
DO

<f>(x + i)<f>W(x)dx, le z.

OO

Now, repeated integration by parts yields the following property:

it = (-l)rfrl„, ne[2-D,D-2}. (4.3)

We now look into the problem of computing (4.1). The supports of <p and 4>f* overlap only for 

—(£> — 2) < Z < D - 2, so there are 2D -3 nonzero connection coefficients to be determined. 
Let

r<i = (r fWJln

and we assume that cf> € Cd(R). Then taking the identity
D-1

(h-iAx) = ak<i>j&+k{x)
k=0

with j = 1 and differentiating it d times leads to

D-l D-1
4d) (A = J2 °^S+fc fa) = ak(ff+k (2x) • (4-4)

k=0 k=0

Substituting the dilation equation

D-l
<f>(x) = \/2 ^ a,k4>{2x — k)

fe=0

and (4.4) into (4.1) yields

r? \/2 ar^)r(2x)
r=0 

Z)-l D-l

2dV2j2^+s(2x)F
2rf_1 aras / (%x)4>2H-s{2x)dx, x <— 2x

r=0 s=0 ^-oo 

D-l D-l *oo

Mx^msixAx,
r=0 s=0 d-oQ
D-l D-l f00

2'1 J2°^a» / ^(*)^S-*(*)*f»r=0 s=0 J—oo

X *— X — r
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4.2. Connection Coefficients

D-1 D—l
Hence,

E E a^r»+.-r = ^ ' e [2 - D, D - 2], (4.5)

r=0 *=0

Let n = 21 + s — r. Since Td is nonzero only for n £ [2 — D, D — 2] then s = r + n — 2/as well as r 
must be restricted to [0, D — l]. This is fulfilled for max(0,21 —n) < r < min(D—2, D — 2+2l — n). 
Let p — 21 — n and define

ndp)

- Er=n (p)

where rx(p) = max(0,p) and r2{p) = min(D - 1, D - 1 + p). Hence (4.5) becomes

D-2
E a2/—nit = ^rf, l € [2 — D, D — 2].

2d
n=2—D

In the matrix-vector, from this relation becomes

(A-2-dI)rrf = 0, (4.6)

where A is a (2D — 3) x (2D — 3) matrix with the elements

[A]/i71 = Q,2i—n, l, n E [2 — D, D — 2].

Properties of a:

• Because of the orthogonality property XEo1 afcOfc+2n = <5o,n, n £ Z. we obtain

- = f L /or p = 0
rtp 1 0, for p = ±2, ±4, ±6,...

• Since, ap = a_p so we need only to compute ap for p > 0.

• As a consequence of one of the properties of filter coefficients i.e,

D/2-1 D—21—2

/ ] y ^ anan+2l+l — ^

1=0 n=0

we obtain
E «P= !•

p odd
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4.2. Connection Coefficients

Hence all columns add to one, which means that A has the left eigenvector [1,1,.... 1] correspond­
ing to the eigenvalue 1, d = 0 in (4.6). Consequently, A has the structure shown here for D = 6 :

^ 0 05 ^
0 «3 0 a5
1 Si 0 S3 0 s5
0 Si 1 Si 0 S3 0 s5
0 0 Si 1 Si 0 S3 0

0 S3 0 Si 1 Si 0

S5 0 S3 0 Si 1

0,5 0 fl3 0

\ 05 0 y
Equation (4.6) has a non-trivial solution if 2~d is an eigenvalue of A. Numerical calculations for 
D = 4,6, • • • ,30 indicate that 2~d is an eigenvalue for d = 0,1, ■ • • , D — 1 and that dimension 
of each corresponding eigen space is 1. Hence, one additional equation is needed to normalize 
the solution.

To this end, we have used the property of vanishing moments. Recall that P 
that d < P, we obtain from the equation:

D Assuming

zp = J2 Mvk(j>{ x -k), xeR, p = 0,1, ■ • • ,P - 1,
k——oo

where

that

K I xv(j){x — k)dx, k € Z, p — 0,1, ■ 
J OO

,P-1,

I——00

Differentiating both sides of this relation d times yields
OO

d\=J2 -1).

i=—OO

Multiplying by <j>{x) and integrating, we then find that
POO 00 POO

d\ I <p(x) — Y Mf I <f>(x)$d\x — l)dz
JoO 1 J OO

f=—OO

f°°
= ^ Mf J (j){x)4^{x — l)d:

1 n n J OO
1=2—D
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4.3. Differentiability

Hence, we obtain
D-2

Y MfTf = d\
1=2 —D

(4.7)

which closes the system (4.6). The computation of the moments needed for this equation is 
described in Appendix A. Td is then found as follows:
Let vd be an eigenvector corresponding to the eigenvalue 2~d in (4.6). Then Trf = kvd for some 
constant k, which is fixed according to (4.7).

Remark 4.2.1 There is one exception to the statement that 2 d is an eigenvalue of A for 
d = 0,1,-- , D — 1. Let D = 4 then the eigenvalues of A are

-. - + 6.4765 x 10_9i, - + 6.4765 x 10“9i. 1.
8 4 4 2

Consequently, | is not an eigenvalue of A and connection coefficients for the combination D = 
4, d = 2 are not well defined.

4.3 Differentiability

The question of differentiability of (p (and hence ip) is non-trivial and not fully understood (see 
[SN96]). However, some basic results are given in [Eir92] and shown in Table-4.1. The space

D 2 4 6 8 10 12 14 16 18 20
a - 0 1 1 1 1 2 2 2 2
0 0 0 1 1 2 2 2 2 3 3

Table 4.1: Regularity of Scaling functions and Wavelets.

C“(R) denotes the space of functions having continuous derivative of order < a. The space 
//;,(R) is a Sobolev space defined as

H‘\R) = {fe L2(R) : /(d) e L2(R), \d\ < 0).

This latter concept is a generalization of ordinary differentiability, hence a < 0.
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4.4. Differentiation Matrix with respect to Scaling Functions

4.4 Differentiation Matrix with respect to Scaling Func­
tions

Let / be a function in Vjf'|Cd(R), J £ N0. The connection coefficients described earlier can 
be used to evaluate the dth order derivative of / in terms of its scaling function coefficients. 
Differentiating both sides of the equation

OO

f{x) = 52 cJti<pj.i(x), r£R
t=—oo

d times, where

/
OO

f{x)<t>jti(x)dx
•OO

we obtain
OO

/(d)(z) = 52 x e R
/= —oc

fW , in general, may not belong to Vj, so we now project back onto Vj via
OO

(PVjfW)(x) = x G R
k= — oc

where, according to the equation:

Cj,l = / f{x)<pj,i(x)dx

we obtain,
(.W _ . 
( J.k ~

J—oo

roc1 f(d\x)4>JM{x)di

So, we have
J -oo

^ roo

52 Cj’1 / <f>jAx)<PijJ(x)dxl— — OO •/~oc

= £
/ = — OO

= £ c,,,2Jdrf_,
/ = —OO 

OO

= ^ Cj,n+fc2wr^ -oo < k < oc

(4.8)

(4.9)

(4.10)
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4.4. Differentiation Matrix with respect to Scaling Functions

We used (4.2) for the second last equality. Since Yd is only nonzero for n G [2 — D, D — 2], we 
find that

D-2
c(U= E c^n+k2JdYi J,ke Z.

n=2-D

If / is 1-periodic, then 

and

cJ,l — c.J,l+p2J i l,P £ %

Ad) _ r(d) u r, e 7Cj,K - Cj,k+p2J'

Hence, it is sufficient to consider 2J coefficients of either type. Therefore,

D-2
(.d) _ v-' rdCJ.k — Z^, CJ,(n+k)idL n

n—2—D

k = - ,2y- 1.

. This system of equation can be represented in matrix-vector form

c(d) = D(d)c,

(4.11)

(4.12)

(4.13)

where
D = 2/drf.

k,(n+k)2j

k = 0,1. • - - , 2J - 1,

2 — D,3 — D. ■ ■ ■ , D — 2

and
,(d) „(<*) Ad)c./,0> L./,l' ,C

(d)

J,2J-1

We shall refer to the matrix as the Differentiation Matrix of order d. is symmet­
ric for d even and skew-symmetric for d odd. It also follows that is circulant. Also, the 
bandwidth of the differentiation matrix is 21) — 3. The differentiation matrix has the following 
structure (shown for D = 4, and J — 3):

1 0 r f r2 0 0 0 (-i)drf (—i)drf'
-1 )dYr‘ ro Fj r2 0 0 0 (-i)drd

(—i)drf ro rf rf 0 0 0
0 (-i)^ (-l)dYd rd1 0 rf r2 0 0
0 0 (—i)drg (—i)drf ro rf rf 0
0 0 0 (-i)drd (-i)drf ro rf rf
r2 0 0 0 (-i)drf (-i)drf rf rf
rf rd1 2 0 0 0 (-i)drf (—i)drf rf
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4.5. Differentiation Matrix with respect to Physical Space

A special case is d = 1 and define
D = D(1). (4.14)

4.5 Differentiation Matrix with respect to Physical Space

We shall restrict our attention to the periodic case only. However, the non-periodic case can be 
considered in a similar manner. Note that

f = Tc. i.e. c = T xf,

where f are the grid values of a function / € Vj defined on the unit interval, c is the vector of 
scaling function coefficients corresponding to f. Similarly, the projection of f(d) onto Vj satisfies

f(d) = Tc(<y

and hence, we get
f(d) _ TD(d)T~if

We call D(d) the differentiation matrix with respect to the coefficient space, and TD(d)T_1 the 
differentiation matrix with respect to physical space. The matrix T and D(d) are both circulant 
with the same dimensions (2D — 3) x (2D — 3), so they are diagonalized by the same matrix, 
namely, the Fourier matrix F2d-3■ Therefore, they commute according to Theorem A.3.5 of 
Appendix A and we find that

TD^T-1 = d^TT-1 =

and
f(d)=D(d)fi (415)

Hence, D d) is the differentiation matrix with respect to both coefficient space and physical 

space.

4.6 Differentiation Matrix for Functions with Period L

If the function to be differentiated is periodic with period L, i.e.,

f(x) = f(x + L),x £ R

106



4.7. Differentiation Matrix with respect to Wavelet Space

then we can map one period to the unit interval and apply the various transform matrices. 
Thus, let y = x/L and define

9{y) = f(LV) = f(x)

then g is 1-periodic and we define the vector

g = [,9oi 9\, ■'' ,92j-i

by
9k = (PvJ9){k/2J)- fc = 0,1,''' ,2J—1. 

Let f = g. Then f approximates f(x) at x = kL/2J. We have

g(d) = D«0g.

Hence, by chain rule

Therefore, we have

.f{d)(x) = j-dg{d)(y).

f(d)(x) = l~dS[d) = = ^D(rf)f.
(4.16)

4.7 Differentiation Matrix with respect to Wavelet Space

Let / be a function in Vj and hence,

2J0 — l J-1 2^-1

f(x) = ^2 cjoJ4>jod(x) + x G [°> !]■ (4-17)
1=0 j=J0 i=o

We now, differentiate both sides of the above equation d times to obtain

2Jo — 1 J-1 2J —1
f(d\x) = cjo^(joAx) + J2Y1 dx‘A2hx)-

1=0 j=Jo 1=0

Projecting onto Vj yields

2Jo-l

(PvJ/W)(x)= £ C^4i(x)

/=0

+ EE d2‘^Ax)>
j=J0 1=0
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4.8. Wavelet-Galerkin Method for Second Order Wave Equation

where
4?,! = l = 0,1- ■' ■ ,2Jo - 1 lg
d.^ = f(d)(x)i/jjti(x)dx,j = J0, Jo + 1, ■ • • , J ~ 1.

Given the scaling function coefficient of /O on the finest level, we can use the FWT to obtain 
the wavelet coefficient above. Hence,

d(d) = Wc(d)

where is defined as in Section 4.5 and contains the coefficients in (4.18). Using (4.13) 
and x = (WA) x, we obtain

d(d) - WD(d)c = WDMW'Jd

or
d(d) = D(rf)d

where we have defined
D(d) = WD(d)Wr.

(4.19)

4.8 Wavelet-Galerkin Method for Second Order Wave 
Equation

Now, we shall discuss the wavelet method for solving linear hyperbolic boundary value prob­
lems. We examine Wavelet-Galerkin method in the multiresolution analysis when restricting the 
wavelets to a bounded domain. Semi-discrete Wavelet-Galerkin method is discussed with re­
lated error analysis. Finally, we have examined computational methods and numerical example. 
Consider the following second order wave equation {ID):

utt - uxx + Xu = f(x.t), x G G = (0,1), t > 0, A > 0. (4.20)

Initial Conditions are
u{x, 0) = u0{x) 

ut(x, 0) = U\(x), x G H,

and Boundary Conditions are

u(0. t) = u(l, t) = 0, t G R.

Assume that f,u0,ui are given functions. Let V — Hq(Q), where

H^Sl) = {v G H\fi) : v{x) =0,x£ Q}.

108



4.8. Wavelet-Galerkin Method for Second Order Wave Equation

4.8.1 Weak Formulation

For the weak formulation: Multiply (4.20) by v G Hq and integrate by parts to obtain as follows: 
Find u(-, t) G V = //q(0) such that for t > o

{utt,v) + a{u,v) = (f,v), uG//0\ (4.21)

(u(0), u) = {u0,v),

(ut(0),v) = (ui,v),

where 1
a(u,v) = / (uxvxdx) + A / u(x)v(x)dx.

Jo Jo
Note that a(-. •) satisfy the coercivity and boundedness property. Using Cauchy-Schwartz in­
equality, Holder’s inequality, Poincare’s inequality and the definition of II \ norm , we find that 
a(-, •) is bounded which is shown as follows:

K<M>)| < [ \<t>x\\ipx\dx + |A| [ \<j>(x)\\‘tp(x)\dx
Jo Jo

< M ( [ I(j>x 11Ipx \dx + f |0(x)||V>(x)|dx
\J0 ^0 y

< MII'AlMl^llr.
For coercive of a(-, •), we use the fact that A > 0

\Hd>,<t>)\\ = I \<Px\2 + I \<f>{x)\2 
Jo Jo

> af (\cp(x)\2 + \cp(x)\2) dx
Jo

> a||u(x)||i

where, a = min(l,A). We also have the following theorem:

Theorem 4.8.1 Let Pj : L2(0.1) —► V)(0,1) be the L2 projection. Then Vr < s, 0 < r < /?, 0 < 
s < P + 1. / G //”'(0,1) implies

\\f ~ PjfhriO,!) <2-^\\M\LH0,1).

2dx

Proof: For r = 0,
11/ - P:f Wmo.D < 2-J'l/(.s-)lUw = o, 1.

has been proved in Chapter 2, in Subsection 2.11.2. Now, in order to estimate ||/ — Pj/||m(o,i)j 
we replace / by f (the first derivative of / w.r.t x) in the Theorem 1.4.2 and proceed as in the 
approximation properties of V) in Subsection 2.11.2. Hence, we obtain the proof of this lemma.
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4.8. Wavelet-Galerkin Method for Second Order Wave Equation

4.8.2 Wavelet-Galerkin Method to solve Hyperbolic Equation

In a Galerkin type approach, we first introduce the space of functions in Vj satisfying the 
boundary conditions,

V^ = {u€^(0,l)|u(0) = u(l) = 0}.
Wavelet-Galerkin method is to find Uj(t) € V,°, t > 0 such that

(tijtt, vj) + a(uj, vj) = (/, Vj), Vj e Vf,

with initial condition
(u(0),Vj) = (Uo,Vj).

4.8.3 Semi-Discrete Wavelet-Galerkin Method

Let Vj be a finite dimensional subspace of V = Hq(Q) i.e. VjCV satisfied the following 
approximation properties

mf {||f — x|| + — x||i} < C2 Jr\\v\\r,

Vu e Hr{Q) n V, r < P,

where P= number of vanishing moments. In the semi-discrete Galerkin approximation, we seek 
uj(t) € Vj such that for f > 0

(uJtt, X) + a{uj,x) = (/, X), X S Vj, (4.22)

(vj(0),x) = (uo,x),X G Vj,

('O(O), y) = (u0,x),X G Vj

that is 'Uj(O) and ujt(0) are approximation of u0 and uj, respectively in Vj.

4.8.4 Error Analysis for the Semi-Discrete Method

A direct comparison between u and uj does not yield optimal order of convergence. Therefore, 
we need to introduce an auxiliary function Uj dVj which is defined by

a(u - uj,x) = 0,x G Vj. (4.23)
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4.8. Wavelet-Galerkin Method for Second Order Wave Equation

Lemma 4.8.2 Let u — uj = rj. Then the following estimate holds:

IMU* + 2-'MIi<C2-'1u||„

and

Proof: By the coercivity property of a(.,.), we have

ao|]n — %j|f < a(u — Uj, u — uf)
= a(u — iij,u — u — iij)
= a(u - uj, u - Pj - uj) + a{u - uj, Pj(u) - uj) 

Since Pju — uj € Vj it follows from (4.23) that

n(n - uj, Pj(u) - uj) = 0

Note that

cxq||« — Uj||\ < a(u — Uj,u — Pju)

< M\\u - uj\\\\u - Pju\\x

and hence using Theorem 4.8.1, we obtain

Wu-u^U < ’fh -ft.il,
OLQ

< CTJ{r-l)\\u\\r

By Aubin-Nitsche Duality, we have

\\u-uj\\ < C2i\\u-uj\\1
=HMI! < C2t*Mx

< C72-^||«||r

Hence, we obtain
Mli + 2-'Mli<C2-'rMr

Differentiating (4.23) with respect to time twice, we obtain

a(r]tt,X) = 0,XeVj

(4.24)
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4.8. Wavelet-Galerkin Method for Second Order Wave Equation

Therefore, proceeding in the same manner as in the estimate of rj, we can obtain the required 
estimate for This completes the proof.

Now, let e = u — iij. Using Uj, split e as

e = u — Uj = (u — uj) — (Uj —Uj)—r} — 6

where
Tj = (u~ Uj)

and
9 — (uj iij)

Since the estimate of rjtt is known from Lemma 4.8.2, it is enough to estimate 9.

Using Weak formulation (4.21) and (4.23), the equation in 9

(9a, X) + o(0, X) ~ (uju, x) + a(uj,x) - (%tt, x) ~ a(«J, x)
(9u,x) + a($,x) = (VtuX) (4-25)

Theorem 4.8.3 Letu anduj respectively be the solution of (4-81) and (4-82). Letuj(0) = Uj(0) 
so that 9{0) = 0. Then there is a constant C independent of J such that

||e(t)[| + 2_jr||e(t)||i < CTJr ^||ui||r + Mr + J .

Now, taking x — 9t in (4.25), we obtain

(9tt,9t) + a(9i9t) = (rjtt,9t)

jt(9,9) = a(9u9) + aM)

Since o(.,.) is symmetric, we have

\jti¥t{t)\\2 + a{9,9)) = (vtt,9t) <

The last inequality is obtained by Cauchy-Schwartz inequality. Define the energy norm as

fracddtEg(t) < 2]|r;(tj||jEe(0[| (4.26)

Set for t* G [0, t) such that
Ee(t*) = max Ee(t)
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4.8. Wavelet-Galerkin Method for Second Order Wave Equation

Integrating (4.26) from 0 to t, we obtain

Ej{t) < El(0) + 2 f |M|||E,(S)dS||

Jo
Since (4.27) is true for t = T*, we obtain from (4.27)

Eg(t*) < Eg(0) + 2 f ||%(s)||||Eg(s)ds|| 

Jo
and hence

Now,

Therefore,

J3?(f)<(£»(0)+2 f ||%(S)||*)i|B«((*)i| 

Jo

E6(t) < E9(t*)
< Ee(0) + 2 / ||»k(a)||tfc

Jo
< Eg(0) + 2 / ||^(s)||(fe

Jo

mm2+am, 0m1/2 < (ii^(o)f+am, 0m1'2+c%-jr j*

mm < Mm2+<m,m)1/2< ||0t(O)||2 + a(0(O),0(O))1/2 + C2-Jj- t \\utt(s)\\rds

Jo
Choose ujt{0) = Pjui, then

P*(o)ll < imo)- «,(o)|| +11^(0) -fijt(o)||
< C2~Jr llUiHr

Since uj(0) = Ctj(0) , 0(0) = 0

< (a(0(t),0(t))1^2); (bycoercivity)
< C2-Jr(||«i||r + f ||utt(s)||rds)

Jo
=> ||0(*)lli < C2~Jr(\\u1\\r+ f ||«tt(a)||r«fo)

Jo

(4.27)
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4.8. Wavelet-Galerkin Method for Second Order Wave Equation

Therefore, the error estimate of 6 in H1-norm is

||0(f)||i < C2-Jr(\\Ul\\r + f ||utt(s)||rds) (4.28)

Jo

Since ||0||£,2 < ||0||i , we obtain an L2-estimate for 8. Using triangle inequality and Lemma 4.8.2, 
we obtain the required estimate.

Remark 4.8.1 The problem (4-20) with periodic boundary condition

u(x, t) — u(x + 1, t)

has an analogous weak formulation and error estimates as in the non periodic boundary condition 
with

V = H(I) = v G Hl : v{x+ 1) = v(x),x G I.

4.8.5 Computational Results for the Wave Equation

We shall solve the wave equation using wavelets. We assume that the boundary condition are 
periodic and make use of the periodized wavelets mentioned in the earlier chapters. We begin by 
considering a periodic boundary value problem. We now consider the periodic initial-value 
problem for the second order wave equation (ID)

utt - uxx = f(x), t > 0 (4.29)

u(x,0) = u0

Ui(x, 0) = iq

u(x, t) = u(x + 1, t), t > 0

where
/(x) = /(x+l), u0(x) = n0(x + 1), and iq(x) = iq(x + 1).

We now reduce the second order wave equation into two first order ordinary differential equations

and
vt = D^u + f.
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4.8. Wavelet-Galerkin Method for Second Order Wave Equation

4.8.6 Representation with respect to Scaling Functions

We consider first the Galerkin method for (4.29). Now,

2J — 1
Uj(x,t.) = ^(cu)j,fc(/)0j,fc( x)

k=0

The Galerkin discretization of (4.29)

where

Ml) = n(2]Cu(l) + Cf- I > 0;

Qi(0) C/t,

c,.(0) = Cg\

(cf)j,i = / f{x)4>Jtl(x)dx,
Jo

M

, - /
«-/ h(x)<pjj(x)dx;

(cg)j,i = g(x)4>j'i(x)dx, 1 = 0,1,•••,2 -1.

4.8.7 Representation with respect to Wavelets

(4.30)

(4.31)

(4.32)

Multiplying (4.31) and (4.32) from the left by W and inserting the identity WTW = I yields

jt:Wcu(t) = Wcv(t)

4;Wcv(t) = WD™WTWcu(t) + We„ t> 0 
at 1

From the identities
du(t) = Wcu{t) 

df(t) = Wcf(t)

d(2) = wd{2)wt.

115



4.8. Wavelet-Galerkin Method for Second Order Wave Equation

We then obtain
jtdu(t) = dv(t)

^4(0 = D{2)du(t.) + df, I > 0

with the initial condition
du( 0) = Wch 

dv{ 0) = Wcg.

(4.33)

(4.34)

4.8.8 Representation with respect to Physical Space

Multiplying (4.31) and (4.32) from the left by T and proceeding as above, we obtain

using the relations

^j-Tcu(t) = Tcv(t)

jT^t) = TD^T~1Tcu(t) + Tcj, I > 0

m(0 = 7eu(0
f = Tcf = { (Pyj) (x,)}^1;

D(2) = rD(2)T_1;

we find

with the initial condition

jU(t) = v(t)

Ytv(t) = D(2)u(t) + /, t > 0 
at

u(0) = h={{Pyjh) (x/)}^"1; 

W(°) = S = {(P05) (x,)}^"1.

(4.35)

(4.36)
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4.8. Wavelet-Galerkin Method for Second Order Wave Equation

4.8.9 Hybrid Representation

Multiplying (4.35) from the left with W, we obtain

with initial condition

ju(t) = V (t) (4.37)

jv(t) = D(2)u{t) + f,t > 0 (4.38)

_e
< o II FT

o II

4.8.10 Results and Discussion

For the test problem, we take J — 6, 5 = 0.005, A = 3, D = 8, and

f(x) = e_'sin(27rx) - (27r)2e_( sin(27rx).

The initial conditions are
■u(x, 0) = sin(27nr) 

ut(x,0) — — sin(27rx)
Thus, the exact solution is u = e~l sin(27rx). We then compare the results with the exact solution 
u(x) = e~l sin(27rx) and then we compute the error using all the four methods mentioned above. 
Define

llulloo = max |tt(x)|
0<I<1

•*- - WP-
Table 4.2 illustrate the relative error obtained when the wave equation is solved in the Physical 
Space for different values:

In Table 4.2, we have discussed the dependence of the error ||u — Uj||ji00 on ./, D. More 
precisely,

||u — Uj || j>0O — 0(2-,/(D_2^)

and
||w - Ujlloo = 0(2~jd/2).

The high convergence observed in the table means that the solution u(x) is approximated to Dth 
order in the norm ||.||ji00 even though the subspace Vj can only represent exactly polynomials 
upto degree D/2 — 1. This phenomenon is known as super convergence result.
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J D = 6 D = 8
2 0.6490 0.6345
3 0.5444 0.5868
4 0.5201 0.5243
5 0.4871 0.4900
6 0.4520 0.4675

Table 4.2: The relative error shows the different values of J and D.

4.8.11 Conclusion

Figures 4.1 to 4.10 compares the exact solution and computed solutions using scaling functions, 
physical space, and wavelet space. Using scaling functions, the solution dies down as time 
increases. But using wavelets, the solution dies down faster as time increases. In case of 
physical space, the solution dies down slightly faster than that in the case of scaling functions 
as time increases.

4.9 Wavelet-Galerkin Method for Regularized Long Wave 
Equation

We use the Wavelet-Galerkin method to solve the ID regularized long wave (RLW) equation. 
Let I = (0,1) be a bounded open interval. We consider the following regularized long wave 
(R1W) equation

ut - iuxxt + auux - f{x)\ x G /, t> 0 (4.39)

I.C. : u(x, 0) = u0(x),

B.C. : u(0, t) = u(l, t) = 0; x £ /, t > 0

where u represents the amplitude of the wave with respect to the level of undisturbed fluid, a is 
a positive constants, and u0 and / are given functions. The above equation was first introduced 
by Peregrine to describe the behavior of the unmodular bore. It also arises in the study of 
water waves and in acoustic plasma waves. Since analytical solution is difficult to obtain, one 
resorts to numerical methods. Earlier the RLW equation has been solved numerically using 
finite difference methods, finite element method and also mixed finite element method. In this 
section, we have made an attempt to solve the RLW equation using Wavelet-Galerkin method 
and the corresponding error estimates.
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4.9. Wavelet-Galerkin Method for Regularized Long Wave Equation

Let V — Hq(I) where
H10(I) = {veH\l):v(0) = v(l) = 0}.

The weak formulation of (4.39), is to find u(-,t) £ HJ such that

{u,,v) + 7(uxl,vx) + a(uux,v) = {f,v),v £ Hq (4.40)

u(0) = u0

Let Vj be a finite dimensional subspace of //q (/) and let Pj : IIq —> Vj be the orthogonal 
projection. Then Pj satisfies for v G Hr(I) n H(]

||r - Pjv|| + 2-J\\v - P.,vHi < C2-jT\\v\\r.

Further
||u - Pjv\\Loo + 2~J\\v - PjvHwi.oo < C2~Jr\\v\\wr.>

4.9.1 Semi-discrete Wavelet-Galerkin Method

In semi-discrete Galerkin approximation, we seek uj{t) G Vj such that

{uJt, \) + 7(uJxt, xx) + ot(ujuJx, x) = (/, x). (4.41)

where x € K/ and
wj-(O) =

where u0,/ is a suitable approximation of u0 onto Vj. Since Vj is finite dimensional subspace of 
Hq, (4.41) leads to a system of nonlinear ODE’s. By an application of Picard’s estimates, (4.41) 
has a unique solution in a neighborhood of (0, tj). To continue the solution beyond tj, we need 
the following apriori bounds.

Theorem 4.9.1 Let uj be a solution of (f.fl). Then the following apriori bounds holds

IM0IIi<c(7) (11^(0)111 + ^11/^)11^

and
MOIloo < C{7) (||u./(0)||i + ||/(s)||di

Proof: The proof is on the same line as given in Section 4.8.
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4.9. Wavelet-Galerkin Method for Regularized Long Wave Equation

4.9.2 Error Analysis for the Semi-discrete Scheme

A direct comparison between u and uj does not yield optimal order of convergence. Therefore, 
we need to introduce an auxiliary function iij € Vj which is defined by

a(ux - ujx, Xx) = 0, X G Vj 

Let u — uj — r). Then the following estimates hold:

Lemma 4.9.2

and

£i=0

l’+2-/||t7||1 <C2-Jr\\u\\r,

2

< C2~JrJ2 
2=0

( dlr] + 2J dlr)
V Dt1 Ut1

dir]
dtl

Proof: The proof is on the same line as given in Section 4.8.

Theorem 4.9.3 With Uj(0) = P.jUq, the following estimate holds

IKOIIl < ^-^^dllloH, + Hr + f(M*)\\r + ||«((S)||r-l)ds).
JO

(4.42)

Proof: The proof is on the same line as given in Section 4.8.

4.9.3 Computational Result for the RLW Equation

We consider now Regularized long wave (RLW) equation. The periodic initial-value problem for 
a particular form of RLW equation is

ut = 7Uxxt ~ auux, t > 0

u(x, 0) = h(x),

u(x, t) — u(x + 1, t), t > 0,

where 7 and a are positive constant and

h(x) = h(x + 1).

This problem is discretized in the same manner as we obtain the system

■jru(t) = Lu(t) + N(u(t))u(t), t > 0 
dt
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4.10. Wavelet-Galerkin Method for Parabolic Equation

u(0) = h = [h(xo, h(xi), • ■ • , /i(xat_i))]

where
L = ~/D(2) - /

and
N(u(t)) — —diag (Du(t))

with
D = D(1).

We solve the RLW equation using scaling functions, wavelets, hybrid representation and also in 
the physical space. We have used ODE solvers to solve RLW equation for which we have chosen 
the values 7 = 0.001, a = 1, and h(x) = sin(27rx). The numerical data are ./ = 6. A = 3. and 
D = 8 and we compare it with the exact solution u = e~1 sin(27rx).

4.9.4 Conclusion

Figures 4.11 to 4.20 compares the exact solution and computed solutions using scaling functions, 
physical space, and wavelet space. Using scaling functions, the solution dies down as time 
increases. But using wavelets, the solution dies down faster as time increases. In case of 
physical space, the solution dies down slightly faster than that in the case of scaling functions 
as time increases. For different values of t and 7, we get the corresponding solutions of RLW 
equation as shown in the figure. We have seen that as 7 is strengthen, the solution dies down 
faster as time increases. Increment in time and strengthening of 7 makes the solution die down 
faster.

4.10 Wavelet-Galerkin Method for Parabolic Equation

We consider the following parabolic equation:

Ut - {a(x)ux)x + a0u = f(x) 
u(x,0) = u0(x) 
u(0. t) = u(l, t) = 0

(4.43)

Assume that a > a0 > 0, a0 > 0,|a|, |a0| < M, / = (0,1). Let V = where
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4.10. Wavelet-Galerkin Method for Parabolic Equation

with the norm

Mi = M +
2 , ndvn2X5

dx
The weak formulation of (4.43) is to find u(-,t) € V such that

(ut, v) + a(u, v) = (/, v), v G V (4.44)

(«(0),v) = («o,t;)

where
a(u,v) = I (a(x)u'(x)v'(x) + ao(x)u(x)v(x)).

Jo
Note that the bilinear form a(-, •) is bounded in the sense that

|a(tt,v)| < / |a(a;)||tt/(a;)||u'(2;)jd!a;+ / |ao(x)||u(a;)||u(a;)|dx
Jo Jo

< M \v! (x)\\v'{x)\dx + J |u(a;)||u(s))da;^

In the last step, we have used Holder’s inequality. Further, a(-, •) is coercive, that is, there is a 
constant a:0 > 0 such that

i(u,v) = I a(x)u'(x)2dx + I ao(x)u(x)2dx 
Jo Jo

> a0 / |«'(a0!2 > ao|Kz)||.
Jo

Here, we have used Poincare’s inequality. In a Gaierkin type approach, we first introduce a 
subspace Vj of V satisfying the homogeneous boundary conditions:

Vj = {u £ Vj(0,1)|«(0) = u(l) = 0} .

The semi-discrete Wavelet Gaierkin method is to find uj(t) £ Vj, t> 0 such that

fat, vj) + a(uj,vj) = (/, vj), vj e Vj (4.45)

with initial condition
(u0,vj) = (u0,vj).
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4.10.1 Error Analysis for the Semi-Discrete Method

A direct comparison between u and uj does not yield optimal order of convergence. Therefore, 
we need to introduce an auxiliary function u € Vj which is defined by

a{u - uj,x) = 0, y € Vj (4.46)

Let u — uj = rj. Then the following estimates hold:

Lemma 4.10.1
IMI + 2~J|M|1 < C2-Jr\\u\\r,

and
||^i|| + 2 ^ll^illl < C2 ^llutlln

Proof: The proof is same as described in Section 4.8.

Theorem 4.10.2 With Uh{0) as iik{0) or Pjuo , there exist a constant C such that 

||u(f) - u.,{t)\\ < C2~Jr (|K||r + ||u,(s)||rds^ .

Proof: The proof is same as described in Section 4.8.

4.10.2 Computational Results

For simplicity of exposition, we consider the periodic initial-value problem for the heat equation

ut = vuxx + /(;x), t > 0 (4.47)

u(x.O) = h(x)

u(x. t) = u(x + 1, f), t > 0; xER

where v is a positive constant, f(x) — f{x +1) and h{x) = h(x+1). However, the computational 
results can be carried out for non periodic problems with general parabolic equations.
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4.10. Wavelet-Galerkin Method for Parabolic Equation

4.10.3 Representation with respect to Scaling Functions

For the discretization of (4.47), we replace u(x) with its scaling function approximation as
D—l

Uj{x,t) = ^2(cu)j.k{t)^jtk(x), J e Nq.
k=0

From (4.9), we obtain that

(2)where (ci )j,k is given as in (4.11), i.e.

D-1

A(x-. t) =

(4.48)

(4.49)
k=0

D-2
(<42)U*(0 = [D(2)cu(t)]k = Y. =(cu)Mn+k)2j{t)2Jdvt k = 0,1,---,2J —1;

n=2 — D

with 7^ defined in equation (4.1).

4.10.4 Galerkin Method

Multiplying (4.47) by 4>j,i(x) and integrating over the unit interval, we obtain the relation

/ ujt(x,t)ijii{x)dx = u / u'jt(x,t)<j>j'i(x)dx+ f(x)4>j,,(x)dx.
Jo Jo Jo

On substituting (4.48) and (4.49) in the above equation, we obtain

/•I ^ (D— 1 \ /*! /*1
/ T, y^(c«)4fc(0^.fc(;c) ) 4>J.iix)dx = u / y'(c2u)j'k(t)d>j'k(x)4>j]l(x)dx+ f(x)4>jj(x)dx

(il \fc—0 / •/o fc=o

By orthonormality of the periodized scaling functions, we obtain

d
dt

{Cu)j.l(t) = I/(<42))j,,(0 + (c/)./,!> l = 0, 1, • • • ,2J - 1,

where
(c/)j,i = / f(x)(pj'i(x)dx. 

Jo
In vector notation, this becomes

dt
cu{t) = Vc£\t) +Cj,
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and using (4.13), we obtain the linear system of equations

-^Cu(f) = l/D^Cuit) + cf, t> 0 

cu(0) - ch

(4.50)

where ck is given by,

(ch)j,k= I h(x)ij>jtk(x)dx. k = 0,1,-- • ,2J - 1.
J o

Equation (4.13) represent the scaling function discretization of (4.47). Hence, this method 
belongs to class 1 as described earlier.

4.10.5 Representation with respect to Wavelets

Multiplying (4.50) from the left by W and inserting the identity W1 W = / yields

^-WcJt) = vWD(2)WTWcu{t) + Wcr. t > 0. 
at

Using the relations

du = 1 Vcu 
df = Wcf

(4.51)
(4.52)

yields
D{2) = WD{2)Wt

we then obtain
(4.53)

with the initial condition
du( 0) = Wch.

4.10.6 Representation with respect to Physical Space

Multiplying (4.50) from the left by T and proceeding as above, we obtain

jTcu{t) = TD^T~1Tcu(t) + Tcf, / > 0.
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Using the relations

and

we find that

with the initial condition

u(t) = Tcu(t.) 

f = Tcf = {(P^)

d(2) = TD{2)T-\

J

—u(t) — uD^u{t) + /, t > 0 
at

“(0) = h = {{pvjh) (^)}?=o1-

(4.54)

4.10.7 Hybrid Representation

In this subsection, we mention a second possibility for discretizing (4.47) using wavelets. This 
is essentially a combination of the approaches that lead to (4.53) and (4.54), and we proceed as 
follows:

Multiplying (4.54) from the left by W and using the identity WrW = /, we obtain

^-WJt) = vWD(2)WtWM) + Wf, t > 0. 
at

Defining the wavelet transformed vectors as

/ = Wf and ii = Wu,

we find that
—u(t.) = vD^utt) + f, t, > 0. 
dt

with the initial condition
u(0) = Wh,

where /T2* is the same as in (4.19). This approach by passes the scaling coefficient represen­
tation and relies on the fact that the FWT can be applied directly to function values of /. As 
the elements in ii will behave similarly as the true wavelet coefficients d. Therefore, wavelet 
compression is as likely in this case as with the pure wavelet representation (4.53). Hence, this 
method belongs to Class 2 as described earlier.
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4.10.8 Conclusion

For the test problem, we take J = 6, At = 0.005, 0 < t < 2, A = 3, D = 8, v = 0.01 / 7r, 
/ = (v4n2 — l)e~l sin(27rx). Thus, the exact solution is u = exp — t sin(27rx). Figures 4.27 
to 4.37 compares the exact solution and computed solutions using scaling functions, physical 
space, wavelet space, and hybrid space. Using scaling functions, the solution dies down as time 
increases. But using wavelets, the solution dies down faster as time increases. In case of physical 
space, the solution dies down slightly faster than that in the case of scaling functions as time 
increases. Table 4.3 illustrate the relative error obtained when the heat equation is solved in 
the Physical Space for different values:

J D = 6 D = 8
2 0.0198 0.0063
3 0.0022 2.20 e - 4
4 1.753 e - 4 3.84 e - 5
5 3.74 e -5 2.91 e - 5
6 3.90 e -5 3.92 e - 5

Table 4.3: The relative error shows the different values of J and D.

In Table 4.3, we have discussed the dependence of the error ||u — ttj|| jiOD on J, D in the physical 
space. The convergence rate is as follows:

\\u-uJ\Ux = 0(2-J^)

and
\\u-uj\\O0 = 0(2-JDl2).

4.11 Wavelet-Galerkin Method for Burger’s Equation

In this section, we shall discussed the Wavelet-Galerkin method for the Burger’s equation.

ut + uux = vuxx + /, 0 < x < 1, f > 0, "j
u{x, 0) = u0(x): 0 < x < 1, > (4.55)

u(x + 1.1) = u(x. t); 0 < x < 1. J
Burger’s equation describe the evolution of the field u — u(x. t) under non-linear advection and 
linear dissipation. When the viscosity /r is null, the field will develop a shock in a time. For
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small viscosity the solution will be slightly smoothed version of inviscid (shock) solution. That 
is sharp gradients will develop and slowly dissipates as t —* oc and the solution decays to zero. 
For moderate values of the viscosity, the solution decays to zero and gradients do not intensify 
(see [?]). Burger’s equation is a useful test case for numerical methods due to its simplicity 
and predictable dynamics. The challenge is to resolve the sharp gradients/shocks that occur at 
small and vanishing viscosity and accurately track their revolution. In this section, we assume 
periodic boundary conditions.

A useful property of Burger’s equation is that for certain values of time and viscosity the exact 
solution can be generated numerically using Cole-Hopf transformation. This makes it possible 
to compare the accuracy of different numerical methods by comparing them with exact solutions.

The Wavelet-Galerkin method stably represent the solutions to Burger’s equation for small, 
and even vanishing viscosity. The oscillations associated with Gibb’s phenomenon at a shock 
are confined to the viscinity of the shock and are smaller than those that arise in McCormac finite 
difference approximations. Even for quite small viscosity, the oscillations stabilize and decay to 
the correct solution. The Wavelet-Galerkin method may provide a uniform, no-problem-specific 
technique for shock capture and more generally, for resolving solutions with localized and sharp 
gradients.

Wavelet methods are expected to perform well on Burger’s equation because the wavelet basis 
can decouple the localized details of the solution from its underlying globally smooth behaviour. 
There is hardly any result on convergence analysis. A priori estimates for equation (4.55) can 
be discussed in the same way as we have discussed in the case of hyperbolic PDE and parabolic 
PDE.

4.11.1 Computational Results

We consider
ut + uux — vuxx - (up)ux, I. > 0, 'j

u(x, 0) = h(x), > x € R

u(x, t) — u(x + 1, t), £>0 J
(4.56)

where p is a positive constant, p £ R. and h(x) = h(x + 1). The wavelet discretization use the 
following system of odes.

—u(t) = Mu(t) + s (u(t)) u(t) 
at

u( 0) = [h(xo),h(xi),h(x2):........,h(xN-i)Y
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where
M = — ()I\ and s (u(t,)) = —ding (Du(t)); withD =

where D2 wavelet differentiation matrix.

4.11.2 Results and Discussion

We have used ODE solvers to solve this equation for which we have chosen u0(x) — exp (77^2) • 
The numerical data are J — 10, D = 8, A = 3, em = 10“11, e„ = 10“10, At = 0.005, and 
rij = 100. We have provide the figures from 4.38 to 4.41 showing the behavior of the solution 
in physical space and wavelet space for various values of u at different time levels.

We conclude with the following points:

• The wavelet-Galerkin method appears to be stable for all viscosities including zero.

• The wavelet-Galerkin solution is close to the Exact solution even for small viscosities.

• The time of appearance of shock increases as we strengthen the viscosity.
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Figure 4.1: Solution of Wave equation for scaling function representation

Figure 4.2: Solution of Wave equation for scaling function representation
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Approximate Solution m 3d Using Scaling Functions

Figure 4.3: Solution of Wave equation for scaling function representation

Exact Solution Using Physical Space

Figure 4.4: Solution of Wave equation with respect to physical spaces
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Figure 4.5: Solution of Wave equation with respect to physical spaces

Approximate Solution m 3d Using Physical Space

Figure 4.6: Solution of Wave equation with respect to physical spaces
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Figure 4.7: Solution of Wave equation with respect to wavelet spaces

Approximate Solution m 3d Using Wavelets

Figure 4.8: Solution of Wave equation with respect to wavelet spaces
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Exact Solution Using Hybrid Representation

Approximate Solution Using Hybrid Representation

Figure 4.9: Solution of Wave equation with respect to hybrid spaces

Approximate Solution in 3d Using Hybnd Representation

Figure 4.10: Solution of Wave equation with respect to hybrid spaces
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Figure 4.11: Solution of Regularized Long Wave equation for scaling function repre­
sentation with ", = 0.001

Figure 4.12: Solution of Regularized Long Wave equation for scaling function repre­
sentation with = 0.001
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Approximate Solution in 3d Using Scaling Functions

Figure 4.13: Solution of Regularized Long Wave equation for scaling function repre­
sentation with ' = 0.001

Figure 4.14: Solution of Regularized Long Wave equation for physical space with
-> = 0.001
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Figure 4.15: Solution of Regularized Long Wave equation for physical space with
7 = 0.001

Approximate Solution in 3d Using Physical Space

Figure 4.16: Solution of Regularized Long Wave equation for physical space with
7 = 0.001
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Exact Solution Using Wavelets

Figure 4.17: Solution of Regularized Long Wave equation for wavelet space with
7 = 0.001

Approximate Solution m 3d Using Wavelets

Figure 4.18: Solution of Regularized Long Wave equation for wavelet space with
7 = 0.001

138



4.11. Wavelet-Galerkin Method for Burger’s Equation

Exact Solution Using Hybnd Representation

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Approximate Solution Using Hybnd Representation

Figure 4.19: Solution of Regularized Long Wave equation for hybrid space with 7 =
0.001

Approximate Solution in 3d Using Hybnd Representation

Figure 4.20: Solution of Regularized Long Wave equation for hybrid space with 7 =
0.001
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Figure 4.21: Solution of Regularized Long Wave equation for scaling function with
7 = 0.0001

Figure 4.22: Solution of Regularized Long Wave equation for scaling function with
7 = 0.0001
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Approximate Solution in 30 Using Scaling Functions

Figure 4.23: Solution of Regularized Long Wave equation for scaling function with
7 = 0.0001

Figure 4.24: Solution of Regularized Long Wave equation for scaling function with
7 = 0.0001
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Figure 4.25: Solution of Regularized Long Wave equation for scaling function with
7 = 0.0001

Approximate Solution in 3d Using Scaling Functions

Figure 4.26: Solution of Regularized Long Wave equation for scaling function with
7 = 0.0001
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Exact and Approximate Solution Using Scaling Functions

Figure 4.27: Solution of heat equation for scaling function representation

Exact Solution Using Scaling Functions

Figure 4.28: Solution of heat equation for scaling function representation
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Approximate Solution in 3d Using Scaling Functions

Figure 4.29: Solution of heat equation for scaling function representation

Exact and Approximate Solution Using Physical Space

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.30: Solution of heat equation for physical space
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4.11. Wavelet-Galerkin Method for Burger’s Equation

Exact Solution Using Physical Space

Figure 4.31: Solution of heat equation for physical space

Approximate Solution in 30 Using Physical Space

Figure 4.32: Solution of heat equation for physical space

145



4.11. Wavelet-Galerkin Method for Burger’s Equation

Exact and Approximate Solution Using Physical Space
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Figure 4.33: Solution of heat equation for wavelet space

Figure 4.34: Solution of heat equation for wavelet space
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4.11. Wavelet-Galerkin Method for Burger’s Equation

Approximate Solution m 3d Using Wavelets

Figure 4.35: Solution of heat equation for wavelet space

Exact Solution Using Hybnd Representation

Figure 4.36: Solution of heat equation for hybrid space
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4.11. Wavelet-Galerkin Method for Burger’s Equation

Approximate Solution in 3d Using Hytond Representation

Figure 4.37: Solution of heat equation for hybrid space

Solution for Burgers equation with p=.0001 for t e [0..25)

Figure 4.38: Solution of Burgers equation with wavelet method
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4.11. Wavelet-Galerkin Method for Burger’s Equation

Solution for Burgers equation with p= 0001 tor t c 10.1]

Figure 4.39: Solution of Burgers equation with wavelet method

Solution tor Burgers equation with p* 0001 tor t e [0..5)

Figure 4.40: Solution of Burgers equation with wavelet method

149



4.11. Wavelet-Galerkin Method for Burger’s Equation

Figure 4.41: Solution of Burgers equation with wavelet method in which shock appear
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