
Chapter 8

Finite Pointset Method and 
Preconditioners

8.1 Introduction to Preconditioners

The convergence rate of iterative methods depends on spectral properties of the coefficient 
matrix. Hence, one may attempt to transform the linear system into one that is equivalent 
in the sense that it has the same solution, but that has more favorable spectral properties of 
the coefficient matrix A. A preconditioner is a matrix that effects such a transformation. For 
instance, if a matrix M approximates the coefficient matrix A in some way, the transformed 
system

M~l Ax = M~l B (8.1)

has the same solution as the original system Ax = b , but the spectral properties of its coefficient 
matrix M~lA may be more favorable. In devising a preconditioner, we are faced with a choice 
between finding a matrix M that approximates A. and for which solving a system is easier than 
solving one with A, or finding a matrix M that approximates A~l, so that only multiplication by 
M is needed. Since using a preconditioner in an iterative method includes some extra cost, both 
initially for the setup, and per iteration for applying it, there is a trade-off between the cost of 
constructing and applying the preconditioner, and the gain in convergence speed. Certain pre­
conditioners need little or no construction phase at all (for instance the SSOR preconditioner), 
but for others, such as incomplete factorizations, there can be substantial work involved.

Now, we shall start with different preconditioners.
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8.1.1 Jacobi Preconditioner

The simplest preconditioner consists of just the diagonal of the matrix

/ a% t if i = j;
rriij — <' y 0 otherwise.

This is known as the Jacobi preconditioner. It is possible to use this preconditioner without 
using any extra storage beyond that of the matrix itself. However, division operations are usually 
quite costly, so in practice storage is allocated for the reciprocals of the matrix diagonal. This 
strategy applies to block Jacobi preconditioners.

8.1.2 Block Jacobi Preconditioner

Block versions of the Jacobi preconditioner can be derived by a partitioning of the variables. If
the index set S = {1,2,3..... ,n} is partitioned as S = |J. Si with the sets Sl mutually disjoint,
then

{cii if i and j are in the same index subset;
0; otherwise.

The preconditioner is now a block-diagonal matrix. Natural choices for the partitioning is as 
follows:

• In problems with multiple physical variables per node, blocks can be formed by grouping 
the equations per node.

• In structured matrices, such as those from partial differential equations on regular grids, 
a partitioning can be based on the physical domain. Examples involve partitioning along 
lines in the 2D case, or planes in the 3D case.

• On parallel computers, it is natural to let the partitioning coincide with the division of 
variables over the processors.

8.1.3 Complete and Incomplete Factorization Preconditioner

A class of preconditioner is of the form complete factorization of coefficient matrix A. A broad 
class of preconditioners is based on incomplete factorizations of the coefficient matrix. We 
call a factorization incomplete if, during the factorization process, certain fill elements, nonzero
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elements in the factorization in positions where the original matrix had a zero, have been ignored. 
Such a preconditioner is then given in factored form M — LU where L is a lower triangular 
matrix and U is an upper triangular matrix. The efficiency of the preconditioner depends on 
how well M~l approximates A.

Creating an incomplete factorization

Incomplete factorizations are the first preconditioners for which there is a non-trivial creation 
stage. Incomplete factorizations may break down (attempted division by zero pivot) or result 
in indefinite matrices (negative pivots) even if the full factorization of the same matrix is guar­
anteed to exist and yield a positive definite matrix.

An incomplete factorization is guaranteed to exist for many factorization strategies if the orig­
inal matrix is an M-matrix. This was originally proved by Meijerink and Van der Vorst (see 
[VBOO]). Also see the references [BQ76], [Man80] and [Vor81] for more details.

In cases where pivots are zero or negative, strategies have been proposed such as substitut­
ing an arbitrary positive number (see [Ker78]), or restarting the factorization on A + a I for 
some positive value of a (see [Man80]).

An important consideration for incomplete factorization preconditioners is the cost of the factor­
ization process. Even if the incomplete factorization exists, the number of operations involved 
in creating it is at least as much as for solving a system with such a coefficient matrix, so the 
cost may equal that of one or more iterations of the iterative method. On parallel computers, 
this problem is aggravated by the generally poor parallel efficiency of the factorization. Such 
factorization cost can be amortized, if the same preconditioner will be used for several linear 
systems.

8.1.4 Point Incomplete Factorization

The most common type of incomplete factorization is based on taking a set S of matrix po­
sitions, and keeping all positions outside this set equal to zero during the factorization. The 
resulting factorization is incomplete in the sense that the fill is suppressed.

The set S is usually chosen to encompass all positions (i,j) for which at j ^ 0. A position 
that is zero in A but not so in exact factorization is called a fill position, and if it is outside S,
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the fill is said to be discarded. Often, S is chosen to coincide with the set of nonzero positions in 
.4, discarding all fills. This factorization type is called the ILU(O) factorization: the Incomplete 
LU factorization of level zero.

The accuracy of the ILU(O) factorization may be insufficient to yield an adequate rate of conver­
gence. More accurate Incomplete factorizations are often more efficient as well as more reliable. 
These more accurate factorizations will differ from ILU(O) by allowing some fill-in. In hierarchy, 
more accurate incomplete factorizations are ILU(l), ILU(2), ILU(3) and so on (see [SaaOO]).

8.2 Iterative Methods and its Solvers

The term iterative method refers to a wide range of techniques that use successive approximations 
to obtain more accurate solutions to a linear system at each step. There are two types of iterative 
methods, namely stationary methods and nonstationary methods.

• Stationary methods are older, simpler to understand and to implement, but usually not 
as effective. .Jacobi method, Gauss-Seidal method, Successive Overrelaxation method and 
Symmetric Successive Overrelaxation method lies in the category of stationary methods.

• Nonstationary methods are a relatively recent development; their analysis is usually harder 
to understand, but they can be highly effective. The nonstationary methods, which we 
present here, are based on the idea of sequences of orthogonal vectors.

The rate at which an iterative method converges depends greatly on the spectrum of the co­
efficient matrix. Hence, iterative methods usually involve a second matrix that transforms the 
coefficient matrix into one with a more favorable spectrum. The transformation matrix is called 
a preconditioner. A good preconditioner improves the convergence of the iterative method, suf­
ficiently to overcome the extra cost of constructing and applying the preconditioner. Indeed, 
without a preconditioner the iterative method may even fail to converge.

8.2.1 Nonstationary Iterative Method

Conjugate Gradient (CG) method

The conjugate gradient method derives its name from the fact that it generates a sequence of 
conjugate (or orthogonal) vectors. These vectors are the residuals of the iterates. They are
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also the gradients of a quadratic functional, the minimization of which is equivalent to solve the 
linear system. CG is an extremely effective method when the coefficient matrix is symmetric 
positive definite, since storage for only a limited number of vectors is required.

Minimum Residual (MINRES ) method and Symmetric LQ (SYMMLQ) method

These methods are computational alternatives for CG for coefficient matrices that are symmetric 
but possibly indefinite. SYMMLQ will generate the same solution iterates as CG if the coefficient 
matrix is symmetric positive definite.

Generalized Minimal Residual (GMRES) method

The Generalized Minimal Residual method computes a sequence of orthogonal vectors (like MIN­
RES), and combines these through a least-squares solve and update. However, unlike MINRES 
(and CG) it requires storing the whole sequence, so that a large amount of storage is needed. 
For this reason, restarted versions of this method are used. In restarted versions, computation 
and storage costs are limited by specifying a fixed number of vectors to be generated. This 
method is useful for general nonsymmetric matrices.

BiConjugate Gradient (BiCG) method

The Biconjugate Gradient method generates two CG-like sequences of vectors, one based on 
a system with the original coefficient matrix A, and one on AT. Instead of orthogonalizing 
each sequence, they are made mutually orthogonal, or ”bi-orthogonal”. This method, like CG, 
uses limited storage. It is useful when the matrix is nonsymmetric and nonsingular; however, 
convergence may be irregular, and there is a possibility that the method will break down. BiCG 
requires a multiplication with the coefficient matrix and with its transpose at each iteration.

Quasi-Minimal Residual (QMR) method

The Quasi-Minimal Residual method applies a least-squares solve and update to the BiCG 
residuals, thereby smoothing out the irregular convergence behavior of BiCG, which may lead 
to more reliable approximations. In full glory, it has a look ahead strategy built in that avoids 
the BiCG breakdown. Even without looking ahead, QMR largely avoids the breakdown that 
can occur in BiCG. On the other hand, it does not effect a true minimization of either the error
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or the residual, and while it converges smoothly, it often does not improve on the BiCG in terms 
of the number of iteration steps.

Conjugate Gradient Squared (CGS) method

The Conjugate Gradient Squared method is a variant of BiCG that applies the updating oper­
ations for the A-sequence and the .4T-sequence both to the same vectors. Ideally, this would 
double the convergence rate, but in practice convergence may be much more irregular than for 
BiCG, which may sometimes lead to unreliable results. A practical advantage is that the method 
does not need the multiplications with the transpose of the coefficient matrix.

Biconjugate Gradient Stabilized (Bi-CGSTAB) method

The Biconjugate Gradient Stabilized method is a variant of BiCG, like CGS, but using different 
updates for the .4T-sequence in order to obtain smoother convergence than CGS.

LSQR implementation of Conjugate Gradients on the Normal Equations

LSQR method for solving linear system is based on least square sense. The details of these 
methods are given in [SaaOO].

8.2.2 Solvers for Numerical Methods

In this section, we shall present the solvers for iterative methods. We shall give details of solver, 
based on one iterative method. The details for other method iterative solvers are same.

Solver for MINRES method

• x — minres(A. b) attempts to find a minimum norm residual solution x to the system of 
linear equations Ax = b. The n x n coefficient matrix A must be symmetric but need 
not be positive definite. It should be large and sparse. The column vector b must have 
length n. If minres converges, a message to that effect is displayed. If minres fails 
to converge after the maximum number of iterations or halts for any reason, a warning
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message is printed displaying the relative residual and the iteration number at
which the method stopped or failed.

• minres{A,b,tol) specifies the tolerance of the method. If tol is [ ], then minres uses the 
default value, le — 6.

• minres(A, b, tol, maxit) specifies the maximum number of iterations. If maxit is [ ], then 
minres uses the default, min(n, 20).

• minres(A,b, tol, maxit,, M) and m.inres(A,b, tol, maxit, Mi, M2) use symmetric positive 
definite preconditioner M or M = A11 * M2. If M is [ ] then minres applies no precondi­
tioner.

• minres(A, b, tol, maxit, Mi, M2, x0) specifies the initial guess. If x0 is [ ], then minres uses 
the default, an all-zero vector.

• [x, flag] = rmnres(A, b,...) also returns a convergence flag. The meaning of flag obtained 
is given in Table 8.1 Whenever flag is not 0, the solution x returned is that with minimal

Flag Convergence
0 minres converged to the desired tolerance tol within maxit iterations.
1 minres iterated maxit times but did not converge.
2 preconditioner M was ill-conditioned.
3 minres stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during minres became 

too small or too large to continue computing.

Table 8.1: Meaning of flag

norm residual computed over all the iterations. No messages are displayed if the flag 
output is specified.

• [x, flag, relres] = minres(A.b,...) also returns the relative residual If flag is 0,
relres < tol.

• [x, flag,relres,iter] = minres(A,b,...) also returns the iteration number at which x was 
computed, where 0 < iter < maxit.
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8.2.3 Solvers for Another Method

symmlq method

x — symmlq(A. b) attempts to solve the system of linear equations Ax = b for x. The n x n 
coefficient matrix A must be symmetric but need not be positive definite. It should also be large 
and sparse.

gmres method

x = gmres(A, b) attempts to solve the system of linear equations Ax = b for x. The n x n 
coefficient matrix A must be square and should be large and sparse.

bicgstab method

x — bicgstab(A, b) attempts to solve the system of linear equations Ax = b for x. The n x n 
coefficient matrix A must be square and should be large and sparse.

qmr method

x — qmr(A, b) attempts to solve the system of linear equations Ax = b for x. The n x n 
coefficient matrix A must be square and should be large and sparse.

cgs method

x = cgs(A, b) attempts to solve the system of linear equations Ax = b for x. The nxn coefficient 
matrix A must be square and should be large and sparse.

peg method

x = pcg(A, b) attempts to solve the system of linear equations Ax = b for x. The nxn coefficient 
matrix A must be symmetric and positive definite, and should also be large and sparse.
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Isqr method

x = lsqr(A. b) attempts to solve the system of linear equations Ax = b for x if A is consistent, 
otherwise it attempts to solve the least squares solution x that minimizes || b — A * x ||. The 
m x n coefficient matrix A need not be square but it should be large and sparse.

8.3 Results and Discussion

We have consider the following test examples in ID and 2D for our analysis. The examples are 
as follows:

• Dirichlet problem in ID

cPv dv^§ + 4^+4y = expx; y(0) = 1, y( 1) = 0.

Neumann problem in ID

g + 4g+W + li *(0,-0. §(1) = 0

• Mixed problem in ID

y-f+4y^ + 4y = expx; y(0) = 1, j^(l) = 0 
dxl ax ax

• Dirichlet problem in 2D 
Let D be a domain.

D = {(x. y)\ — 1 < x < 1; and — 1 < y < 1}

uxx + uyy = 4; on D 

u = x2 + y2; on dQ,

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

• Neumann problem in 2D 
Let Q be a domain.

fi = {(x,y)|0 < x < 1, and 0 < y < 1} 

uxx + Uyy = — cos (7rx), on il 
du
— = 0. on dfl 
<> n
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• Helmholtz problem in 2D 
Let O be a domain.

0 = {(®,y)| — 1 < x < 1, and — 1 < y < 1}

„2 , „.2
uxx + Uyy + u — 4 + ® + y , on O 

du 
!hi 
du 
fa. 
du

(8.9)

2y, on y = -1, 

-2y, on y= 1,

— = 2x, on x = —1,
on
du o 1
— = —2x, on x = 1. 
on

Using FPM technique explained in Chapter 7, the above examples of differential equations can 
be reduced in the linear system of the form (7.15). We have used different iterative methods like 
CGS, BICG, GMRES, QMR, LSQR to solve this system. These methods works for any square 
sparse coefficient matrix. We know that PCG, GMRES, SYMLQ works for any symmetric 
matrix. Even though, we have use these methods since we are not aware of the property of 
A. Our numerical results shows that these methods did not give convergence at all. It shows 
that the coefficient matrix which we have obtained is not symmetric matrix. In [Som04e], we 
have shown that Gaussian function is better for convergence analysis, so we shall consider the 
Gaussian function as a weight function. We have taken random numerical points in domain 
Q. The points are 100 and 60 for one dimensions and two dimensions respectively. We have 
consider the support of weight function as 1. We have done the system preconditioned by the 
following preconditioners.

• Jacobi preconditioner

• Block Jacobi preconditioner of first kind (for one set S)

• Block Jacobi preconditioner of second kind (for second set S) 

t Complete LU factorization of coefficient matrix A

• Incomplete LU factorization of level 0 with some drop tolerance le — 6

• Incomplete LU factorization of level 0 with some drop tolerance le — 8

The tolerance of the methods and maximum number of iterations which we consider are le — 6 
and 1500 respectively.
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8.3.1 Analysis without using Preconditioner for ID and 2D

Dirichlet problem

• Generalized Minimal Residual method takes only nine iteration to converge to the desired 
tolerance.

• Conjugate Gradient Squared(CGS) method, BiConjugate Gradient method, Quasi-Minimal 
Residual method and Least Square Residual method takes more than double iteration to 
converge to the desired tolerance in compare to Generalized Minimal Residual method.

• The maximum error between analytical solution and numerical solution is same for all 

cases.

Neumann problem

• Generalized Minimal Residual method does not converge to the desired tolerance within 
maximum number of iterations.

• BiConjugate Gradient method and Quasi-Minimal Residual method take slightly less itera­
tion in compare to Conjugate Gradient Squared (CGS) method and Least Square Residual 
method.

Mixed problem

• Conjugate Gradient Squared (CGS) method and Generalized Minimal Residual method 
does not converge to the desired tolerance within maximum number of iterations.

• BiConjugate Gradient method and Quasi-Minimal Residual method have same number 
of iteration but Least Square Residual method have double iteration to converge to the 
desired tolerance.

8.3.2 Analysis with using Preconditioner for ID and 2D

Now, we shall present the convergence analysis of Dirichlet problem, Neumann problem, Mixed 
problem and Helmholtz problem

• All methods converge to desired tolerance.
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• The preconditioner of the type Complete LU factorization in the preconditioned system 
take less iteration to converge to the desired tolerance.

• The preconditioner of the type ILU factorization of level 0 (with tolerance le — 6 of the 
factorization) take less iteration in compare to Jacobi preconditioner and block Jacobi 
preconditioner of two kinds. The hierarchy of the methods for the convergence to desired 
tolerance is GMRES, CGS, BICG and QMR.

• LSQR take more iteration to converge to desired tolerance.

• In compare to unpreconditioned system, preconditioned system takes less iteration to 
converge to desired tolerance.

229


