
Chapter 9

Finite Pointset Method: Stability and 
Convergence

9.1 Filtering Algorithms

In Chapter 7, we have shown that different weight functions have impact on FPM simulation in 
terms of better conditioned system as well as accuracy of the system. We have established that, 
among all other weight functions, which were used in literature so far, only Gaussian function 
has better accuracy but it gives very high condition number (see [Som04c]). So, the question 
is still remain unsolved about good conditioned system with better accuracy and sufficiently 
fast convergence. Therefore, in this section, we have made an attempt to answer the following 
questions:

1. Do we have efRceint algorithms to extract number of particles (to filter number of particles) 
around the central particle in such a way that it preserves accuracy and at the same time 
gives good conditioned system?

2. Does this algorithms are fast enough?

This idea for filtering the particles around the central particle is to enhance the speed of compu
tation and getting better conditioned system. We have proposed seven kinds of constructions of 
particles, distributed regularly as well as irregularly around the central particle in some domain, 
where we want to solve our Poisson equation. We shall construct an algorithm on the basis of 
this distribution and we shall incorporate these algorithms in our weighted least square method
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9.1. Filtering Algorithms

for solving PDE. At the end, we have given some numerical test example to check the efficiency of 
algorithms. We have considered the following cases for distribution of points (particles) around 
the central particles:

• Case-1: Select any one particle as a central particle in a given domain. Around that 
central particle, consider all regularly or randomly distributed particles of the domain, as 
neighboring particles (see Figure- 9.1 and 9.8).

• Case-2: Select any one particle as a central particle in a given domain. Around that cen
tral particle, consider all regularly or randomly distributed particles which are immediate 
adjacent to central particle, as neighboring particles (see Figure-9.2 and 9.9).

• Case-3: Select any one particle as a central particle in a given domain. Around that cen
tral particle, consider all regularly or randomly distributed particles on the left of central 
particle and some randomly distributed points on right which are immediate adjacent to 
central particle, as neighboring particles (see Figure -9.3 and 9.10).

• Case-4: Select any one particle as a central particle in a given domain. Around that 
central particle, consider all regularly or randomly distributed particles on the right of 
central particle and some randomly distributed points on left which are immediate adjacent 
to central particle, as neighboring particles (see Figure-9.4 and 9.11).

• Case-5: Select any one particle as a central particle in a given domain. Around that 
central particle, consider all regularly or randomly distributed particles which are far right 
from central particle and on left the randomly distributed particles which are immediate 
adjacent to central particle, as neighboring particles (see Figure -9.5 and 9.12).

• Case-6: Select any one particle as a central particle in a given domain. Around that 
central particle, consider all regularly or randomly distributed particles which are far left 
from central particle and on right the randomly distributed particles which are immediate 
adjacent to central particle, as neighboring particle (see Figure -9.6 and 9.13).

• Case-7: Select any one particle as a central particle in a given domain. Around that 
central particle, consider some regularly or randomly distributed particles on left as well 
as on right which are far from central particle, as a neighboring particle (see Figure -9.7 
and 9.14).
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9.1. Filtering Algorithms

9.1.1 New Filtering Algorithms for the Neighboring Particles

Algorithm-1

• Consider any random particle as a central particle in the computational domain. Around 
that central particle, consider six circles of small radius r<, (i = 1,2, ••• ,6). We should 
note that ri < r2 < r3 < r4 < r5 < r6.

• Consider the circle C\. The point at an angle 9\ = 0° on the circle C\ is denoted by 
(rt, 0°). We shall consider this point as first neighboring particle to the central particle.

• The point at an angle 9l+1 = 0i + 60° (i = 1 : 5), on circle Ct (i = 2:6) is denoted 
by (r«,#;)(* = 2:6). These five more points are the another neighboring particles of the 
central particle.

• For the point on boundaries as a central particle, we shall take immediate neighboring 
points of a central particles lies in the computational domain as neighboring particles.

• See Figure-9.15.

Algorithm-2

• Consider any random particle as a central particle in the computational domain. Around
that central particle, consider six circles of small radius rt, (i = 1,2. ■ ,6). We should
note that rx < r2 < r3 < r4 < r5 < r6.

• Consider the circle Cx. The point at an angle Qx = 360° on the circle Cx is denoted by 
(rj.3600). We shall consider this point as first neighboring particle to the central particle.

• The point at an angle 6i+1 = 9t - 60° (i = 1 : 5), on circle Ct (i = 2:6) is denoted 
by (n. 8i)(i = 2:6). These five more points are the another neighboring particles of the 
central particle.

• For the point on boundaries as a central particle, we shall take immediate neighboring 
points of a central particles lies in the computational domain as neighboring particles.

• See Figure-9.16.
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9.1. Filtering Algorithms

Algorithm-3

• Consider any random particle as a central particle in the computational domain. Around 
that central particle, consider two circles of small radius rt,(i = 1,2). We should note that 

r 1 < r2.

• Consider the first circle C\. The point at an angle 9 = 0°, 120°,240° on the circle C\ is 
denoted by (^,0°), (rj,120°), and (rl5240°). We shall consider these points as first three 
neighboring particles to the central particle.

• Similarly, consider the second circle C2. The point at an angle 9 = 60°, 180°, 360° on the 
circle C2 is denoted by (r2.60°), (r2,180°), and (r2,300°). We shall consider these points 
as another three neighboring particles to the central particle.

• So. we have total number of six neighboring particles around the central particle.

• For the point on boundaries as a central particle, we shall take immediate neighboring 
points of a central particles lies in the computational domain as neighboring particles.

• See Figure-9.17.

Algorithm-4 (Voronoi Diagram)

• The partitioning of a plane with n points in to n convex polygons such that each polygon 
contains exactly one point and every point in a given polygon is closer to its central point 
than to any other describes a Voronoi diagram. A Voronoi diagram is sometimes also 
known as Dirichlet tessellation. The cells are called Dirichlet regions, Thiessen polytopes 
or Voronoi polygons.

• Consider one particle as central particle and we shall consider neighboring particles as all 
points which lies in immediate adjacent cells of the central particle.

• See Figure-9.18, Figure-9.19, Figure-9.20.

We have considered the following test examples for implementing these algorithms.
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9.2 Test Examples

9.2.1 Dirichlet Problem

We have considered the following Dirichlet problem in ID:

7-7 + 4^p + 4y = expx; 2/(0) = 1, 2/(1) = 0. (9.1)
(lxz (lx

We have considered the following problem in 2D. Let D be a domain.

n = {(x, y)\ — 1 < x < 1; and — 1 < y < 1}

uxx + uyy = 4; on Q (9.2)

u = x2 + y2; on dil (9.3)

9.2.2 Neumann Problem

We have considered the following Neumann problem in ID:

g+4* + W+, |(0,-0. |(l)-0

We have considered the following problem in 2D. Let D be a domain.

fl = {(x,y)|0 < x < 1, and 0 < y < 1}

uxx + Uyy — — cos (7rx), on Q 
du
— = 0. on dfl
on

(9.4)

(9.5)

(9.6)

9.2.3 Mixed Problem

We have considered the following mixed problem in ID:

g+4|+4s = expx; j(0) = l,|(l) = 0 (9.7)

We have considered the following Helmholtz problem in 2D. Let H be a domain.

$2 = {(x, y)| — 1 < x < 1. and — 1 < y < 1}
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9.3. Influence of Particle Distribution on Error and Condition Number of Matrix for ID 
Problems ___________________ __

+ iLyy + u = 4 +x + y , on fl 
du
— = 2y, on y — -1,
on

-2y, on y = 1,
du
On
du
—— = 2x, on x = — 1, 
on
du
aii = — 2x, on x — 1.

(9.8)

9.3 Influence of Particle Distribution on Error and Con
dition Number of Matrix for ID Problems

9.3.1 Conclusion for Dirichlet Problem in ID

We have made the following observations:

• We have a better condition number for Case-1 and Case-7 in compare to other cases.

• For Case-2, we have high condition number but error is 2,2517 e — 13.

• For Case-3, Case-4, Case-5, and Case-6, we have a high condition number but error is 
2.5194 e — 4 but not good comparable to Case-2.

• For Case-7, condition number is higher slightly in compare to Case-1 but error is good 
in compare to Case-2.

• So, it is observed that when we have a far left and far right particles from central particle, 
we have a better error and better condition number.

• See Table - 9.1.

9.3.2 Conclusion for Neumann and Mixed Problem in ID

We have made the following observations:
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9.4. Influence of Particle Distribution on Error and Condition Number of Matrix for 2D 
Problem ______________

• We have a better condition number for Case-1 and Case-7 but not good and effective as 
in compare to Dirichlet problem.

• In other cases, including Case-7, condition number is too high.

• For Case-2, we have high condition number but more accurate.

• For Case-3. Case-4, Case-5, and Case-6, we have a high condition number but error is 
of order le — 3, so not good comparable to Case-2.

• For Case-7 and Case-2, condition number is higher slightly but error approximation is 
good.

• So, it is observed that when we have considered all points neighboring of central particle 
or far left and far right particles from central particle, then we have a better error approx
imation but high condition number. For Case-1, good condition number but error is not 
good.

• See Table - 9.2 and Table - 9.3.

9.4 Influence of Particle Distribution on Error and Con
dition Number of Matrix for 2D Problem

9.4.1 Conclusion for Dirichlet Problem in 2D

We have made the following observations:

• When we consider only particles which are immediate surrounding to central particle then 
condition number of big matrix in equation (7.15) as well as small matrix in equation () 
is high in compare to all the particles which are in neighbors of central particle.

• Accuracy of results is better in case of particles which are immediate surrounding to the 
central particle.

• Case-1 and Case-2 worked for all weight functions.

• See Table - 9.4 and Table - 9.5.
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9.4. Influence of Particle Distribution on Error and Condition Number of Matrix for 2D 
Problem

9.4.2 Conclusion for Neumann and Mixed problem in 2D

We have made the following observations:

• When we consider only particles which are immediate surrounding to central particle then 
condition number of big matrix in equation 7.15 and condition number of small matrix in 
equation () is lower in compare to the case of all the particles which are in neighbors of 
central particle.

• Accuracy of results are better.

• Case-1 and Case-2 worked for only Gaussian type weight function.

• Other weight functions does not work.

• In case of considering all particles around the central particle, other weight functions do 
not work.

• See Table - 9.6 and Table - 9.7.

9.4.3 Conclusion for Helmholtz problem in 2D

We have made the following observations:

• When we consider only particles which are immediate surrounding to central particle then 
condition number of big matrix in equation (7.15) is same but the condition number of 
small matrix in equation () is slightly higher in compare to the case taking all particles as 
neighboring particles to the central particle.

• Accuracy of result is better.

• Case-1 and Case-2 worked for only Gaussian type weight function.

• Other weight functions do not work.

• See Table - 9.8 and Table - 9.9.
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9.5 Conclusion for Algorithms

9.5.1 Algorithm-1

• BICG and GMRES methods takes only 2 and 9 iterations respectively, but CGS and QMR 
takes 11 iterations to converge to the solution at desired tolerance.

• Error is less in CGS as well as QMR in compare to BICG and GMRES.

• LSQR takes number of iterations more and error is also very high.

• See Table - 9.10.

9.5.2 Algorithm-2

• GMRES is stagnated.

• BICG does not converge to its desired tolerance.

• CGS, QMR and LSQR converges to its desired tolerance. Less number of iterations in 
CGS in compare to QMR and LSQR.

• Error is same in all three cases.

• LSQR takes more iterations and error is also high.

• See Table - 9.11.

9.5.3 Algorithm-3

• GMRES is stagnated.

• BICG does not converge to its desired tolerance.

• CGS and QMR takes same numbers of iterations.

• LSQR takes more iterations in compare to CGS and QMR.

• Error is same in all three cases.

• See Table - 9.12.
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9.5. Conclusion for Algorithms

In short, Algorithm-1 is better in compare to other algorithms in terms of iterations. Algorithm- 
1 takes nearly three times less iterations in compare to Algorithms-2 and Algorithm-3. Error in 
Algorithm-1 is less in compare to Algorithms-2 and Algorithm-3. Better conditioned system is 
for Algorithm-1. For Algorithm-2 and Algorithm-3, condition number is too high. CGS gives 
more accurate results.

239



9.5. Conclusion for Algorithms

Distribution of particles around central particle 
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Figure 9.1: Regular Distribution: All particles around the central particle.
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Distribution of particles around central particle

Figure 9.2: Regular Distribution: Only particles which are immediate surrounding 
to central particle.

Distribution of particles around central particle

Figure 9.3: Regular Distribution: More particles on left of central particle and some 
particle on right of central particle.
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Distribution of particles around central particle 
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Figure 9.4: Regular Distribution: More particles on right of central particle and some 
on left of central particle.

Distribution of particles around central particle

Figure 9.5: Regular Distribution: Particles which are far right from central particle 
and some on left which are adjacent to central particle.
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Figure 9.6: Regular Distribution: Particles which are far left from central particle 
and some on right which are adjacent to particles.

Distribution of particles around central particle 
-t--------------- 1----------------f--------------- f---------------f-

Distribution of particles around central particle

Figure 9.7: Regular Distribution: Particles which are far right and far left from 
central particle.
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Distribution of particles around central particle
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Figure 9.8: Irregular Distribution: All particles around the central particle.
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Figure 9.9: Irregular Distribution: Only particles which are immediate surrounding 
to central particle.

Distribution of particles around central particle
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Figure 9.10: Irregular Distribution: More particles on left of central particle and 
some particle on right of central particle.

Distribution of particles around central particle

Distribution of particles around central particle

Figure 9.11: Irregular Distribution: More particles on right of central particle and 
some particle on left of central particle.
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Distribution of particles around central particle

Figure 9.12: Irregular Distribution: Particles which are far right from central parti
cles and some on left which are adjacent to central particle.
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Figure 9.13: Irregular Distribution: Particles which are far left from central particles 
and some on right which are adjacent to the central particles.
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Figure 9.14: Random Distribution: Particles which are far left and far right from the 
central particle.

Distribution of particles around central particle
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Distribution of particles around central particle

Figure 9.15: Distribution of particles for Neighboring Algorithm of Type - III (Our 
Algorithm - 1).

Distribution of particles around central particle

Figure 9.16: Distribution of particles for Neighboring Algorithm of Type - III (Our 
Algorithm - 2).
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Distribution of particles around central particle

Figure 9.17: Distribution of particles for Neighboring Algorithm of Type - III (Our 
Algorithm - 3).
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Figure 9.18: Distribution of particles for Neighboring Algorithm of Type - III (Our 
Algorithm - 4(a)).

Voronoi diagram for regular points
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Voronoi diagram for irregular points

Figure 9.19: Distribution of particles for Neighboring Algorithm of Type - III (Our 
Algorithm - 4(b)).

Voronoi diagram for irregular points with colours

Figure 9.20: Distribution of particles for Neighboring Algorithm of Type - III (Our 
Algorithm - 4(c)).
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Distribution 
of particles

Support of 
Weight function

Condition
number of A

Error Condition
number of IM1

CPU time

Case 1 0.5 28.4371 0.0037 128.8511 7.7903
Case 2 0.5 3.9716 e3 2.2517 e-13 1.4714 e4 5.5658
Case 3 0.5 2.3963 e3 2.5195 e-4 7.8566 e3 6.2702
Case 4 0.5 2.3936 e3 2.5195 e-4 7.8566 e3 7.2626
Case 5 0.5 1.7945 e3 4.2076 e-4 1.4714 e4 7.6666
Case 6 0.5 1.7945 e3 4.2076 e-4 6.3178 e3 7.8060
Case 7 0.5 982.7925 9.3814 e-14 1.4714 e4 6.8917

Table 9.1: Dirichlet BVP in 11)

Distribution 
of particles

Support of 
Weight function

Condition
number of A

Error Condition
number of IM1

CPU time

Case 1 0.5 85.2393 7.3426 e-4 1.4913 e5 4.8322
Case 2 0.5 1.7524 e4 7.9040 e-5 2.9927 e6 5.6740
Case 3 0.5 1.0216 e4 3.8367 e-4 1.2404 e6 6.3419
Case 4 0.5 1.0837 e4 3.4912 e-4 1.2404 e6 6.5488
Case 5 0.5 8.0587 e3 6.2284 e-4 1.3238 e6 6.4106
Case 6 0.5 7.8689 e3 6.4353 e-4 2.9927 e6 6.3906
Case 7 0.5 7.3320 e3 9.1039 e-5 2.9927 e6 5.3046

Table 9.2: Neumann BVP in ID
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Distribution 
of particles

Support of 
Weight function

Condition
number of A

Error Condition
number of IM1

CPU time

Case 1 0.5 117.5890 0.0014 1.4913 e5 221.9651
Case 2 0.5 1.4416 e4 9.5683 e-5 2.9927 e6 7.6964
Case 3 0.5 8.3901 e3 0.0023 1.2404 e6 7.7744
Case 4 0.5 8.9417 e3 0.0024 1.2404 e6 5.9780
Case 5 0.5 6.6317 e3 0.0041 2.9927 e6 8.4033
Case 6 0.5 6.7063 e3 0.0041 1.3238 e6 7.2687
Case 7 0.5 5.8001 e3 1.2671 e-4 2.9927 e6 6.7666

Table 9.3: Mixed BVP in ID

Weight
Function

Condition
number of A

Condition
number of IM1

CPU time Error

1 3.48972275 425054.15335403 15.488322100 0.0000000000000036134290005
2 3.58676808 316639.04574120 5.57909700 0.0000000000000012056328158
3 3.56963114 318824.02652784 4.95036400 0.0000000000000015551795962
4 3.58416054 316947.18652286 6.34539300 0.0000000000000025682581062
5 3.58631725 316798.62943908 5.33122900 0.0000000000000031580640880
6 3.58416054 316947.18652286 5.70532700 0.0000000000000025682581062
7 3.57197980 318598.12440483 5.02208700 0.0000000000000007832276494
8 3.58129094 317297.26658455 4.48670100 0.0000000000000052726920052
9 3.55874645 321056.91897760 5.24096100 0.0000000000000029767854848
10 3.56425191 319796.55646024 4.27009700 0.0000000000000074610456702
11 3.56580991 319474.47496300 4.96899400 0.0000000000000021770779624
12 3.56969780 318969.32327599 4.97791500 0.0000000000000025769317236

Table 9.4: Dirichlet BVP in 2D with all points as neighbor
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Weight
Function

Condition
number of A

Condition
number of IM1

CPU time Error

1 16.44907755 73100149.68885227 2.85441800 0.0000000000000000052041704
2 16.44447491 73805181.49060351 2.61437800 0.0000000000000000052041704
3 16.44617011 73688822.76493615 3.04564300 0.0000000000000000034694470
4 16.44451194 73799099.12972730 3.12241900 0.0000000000000000069388939
5 16.44444640 73809550.56094065 2.94602600 0.0000000000000000043368087
6 16.44451194 73799099.12972730 4.18206000 0.0000000000000000069388939
7 16.44473362 73762909.19764405 3.32911300 0.0000000000000000039031278
8 16.44455501 73792036.50716364 3.86452700 0.0000000000000000073725748
9 16.44791726 73585578.11070329 3.62543900 0.0000000000000000043368087
10 16.44486785 73741563.44173692 4.54642600 0.0000000000000000052041704
11 16.44486245 73742637.63867536 3.22718700 0.0000000000000000088904578
12 16.44473453 73762691.04516909 2.82934000 0.0000000000000000095409791

Table 9.5: Dirichlet BVP in 2D with only surrounding points as neighbor

Weight
Function

Condition
number of A

Condition
number of IM1

CPU time Error

1 14229997787508984.0 3400.28016366 5.072536 0.0123096982204164567820
2 11595833427435300.0 752.53410099 5.297743 0.1381858973873894558259
3 18103654320350228.0 950.48046050 5.579455 0.0392455408173058920007
4 50839067389589288.0 914.23815890 5.203202 0.0641844476500233046545
5 1991531716173526016.0 1308.01209024 5.707144 0.0250095230928756434574
6 50839067389589288.0 914.23815890 5.264706 0.0641844476500233046545
7 26173415440907664.0 894.96949313 5.435310 0.1435059837874680943592
8 21662542129326736.0 957.92204810 7.786391 0.0479777199081498004207
9 7787563318858249.0 773.18774495 6.708736 0.0536343368272961390497

Table 9.6: Neumann BVP in 2D with all points as neighbor
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Weight
Function

Condition
number of A

Condition
number of IM1

CPU time Error

1 75.27867417 113731.06493480 3.306129 0.080075652549520148770767
2 86.50816935 117861.37174652 3.709107 0.080111858098469268529839
3 81.57021890 117025.62751937 4.893839 0.080106017553647046458564
4 13777359204508062.0 117611.02805440 3.577892 0.002870457271874432558789
5 85.82097444 117762.77461266 3.600470 0.080114089464901533377272
6 85.49372046 117611.02805440 3.773402 0.080109705128965202902691
7 82.58371069 116391.03100269 3.482546 0.080117308700642569929684
8 84.44685277 117336.58926021 3.327916 0.080107763179655622209907
9 78.85005936 116752.68320127 3.968903 0.080103177261958952160014

Table 9.7: Neumann BVP in 2D with only surrounding points as neighbor

Weight
Function

Condition
number of A

Condition
number of IM1

CPU time Error

1 138.43244883 551.02545203 3.262596 0.0000000000000933703114837
2 21.95919098 86.42688419 4.107031 0.0000000000000035527136788
3 334569614411849.0 383.49961920 2.670136 0.7978818552605728697812992
4 576567944851310.0 329.89796258 2.552536 1.1539551286251454875753097
5 1877844056983399.75 311.44726095 5.316212 0.4644728656054902260486017
6 576567944851310.0 329.89796258 2.713129 1.1539551286251454875753097
7 2791144685591203.5 297.50915993 2.385044 0.5111209069308185748425899
8 231721886793789.312 338.21671399 2.843871 0.2421755878832540231915260
9 27.20252167 154.13431804 3.065251 0.0000000000000055511151231

Table 9.8: Helmholtz BVP in 2D with all points as neighbor
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Weight
Function

Condition
number of A

Condition
number of IM1

CPU time Error

1 137.39167030 598.47827253 2.178279 0.0061357488740070298405
2 35.05215468 339.45836745 2.605127 0.1693104861677082739745
3 33456914411849.0 383.49961920 1.436225 0.7978818552605728697812
4 576567944851310.0 329.89796258 2.473082 1.1539551286251454875753
5 1813721827505988.25 311.44726095 1.469909 0.5688624496879986918287
6 576567944851310.0 329.89796258 2.824943 1.1539551286251454875753
7 2791144685591203.5 297.50915993 2.214847 0.5111209069308185748425
8 231721886793789.3125 338.21671399 2.823380 0.2421755878832540231915
9 31.07932420 154.13431804 2.865604 0.1103524175408763241534

Table 9.9: Helmholtz BVP in 2D with only surrounding points as neighbor

No. of
Points

Iterative
Methods

Condition
number of A

CPU time Flag Iteration Error

10 1 16.44907755 5.197217 0 11 0.0000000000000000485722573
10 2 16.44907755 4.317186 0 9 0.0000000000608329875188829
10 3 16.44907755 4.076477 0 2 0.0000000000157148252744044
10 4 16.44907755 6.103348 0 11 0.0000000000000000286229374
10 5 16.44907755 17.081977 0 14 0.0000000000674042727015489
20 1 73.08328573 11.355607 0 26 0.0000000001367407957697520
20 2 73.08328573 9.650954 0 19 0.0000000001958625223813515
20 3 73.08328573 9.295604 0 4 0.0000000009466645084477664
20 4 73.08328573 16.725614 0 26 0.0000000001611102883047888
20 5 73.08328573 20.653403 0 41 0.0000000000693329712218860

Table 9.10: Poisson Dirichlet Problem in 2D with neighboring points around the 
central particle according to Algorithm-1
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9.5. Conclusion for Algorithms

No. of
Points

Iterative
Methods

Condition
number of A

CPU time Flag Iteration Erroi

10 1 27306.82695862 3.954169 0 38 0.000000001286860380408927-:
10 2 27306.82695862 6.100721 1 49 0.0000079860840650567560531
10 3 27306.82695862 5.828619 3 16 0.0135441970985972943986031
10 4 27306.82695862 5.314301 0 40 0.0000000029931502294050501
10 5 27306.82695863 17.312218 0 91 0.0000000064297413704048061
20 1 97434441.80001177 36.447269 0 308 0.0000000232229382911286471
20 2 97434441.80001177 80.439117 1 2 0.0226117573227653592682351
20 3 97434441.80001177 18.853217 3 27 0.0200884112853631432993311
20 4 97434441.80001177 17.451144 0 335 0.000000032719853184509650',
20 5 97434442.47474562 26.315135 0 1060 0.0124134061036233912106441

Table 9.11: Poisson Dirichlet Problem in 2D with neighboring points around the 
central particle according to Algorithm-2

No. of
Points

Iterative
Methods

Condition
number of A

CPU time Flag Iteration Erroi

10 1 27306.82695862 4.112913 0 38 0.000000000679704754286136';
10 2 27306.82695862 5.127650 1 45 0.0000095536913723489463861
10 3 27306.82695862 7.280873 3 18 0.013544197098991796537892^
10 4 27306.82695862 4.632069 0 38 0.000000001553805608484060]
10 5 27306.82695870 16.716050 0 88 0.0000000031269580917647751
20 1 97434441.95551975 18.802345 0 360 0.000000434240064999674713]
20 2 97434441.95551975 43.941537 1 2 0.02261175732276522742925K
20 3 97434441.95551975 28.715431 3 34 0.0200884112853662172293311
20 4 97434441.95551975 16.851560 0 304 0.0000000113316373819005721
20 5 97434442.14432764 27.289348 0 1046 0.0124104519656777108338461

Table 9.12: Poisson Dirichlet Problem in 2D with neighboring points around the 
central particle according to Algorithm-3
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