
Chapter 10

Application of Wavelet Methods and 
FPM to Industrial Problems

In this chapter, we have made an attempt to develop two mathematical models of real life 
problem. We have solved one model by wavelet technique and another model by FPM technique 
and then we have compared them with the finite difference solution.

10.1 Numerical Simulation of of Cooling of Coke in a 
Can

10.1.1 Introduction

People like to drink cold coke. Unfortunately, cold coke is not always available. So, we try to 
make the coke cool by putting it into the refrigerator. Now, the natural question arises how 
much time we have to put the can into the refrigerator so that we will get a cooled coke. We have 
made an attempt to study the cooling process of coke in a refrigerator. We may assume that 
the can has a temperature of 24°C originally, and the refrigerator is at 4°C and then we shall 
try to simulate how the heat diffuses out of the can containing coke. Initially, we have presented 
a mathematical model under certain assumptions. After doing necessary transformations and 
scaling of the problem, we have used numerical scheme to solve the problem for heat diffusion 
to achieve our objective.
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10.1. Numerical Simulation of of Cooling of Coke in a Can

10.1.2 Mathematical Model

We shall begin with the geometry of can. A can of coke is usually almost like a cylinder. 
We shall consider that the 1/2 liter can have radius of rc = 32 mm and the height is about 
hc = 160 mm, approximately (see Figure-10.1). The process of heat conduction is unsteady 
or transient if the temperature field varies with time, i.e. the body is being heated or cooled. 
If a solid body is subjected to sudden heating or cooling, sometimes it must lapse before an 
equilibrium temperature is reached. It is during this intrim period that the change in internal 
energy of the body as the time takes place whereupon the temperature profile that the body 
can be represented by the three dimensional heat conduction partial differential equation which 
reads as follows: C\rT~'

pC— = V-(kVT) + f(x,y,z,t), (10.1)

where T(x, y, z,t), p, C, K, and f(x,y,z,t.) are respectively, the temperature, the density, the 
specific heat, the heat conductivity, and the heat source per unit time per unit volume, at a 
point (x, y, z) at time t.

Here, we assume the following:

• The physical properties of coke are equal to water because most of the coke is water.

• The numbers p, C, and K which we are going to mention in our simulation will vary with 
pressure and temperature. These numbers will be the approximate numbers at the room 
temperature and with earth pressure.

• There is no generation of heat in coke, i.e. /(x, y, z, t) — 0.

Thus, the equation (10.1) can be reduced to
f = ^v-(VT). (10.2)

So,
dT _ Jc_ (d*T cFT d2T\
dl. pC \ rlx2 t)y2 dz2 )

Now, assume that there is no variation of heat in 2-direction which shows that the temperature 
is a function of x, y and t only, i.e.

T = T(x, y, t).

So, equation (10.2) can be represented as

c)T(x,y.t) k
dt =^v-(vr(x,j/,t)), (io.3)
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r=32mm
L

A

h =160mm

Figure 10.1: The Can of Coke

which gives
9T(x, y, t) _ k (d2T(x, y, t) d2T(x, y,t)\ 

dt pC \ dx2 dy2 )

In general, the assumption dT/dz = 0, will not be true. However, if the bottom and the top of 
the can are insulated, it will be a reasonable assumption. So, it is reasonable to consider that 
all changes in temperature are in (x, y) directions. Also, if the height of can of coke is much 
larger than the radius, then the temperature variations in 2-direction will be small enough. In 
this situation also, dT/dz = 0 is a reasonable assumption.

Now, we shall convert equation (10.3) into the polar co-ordinates as the can of coke is al­
most a cylinder. So, we have a two-dimensional problem with circular geometry. We may take 
the solution as radially symmetric where the coordinate system is placed with the assumption 
that the origin is at the center of the base circle of the can. Physically, this assumption is a rea­
sonable one because the temperature is constant initially which is radially symmetric function 
and the boundary is also symmetric. Therefore, the heat flow will be symmetric.

If x = r cos 6, y — r sin 6, and z — z, then we have

V(VT) = V!r = AT=~ (r^-) 1 d2T d2T
+ a?'
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But we assumed that

Thus, we have

dT
dz

= 0.

V-(VT(r,t)) ld_ 
r dr

pT{r, t) 
dr

(10.4)

Thus, equation (10.3) can be written as

dT(r,t) k_l 
dt pC r dr

dT(r, t) 
dr

(10.5)

When we want to solve the equation (10,5), we need certain initial conditions and boundary 
conditions. We have assumed that the temperature of coke is 24°C' initially, i.e.

T(r, 0) = To(= 24°C). (10.6)

If the refrigerator is large compared to the can of coke, we can assume that the air in the refrig­
erator is constant at 4°C, i.e. temperature of the refrigerator is Tr = 4°C'.

Now, Newton’s law of cooling says that the heat flow out of the boundary is proportional 
to the difference between the temperature in the coke and the temperature in the refrigerator, 
i.e.

= hTAT(re,t)-TR). (10.7)

Here, the heat transfer coefficient is usually be approximated by

= 5
W

rrfiK'
(10.8)

when the air is not moving. However, if the air in the refrigerator starts to move, the coefficient 
hrc will increase. If the coefficient increases very much, we may get the boundary condition:

T{rc,t) = Tr. (10.9)

If we assume that
dT(rc,t)

dr < oo,

and when hrc -* oo, we say that (10.9) follows from (10.7). The boundary condition at r = 0 
(see Figure-10.2) is given by

dT
dr

(0,0 = 0.

We assume that (10.9) is valid and we write the full system as

dT(r,t)
dt

_k_ld_ 
pC r dr

.ar(r,t)
dr

(r,t) e (0, rc) x (0, tend)

(10.10)

(10.11)
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dT(0,t)_
Or

T(rc,l) = Tr\

T(r,0) = T0.

If Newton’s law of cooling is used for the boundary, then (10.13) is replaced by

, 0T(rc, t) , /rr/ ^
—7^— — hrc (T(rc, t) - TR) .

(10.12)

(10.13)

(10.14)

(10.15)

10.1.3 Dimension Analysis

Now, we would like to scale our problem in the following way:

r
; f = T-Tr

To-Tr
and t = — 

tc
(10.16)

where rc — 0.032 m, TR = 24°C, and tc is the characteristic time. It can be proved very easily 
that

ld_ 

r dr

OT
dt

OT
Or

To - Tf 
tc

T0 ~ Tr

dT
~df'

1 d
rdr V dr

df

The Newton’s law of cooling on scaled form can be written as

(10.17)

(10.18)

k dT(l.t) 
hTcrc Or

T(Ml (10.19)
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10.1. Numerical Simulation of of Cooling of Coke in a Can

So, equation (10.11) can be written as

df = _k_ (T0-Tr\ ld_ f_df\ 
dt pC \ rj? ) fdf \ df )

So,
9T _ Jcfc_l d_ ( dT\ 
dt pCr\ f df \ df )

Now, put

tc =
pCr2c

k
So,

dT_ld_ (.dT\ 
dt fdf\df)'

Thus, we have the following set of equations:

df = l_d / df 
di f df \5f

(f,i) e (0,1) x (0,iend)] (10.20)

^ = o-
Br ’

(10.21)

f(l,t) = 0; (10.22)

f(f,0) = l; (10.23)

Now, we define f — u and f ~ x, and write the above system as:

du 1 d f du\ , _ - .ffi ~ f di j ’ (^ € (°’ ^ X (0, (10.24)

|(°.<) = 0; (10.25)

u(l, i) = 0; (10.26)

u(x, 0) = 1; (10.27)

where hTc = oo. When hrc < oo, (10.25) is replaced with

hTcrc dx
(10.28)

Note that these equations are in dimensionless form.
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10.1. Numerical Simulation of of Cooling of Coke in a Can

10.1.4 Finite Difference Method

Now, we shall use stable finite difference method to solve the equations (10.24) - (10.27). Equa­
tion (10.24) can be written as follows:

du 1 d f du \ 
dt x dx \ dx)

i.e.

So, we have

with the boundary conditions

du
dt

du 82u
1!h+Xd^

du
dt

1 du 
x dx

d2u
dx2

(0. t) = 0;
du 
dxK 
u(l,t) = 0;

u(x, 0) = 1.

(10.29)

(10.30)

(10.31)

(10.32)

We have considered only the case when hrc = oo, but not the case when hrc < oc. Now, we 
shall use explicit finite difference method to solve equations (10.29) to (10.32).

Now, in general we know the following descretizations
'du\ Ui+1 — Ui
*)i

d2u
dx2

At

Ui+i — 2 Ui + Ui-1
(Ax)2

O(Af);

+ O ((Ax)2) .

Using above finite differences, we have the following discretization of equation (10.29): 

u(i + 1, j) = u(i,j) + [u(i,j + 1) - u(i,j)\ + [u(i,j + 1) - 2u(i,j) + u{i,j - 1)].
xAx

Our numerical algorithm is as follows:

(Ax)2
(10.33)

1. Input time step-size and space step-size.

2. Input initial conditions or boundary conditions, (i.e. equations (10.31) and (10.32))

u(i, m -I- 1) = 0; i = 2 : n + 1, 

u(l,j) = 1; j = 1 : m+ 1.
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3. Evaluate u(i + l,j) by the formula (10.33).

4. Use the condition (10.30), i.e.

u(i + 1,1) = u(i + 1,2); for i = 1 : n.

5. End

10.1.5 Numerical Simulation

We use the following data to do numerical simulations:

1. We assume that the physical properties of coke and water are equal. Therefore,

p = 1000 kg/m2 3; C = 4200 J/kg o K\ k = 0.58W/moK.

2. Radius and temperature is taken to be

r,, = 0.032 m; TR = 4°C; T0 = 24°C.

3. We may calculate tc according to the formula

_ pCrl 
c k ’

We have used Matlab software to run our program.

10.1.6 Results and Discussion

The solution of this model is calculated by Finite difference method and wavelet method using 
preconditioning concepts. The simulation results shows that:

1. At time t = t\ (say), as displacement increases from the center of the can of coke, the 
temperature of coke is 1 for certain displacement and then it fall down.

2. As time I, = t.2, as displacement increases from the center of the can of coke, the tempera­
ture of coke is 1 for certain displacement and then it fall down.
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Temperature distribution of coke in can

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Displacement from center of coke in can

Figure 10.3: Numerical Simulation of Cooling of Coke in a Can

Figure-10.3 shows the temperature profile of coke in a can at various time. It is obvious that 
as we move along the radius of can of a coke towards the boundary, the temperature of the 
coke decreases, i.e. as time increases the temperature falls down very rapidly. The error FPM 
solution and wavelet solution is 10-2. As discussed in Chapter 7, 8, and 9, we have used the 
preconditioners of the type ILU (0) and GMRES method to solve the linear system of equations.

At | WwG ~ UEFD\\

0.01 0.1450 e - 2
0.02 0.2415 e - 2
0.03 0.8450 e - 2
0.04 0.9450 e - 2
0.05 1.2 e - 2

Table 10.1: The relative error at different time steps.

Temperature at 100th step of time interval 
— Temperature at 200th step of time interval 

Temperature at 300th step of time interval 
Temperature at 400th step of time interval
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10.2 Mathematical Models for Pressure Distribution in 
a Slider Bearing Lubricated with Viscous Fluid

10.2.1 Introduction

The term lubricate means: to make smooth, slippery or oily in motion. Lubricants are used 
to reduce friction. Today’s technology demands sophisticated lubricants which can be solids, 
liquids, or gaseous which perform very well even in bad environment. Lubricants form a layer 
between two surfaces and thereby prevent there direct contact, which reduces friction between 
the moving parts. However, there are a number of factors to be taken into account while 
deciding the nature of lubricant which may be suitable for given application. The properties of 
lubricants like pressure, viscosity, ignition temperature, and thermal conductivity are important. 
The pressure distribution in the bearing should be known for proper functioning of machinery. 
Some mathematical models are presented for simulating various bearing configuration.

10.2.2 Navier-Stokes Lubrication Equations

The study of the motion of fluids is very much important to lubrication: the displacement of 
two solid surfaces by a thin film of fluid. The forces that allow a thin film of fluid to separate 
the two even under very heavy loads are connected by the hydrodynamic forces. Hence, hydro­
dynamics is a basic element of lubrication theory. However, hydrodynamics alone is insufficient 
to describe the full reality of lubrication, because the lubricant properties are temperature de­
pendent. Moreover, viscosity is a dissipative agent, turning mechanical energy into heat energy 
which gives itself as a temperature change in the fluid. Thus, in many areas of lubrication, one 
must consider thermal effects which are linked through the viscosity to the hydrodynamics of the 
system. Another basic element of lubrication theory is the relationship between hydrodynamics 
and flow channel. The geometry of the flow channel can change with pressure if the surface are 
complicated. This couples hydrodynamics with deformation mechanics.

The basic equations of hydrodynamics for a viscous fluid are the Navier-Stokes equations. Al­
though Navier-Stokes equations are rather complicated, but the approximations can be made for 
study of lubrication because the lubrication involves thin films of fluids. The thin film approx­
imation is the classical approximation for boundary layer theory. However, in addition to the 
thin film approximations, in most of the situations, the lubricant is so viscous that momentum 
convected by the fluid is insufficient. In this situation, one can remove inertial terms in the 
Navier-Stokes equations and develop from them the Reynold’s equations, which is the nucleus
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of the hydrodynamics of lubrication. The Reynold’s equations provide a relationship between 
the fluid pressure, film thickness, fluid velocity, speed of the lubricated surface, and geometry 
of the lubricant channel.

Now, we shall present steady-state Navier-Stokes lubrication equations.

Steady-State Navier-Stokes Lubrication Equations

Consider the lubricant channel as shown in the Figure-10.4. In two dimensions, the Navier-

z
Figure 10.4: Schematic of Lubricant flow channel

Stokes equations can be represented as:

du
dx

du du\
Ox

dw

dz)

dw
+ a7 = 0- (10.34)

dp I(d2u d2u\
(10.35)

-~£+Mydx2 dz2 ) '

dp If d2w d2w\
(10.36)= -£+»(dw 

+ tv- ax iJz
where p, p. and p are density, kinematic viscosity, and pressure, respectively, u and w are velocity 
components in x and 2 directions, respectively. Now, we change to dimensionless variable to 
scale the equations. Let u = upu, x = Lx, z — Iz, w = wqw, and p = Pp. With these new 
variables, equation (10.34) becomes
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or du dww0L_ 
dx + dz l up

Since u will depend on x, neither term of the continuity equation can be removed. So, reasonable
Uplvalue of wq is wq = ~f~. So, 

Now, equation (10.35) becomes

du dw
— 0.

dx dz
(10.37)

, _u„du u„du P dp ( (upd2u ( upo*u 
LdS+IJ'\lPd¥ + ¥d¥

d2u

So,
u2du wqwupdu\ _ P dp pup f d2u ( l \2 d2u\

"iutm + l dz L dx l2 \dx2\L dz2)

Since j- « 1, the term containing l/L can be removed. Then rewriting the above equation, we
have

So,

Let

put (_du _du\ Pdp pupd2u
~l + ^~Im^~Wd¥'

ptf, i2
L pup + w

du P l2 dp d2u
dz) L pup dx dz2

pupL

Then, above equation reduces to

pUpL / Is 2

p \L

P

_du _du 
u— + w— dx dz

Hence, we finally get

R _du _du 
dx dz

dp d2u 
'dE + d¥'

dp d2u 
dx dz2 ’

(10.38)

where R is the Reynold’s number and is given by

R PUpL

In general, for many lubrication problem R (-jr)2 « 1. So, the left side of equation (10.38), i.e. 
the inertial term can be removed. Hence, we get

dp _ d2u 
dx dz2'

(10.39)
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In a similar fashion, equation (10.36) becomes

wodw\ _ j 
l dz) l dz

_ Wq dw _ Wn dw

n“'“Tai + W0’ii
P dp f Wod2w\+M{ea^)+f‘ f Wo cPw\

\ww)

So, we have

Hence

_ ulj. dw wwLl dw
91 u 1? + IFHi

ulldw wulldw\
p[uUds+~Wm)

fiUpLdp i fiupld2w ' pupd2w 
' P dS + ~l?~d& + IL dz2'

fiUpLdp i p.up 
__ + __

l \ 2 d2w d2w
L) dx2 dz2

Since (|) « 1, we can neglect the first term in the right hand side brackets. Hence,

u2l dw A wu2l dw"\ __ impL dp p.up d2w

So,

Finally, we have

p\UL2dx + L2 dz)

pull P _dw pull l3 _dw 
-u-xr + —------ -w-

P dz IL dz2'

dp fj,up l3 d2w
L2 pupL dx 1? pupL dz dx IL pupL dz2 ’

R L
dw du 

u— + w— dx dz
M + (L
dx \L

d2w
(10.40)

Since R (|)4 is negligible, the left hand side of equation (10.40) is essentially zero. Further, 
second term on the right hand side is also negligible, since (j)2 << 1. So, from equation 
(10.40), we have only

^ " (10.41)
dz

o.

So, equation (10.37), (10.39), and (10.41) constitute lubrication equations in two dimensions.

In three dimensions, if we take v = upv, and y — Ly, we get an equation similar to (10.38). So, 
the lubrication equations in three dimensional form of equations are as follows:

du dv dw 
dx^~ dy^ dz ’

dp _ d2u 
~dx P‘~d^'
dp _ d2v 
dy 9 dz2'

dp
dz 0.

(10.42)

(10.43)

(10.44)

(10.45)
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We have derived the Navier-Stokes equations with constant viscosity. Now, we shall remove this 
restriction. Define shear stresses t'xz, r'yz on an element of fluid as shown in the Figure-10.5. A 
force balance on the element of the fluid gives

dp
dx

<Kz
dz

Now, if the fluid is Newtonian, then we have

, du
Txz ^ dz'

dp
dy

yz

dKz
dz

dv 
dz'

From equation (10.46) and equation (10.47), we have

dp d ( du\ dp d ( dv\
dx dz \ dz ) ' dy dz \ dz) '

(10.46)

(10.47)

(10.48)

We can add more general form of the continuity equation, which is as follows:

d , d d dp
-{pu) + -(pv) + -(Pu,) + -=0. (10.49)

Reynold’s Equation for Viscosity Constant Across Thin Film

Now, we assume that p ^ p(z), but p — p(p). From first two equations of (10.48) we have

1 dp d2u 1 dp d2v
p dx dz2 ’ p dy dz2

Now, integrating equation (10.50) with respect to z with conditions:

u(0) = it0; «(0) = i*o,

(10.50)

270



10.2. Mathematical Models for Pressure Distribution in a Slider Bearing Lubricated with 
Viscous Fluid

and

we have
1 dp . (h — zu = ^giz{z-h) + ^{-iT

u(h) = v(h) = 0, 

1 dp
(10.51)

Now, assuming p ^ p{z) and integrating the continuity equation (10.49), we shall get

l i{fu)dz+S0 ^(pv)iz+l l*=0’
fh d fh d dp

I di(PK)iZ + i gjM<fc + Mft)+g^ = 0,
(10.52)

where w(h) = ||. But, Leibnitz’s rule says that

d_
dt

r rKt)'
Ja(t) ,

db da m
dt dx.

So, equation (10.52) becomes

d rh / ® fh/ \j dph
I (pu)dz + — / (pv)dz + 0.dx JQ u'U7“~ ' dy JQ ' dt

Since p ^ p(z) is assumed, it can be reduced from integral, from equation (10.51), we have

(10.53)

f udz
-1 dp 3 Ugh 
12p dx 2 : f vdz

1 dp s vah 
+ 2 ‘12 pdy

(10.54)

Note that uq and v0 could be dependent on x, y, and t. Substituting equation (10.54) into 
equation (10.53), we have

l.Q(zL^Eha + ^\+~o(—^3 ■ v°hdx^\12pdx 2 ) dy \12pdy

So,
d_ ( !—®e \ + — {eH®p\ _ ioM _ kdx \ p dx) dy \ p dy) dt 0.

Finally, we have

d_ (pllf_dp\ dfph?dp\ dph
dx\ p dx) dy\ p dy) dt (10.55)

which is the Reynold’s equation for unsteady, compressible flow with restriction that p p(z) 
and p 7^ p(z).
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10.2.3 Slider Bearing

Model 1: Mathematical Model using Reynold’s Equation

Consider the slider bearing geometry as shown in Figure-10.6. A simple slider bearing has two

■5».

u p

Figure 10.6: Lubricant flow channel with varying height

surfaces of given profile separated by a gap filled with the lubricant. One surface moves with 
velocity up related to other surface. From equation (10.55), we get

d_
dx = 6 fiup

dh
dx

Integrating above equation, we have

dP R 
Tx = ef,u'

h — c 
h3

(10.56)

With p(0) = p(L), integration of above equation from 0 to L gives the constant of integration. 
So, we have

Define
I run —

X mdx 

hn
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Then
4)2
4)3

Now, integrating equation equation (10.56) from 0 to x, we obtain the pressure as follows:

p(x) = 6 pup

For design purpose of bearing, it is better to calculate load. Load is defined as follows:

r r dx' ^02
1---"h

[Jo hW 4)3 Jo h3(x')

Lw = p(x)dx.

After some calculation, we have

w = 6 pup
4)2'13

-I12
'03

Model 2: Sophisticated Model

In [PPU02], we have proved that bearing with parallel plates can support no load. Now, we 
assume that bottom surface is flat and the profile of top surface is given by 2 = h(x). If we scale 
h(x) by lh(x), we again have the same equations as equations (10.37), (10.39), and (10.41). Let 
p(x) be the pressure inside the fluid. From equation (10.39), we obtain u by integrating twice. 
We have

dp z2

Now, impose boundary conditions 

and

we have

+ C2 z + C3.
dx 2

u = 0 at. 2 = 0, 

u = 1 nt z = h(x)

z2 — zh dp z 
u = ---- 1------— +2 dx h

Now, from continuity equation (10.37) and w = 0 at 2 = h(x), we get

h3(x) ... h2(x) dh ... 1 dh
+ iTxr(i) + 55 =

We can assume that h(x) — k\X H- k2x and if we let ki = k2 = 1, we have

6A;j_ k\t\
p(x) =

k i x F /l2 (k i x )2 ^2-

273



10.2. Mathematical Models for Pressure Distribution in a Slider Bearing Lubricated with 
Viscous Fluid

where and e2 are determined by putting p = 0 at z = 0 and 2 = h(x). So,

2.x(l — x)p(x) =

and load is given by

w

(1 + x)2

= / p(x)dx. 
Jo

Model 3: Mathematical Model with a Pressure Difference at the Boundaries

In earlier models, it was assumed that the pressure was zero at x = 0 and z = L. The problem 
will now be considered in which the boundary conditions are p(0) = p\ and p(L) = p2. We 
may simplified the analysis by recognizing that the solution for up = 0 with a pressure gradient 
simply superimposes on the solution with a finite up. Thus, the Reynold’s equation (10.55) is 
reduced to

0.

Integrating, we have

So,

But p(0) = pi, so 

Now, p(L) — p2 gives

Hence,

dp C 
dx h3

p(x) = C

P2

Pl = Ci.

L dx'
7p= CJJo

+ P i-

P2 ~P\
m3

C.

So. equation (10.57), (10.58), and (10.59) gives

/ ^ P2-P1 r dx'
p(x> = ----  / TT

m3 Jo d + P i-

and the load is given by

w ■■
f p(x)dx — Pl(h/o3 — I13) + P2L. 

Jo m3

(10.57)

(10.58)

(10.59)
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Figure 10.7: Pressure Distribution in Slider Bearing

upper parts of Figure-10.7 shows the pressure distribution in a slider bearing with pressure 
zero at end using model 1 and model 2. Two lower parts of Figure-10.7 shows the pressure 
distribution in a slider bearing with some pressure difference between the ends. We have also 
calculated load. The load according to the first and second model is given by 9.1589 e — 7 and 
6 log 2 e — 4, respectively. According to the third model, the load is 3.6667. This paper deals 
with the modelling part of lubrication theory and it may be useful to an engineer to search 
for the validity of our predicted theoretical results and investigate the new design of bearing to 
extract better benefits of lubricants. The error between analytical solution and FDM solution 
is discussed in this chapter. We have used GMRES method and wavelet preconditioning. The 
error is of 10~2.

0.4 0.6
x-axis

10.2.4 Results and Discussion

The analytical and numerical study of a slider bearing with some viscous lubricant is considered. 
The pressure distribution and load on bearing is calculated using perturbation techniques. Two

10.2. Mathematical Models for Pressure Distribution in a Slider Bearing Lubricated with 
Viscous Fluid
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