Appendix A

Some More Definitions, Theorems,
Lemmas, and Corollaries

A.l The Modulus Operator

Let n E Z then
n=npq+r (A

where p, g, r £ Z. We denote q the quotient of n divided by p and r is the remainder of that
division. The g and r not uniquely determined from p and n but given p, n we speak of the
uniquely equivalence class consisting of all values of r fulfilling (A.l) with ¢ £ Z. However,

one representative of this equivalence stands out. It is called the principal remainder and it is
defined as

r—nmodp=n-p " (A2)

where [] denotes the nearest integer towards zero.

This is the way modulus is implemented in many programming languages such as Matlab.
While mathematically correct, it has the inherent inconvenience that a negative r is chosen for
n < 0. In many applications such as periodic convolution, we think of r as being the index of
an array or a vector. Therefore, we wish to choose a representative where r6 [0,p — 1] for all
n 6 Z. This can be accomplished by defining

n

r=(Mp=n-p (A3)
v

276



A.2. Moments of Scaling Functions

where \n/p\ denotes the nearest integer below n/p. We have introduced the notation (n)p in
order to avoid confusion, and we note that

(n)p =n mod pforn > 0,p > L (A.4)

For practical purpose (n)p should not be implemented as in (A.2); rather, it should be written
using the built-in modulus function modifying the result whenever needed.

Definition A.1.1 Let n be given as in (A.l). Ifr =0, we say that p is a divisor of n and we
write
pin (A5)

It follows that for all p, g, n, r € Z. we have

pl(n—r) (A.6)
and
qgl(n-m (A7)
Lemma A.1.1 Let nx, n2, q € Z. Then
(nx £ n2)qg = (ni £ (n2)q)g (A.8)
(nxn2)q = (ni(n2)q)q (A.9)
Proof: See [Nie98]
Lemma A.1.2 Letk, n, g€ Z. Then
k{vi)g — (kn)kg (A.10)

Proof: See [Nie98].

A.2 Moments of Scaling Functions

Consider the problem of computing the moments as given in (1.40):

Mf = O xp<px — )dx, |,pe Z. (ALl
J-oc
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By the normalization (1.11), we note first that
MP =1, leZ | (A12)

Let ! = 0. The dilation equation (1.31) then yields

M} = /Oo P P(z)dz
= \/—Z(zk/ w”¢2x k)d
k_o -
= Yoy — k)dy, y=2z
zz N
D-1 <
k=0

To reduce the number of unknowns in (A.13), we will eliminate M} for k s 0. Using the variable
transformation y = z — I in (A.11), we get

w o= [ Z(y+l>ﬂ¢(y)dy

= i ( i )3’"“ /_ : ¥ o(y)dy

==

MP = Z( )zf"—“Mg*. : (A.14)

n=0

or

Substituting (A.14) into (A.13), we obtain

VZId _

Mg = 2p+1§:“’°2< )kp "Mg
D-1

Mg

g g; akkp“" + —gp*ﬁﬂffo Z ar.

Solving for MY yields
’ \/§ p~1 p D-1
M=y () L e (A.15)

Equation (A.15) can now be used to determine the p** moment of ¢(z), M} for any p > 0. For

p =0, use (A.12). The translated moments M} are then obtained from (A.14).

278



A.3. Circulant Matrices and the DFT

A.3 Circulant Matrices and the DFT
Definition A.3.1 Circulant Matrix: Let A be an Nx N matrix and leta = [a0, a2 111 ,ajv-i]T
be the first, column of A. Then A is circulant if

[Am.n = a(m-n)N1 HI, U = 0, 1, (NN ,A — 1

Definition A.3.2 Discrete Convolution: LetX = [xo0,Xi,E2, ', Xjv-i]T and, define y and
z similarly. Then

z—Xx*y
is the (cyclic) convolution defined by
N-—1
zm = "N xny{m-n)N, m=0,1,2,++ N -1 (A.16)
n=0

Definition A.3.3 Discrete Fourier Transform: Let {xj}™! be a sequence of N complex
numbers. The sequence {xfc}c=0 defined by

N-1
Xt =5=u*"* t=012,+1 ,N-1, (A.17)

(=0

where 1jn — ¢,2ir"N, is the discrete Fourier transform of {x/Jj-ql.

Definition A.3.4 Inverse Discrete Fourier Transform: Let {X;}™ and {xk}k=0 be
given as in Definition A.3.3. Then the discrete Fourier transform (IDFT) is defined by

awi

X( = —"“><fu$, *=0,1,2,--- ,N—L (A.18)
v fc=0

Both the DFT and the IDFT can be computed in O(N log2 N) steps using the fast Fourier trans-
form algorithm (FFT). The link between DFT and convolution is embodied in the convolution
theorem, which we state as follows:

Theorem A.3.1 Convolution Theorem:

z — xX*y~z —diag (X)y.
Proof: See [Nie98].
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Corollary A.3.2
X*xy=¥yx*xX.

Proof: See [Nie98].

Lemma A.3.3 Let A and a be defined as in Definition A.8.1 and x € RV then

Ax=ax*x
Proof: See [Nie98].
Theorem A.3.4 A is circulant & A = F_I‘VlAaFN, A, = diag(a).
Proof: See [Nie98].
Theorem A.3.5 Circulant matrices with the same dimensions commute.

Proof: See [Nie98].

Theorem A.3.6 A is circulant < A~} is circulant.

Proof: See [Nie98].
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