
Appendix A

Some More Definitions, Theorems, 
Lemmas, and Corollaries

A.l The Modulus Operator

Let n E Z then
n = pq + r (A.l)

where p, q, r £ Z. We denote q the quotient of n divided by p and r is the remainder of that 
division. The q and r not uniquely determined from p and n but given p, n we speak of the 
uniquely equivalence class consisting of all values of r fulfilling (A.l) with q £ Z. However, 
one representative of this equivalence stands out. It is called the principal remainder and it is 
defined as

r — n mod p = n — p n
P

(A.2)

where [.] denotes the nearest integer towards zero.

This is the way modulus is implemented in many programming languages such as Matlab. 
While mathematically correct, it has the inherent inconvenience that a negative r is chosen for 
n < 0. In many applications such as periodic convolution, we think of r as being the index of 
an array or a vector. Therefore, we wish to choose a representative where r6 [0, p — 1] for all 
n 6 Z. This can be accomplished by defining

r = (n)p = n — p n
V

(A.3)
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where \n/p\ denotes the nearest integer below n/p. We have introduced the notation (n)p in 
order to avoid confusion, and we note that

(n)p = n mod pforn > 0,p > 1. (A.4)

For practical purpose (n)p should not be implemented as in (A.2); rather, 
using the built-in modulus function modifying the result whenever needed.

it should be written

Definition A.1.1 Let n be given as in (A.l). If r = 0, we say that p is a 
write

divisor of n and we

p | n (A.5)

It follows that for all p, q, n, r € Z. we have

p | (n — r) (A.6)

and
q | (n - r) (A.7)

Lemma A.1.1 Let nx, n2, q € Z. Then

(nx ± n2)q = (ni ± (n2)q)q (A.8)

(nxn2)q = (ni(n2)q)q (A.9)

Proof: See [Nie98].

Lemma A.1.2 Let k, n, q € Z. Then

k{vi)q — (kn)kq (A.10)

Proof: See [Nie98].

A.2 Moments of Scaling Functions

Consider the problem of computing the moments as given in (1.40):

rocMf = / xp<p(x — l)dx, l,pe Z.
J — oc

(A.ll)
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By the normalization (1.11), we note first that

Mf = 1, le Z.

Let 1 = 0. The dilation equation (1.31) then yields

/
OO

xv(j){x)dx
OO

(A-12)

-OO

D-1 r■\Z2 ^ dk / xp<p(2x — k)dx

fc=o 
£>-i POO■s/2 x-'2ht zJ °fc / - y = 2x

2P+r

k=0 
D-1

(A.13)
ft=0

To reduce the number of unknowns in (A.13), we will eliminate Mf for k =/ 0. Using the variable 
transformation y = x — l in (A.ll), we get

Mf /
OO

(y + i)p4>(y)dy

•oo

u*yiy*{v)dv
or

= E (!!)
n=0 ' '

Substituting (A. 14) into (A.13), we obtain

!>£( ;)*”**
t—n Tj=n ' '

(A. 14)

Mf
VS

2?+r
fc=0 n=0 
P-1 /

2p+i i—j \n n—0 N
^ E f!) M°” E + 2stm? E “*■■D—1

Jb=0 fe=0

Solving for Mf yields

Mf
V2 p-i

2(2P - 1)

D-l

E I KE^ (A.15)
n=0 ' fc=0

Equation (A.15) can now be used to determine the pth moment of <f){x), Mf for any p > 0. For 
p = 0, use (A. 12). The translated moments Mf are then obtained from (A. 14).
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A.3 Circulant Matrices and the DFT

Definition A.3.1 Circulant Matrix: Let A be an Nx N matrix and let a = [a0, a2, ■ ■ ■ ,ajv-i]T
be the first, column of A. Then A is circulant if

[Am.n = a(m-n)N ■ HI, U = 0, 1, ■ ■ ■ , A — 1.

Definition A.3.2 Discrete Convolution: Let x = [xo,Xi,£2, • • • , Xjv-i]T and, define y and 
z similarly. Then

z — x * y

is the (cyclic) convolution defined by

N-1

zm = '^j xny{m-n)N, m = 0,1,2, • • • , N - 1. (A. 16)
n=0

Definition A.3.3 Discrete Fourier Transform: Let {xj}^1 be a sequence of N complex
numbers. The sequence {xfc}fc=o defined by

N-1
xfc = 5>u*“ fc = 0,1,2, • • ■ ,N — 1, (A.17)

(=0

where ljn — e,2ir^N, is the discrete Fourier transform of {x/Jj-q1.

Definition A.3.4 Inverse Discrete Fourier Transform: Let {x;}^1 and {xk}k=o be
given as in Definition A.3.3. Then the discrete Fourier transform (IDFT) is defined by

awi
x( = -^xfcu$, ^ = 0,1,2,--- ,N — 1. (A.18)

v fc=0

Both the DFT and the IDFT can be computed in 0(N log2 N) steps using the fast Fourier trans
form algorithm (FFT). The link between DFT and convolution is embodied in the convolution 
theorem, which we state as follows:

Theorem A.3.1 Convolution Theorem:

z — x*y^z — diag (x)y.

Proof: See [Nie98].
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Corollary A.3.2

Proof: See [Nie98].

x * y = y * x.

Lemma A.3.3 Let A and a be defined as in Definition A.3.1 and x € RN then

Ax = a * x

Proof: See [Nie98].

Theorem A.3.4 A is circulant A = F^AJF/v, Aa = diag(a).

Proof: See [Nie98].

Theorem A.3.5 Circulant matrices with the same dimensions commute. 

Proof: See [Nie98].

Theorem A.3.6 A is circulant -£=> A-1 is circulant.

Proof: See [Nie98].
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