
Appendix A

Some More Definitions, Theorems, 
Lemmas, and Corollaries

A.l The Modulus Operator

Let n E Z then
n = pq + r (A.l)

where p, q, r £ Z. We denote q the quotient of n divided by p and r is the remainder of that 
division. The q and r not uniquely determined from p and n but given p, n we speak of the 
uniquely equivalence class consisting of all values of r fulfilling (A.l) with q £ Z. However, 
one representative of this equivalence stands out. It is called the principal remainder and it is 
defined as

r — n mod p = n — p n
P

(A.2)

where [.] denotes the nearest integer towards zero.

This is the way modulus is implemented in many programming languages such as Matlab. 
While mathematically correct, it has the inherent inconvenience that a negative r is chosen for 
n < 0. In many applications such as periodic convolution, we think of r as being the index of 
an array or a vector. Therefore, we wish to choose a representative where r6 [0, p — 1] for all 
n 6 Z. This can be accomplished by defining

r = (n)p = n — p n
V

(A.3)
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where \n/p\ denotes the nearest integer below n/p. We have introduced the notation (n)p in 
order to avoid confusion, and we note that

(n)p = n mod pforn > 0,p > 1. (A.4)

For practical purpose (n)p should not be implemented as in (A.2); rather, 
using the built-in modulus function modifying the result whenever needed.

it should be written

Definition A.1.1 Let n be given as in (A.l). If r = 0, we say that p is a 
write

divisor of n and we

p | n (A.5)

It follows that for all p, q, n, r € Z. we have

p | (n — r) (A.6)

and
q | (n - r) (A.7)

Lemma A.1.1 Let nx, n2, q € Z. Then

(nx ± n2)q = (ni ± (n2)q)q (A.8)

(nxn2)q = (ni(n2)q)q (A.9)

Proof: See [Nie98].

Lemma A.1.2 Let k, n, q € Z. Then

k{vi)q — (kn)kq (A.10)

Proof: See [Nie98].

A.2 Moments of Scaling Functions

Consider the problem of computing the moments as given in (1.40):

rocMf = / xp<p(x — l)dx, l,pe Z.
J — oc

(A.ll)

277



A.2. Moments of Scaling Functions

By the normalization (1.11), we note first that

Mf = 1, le Z.

Let 1 = 0. The dilation equation (1.31) then yields

/
OO

xv(j){x)dx
OO

(A-12)

-OO

D-1 r■\Z2 ^ dk / xp<p(2x — k)dx

fc=o 
£>-i POO■s/2 x-'2ht zJ °fc / - y = 2x

2P+r

k=0 
D-1

(A.13)
ft=0

To reduce the number of unknowns in (A.13), we will eliminate Mf for k =/ 0. Using the variable 
transformation y = x — l in (A.ll), we get

Mf /
OO

(y + i)p4>(y)dy

•oo

u*yiy*{v)dv
or

= E (!!)
n=0 ' '

Substituting (A. 14) into (A.13), we obtain

!>£( ;)*”**
t—n Tj=n ' '

(A. 14)

Mf
VS

2?+r
fc=0 n=0 
P-1 /

2p+i i—j \n n—0 N
^ E f!) M°” E + 2stm? E “*■■D—1

Jb=0 fe=0

Solving for Mf yields

Mf
V2 p-i

2(2P - 1)

D-l

E I KE^ (A.15)
n=0 ' fc=0

Equation (A.15) can now be used to determine the pth moment of <f){x), Mf for any p > 0. For 
p = 0, use (A. 12). The translated moments Mf are then obtained from (A. 14).
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A.3 Circulant Matrices and the DFT

Definition A.3.1 Circulant Matrix: Let A be an Nx N matrix and let a = [a0, a2, ■ ■ ■ ,ajv-i]T
be the first, column of A. Then A is circulant if

[Am.n = a(m-n)N ■ HI, U = 0, 1, ■ ■ ■ , A — 1.

Definition A.3.2 Discrete Convolution: Let x = [xo,Xi,£2, • • • , Xjv-i]T and, define y and 
z similarly. Then

z — x * y

is the (cyclic) convolution defined by

N-1

zm = '^j xny{m-n)N, m = 0,1,2, • • • , N - 1. (A. 16)
n=0

Definition A.3.3 Discrete Fourier Transform: Let {xj}^1 be a sequence of N complex
numbers. The sequence {xfc}fc=o defined by

N-1
xfc = 5>u*“ fc = 0,1,2, • • ■ ,N — 1, (A.17)

(=0

where ljn — e,2ir^N, is the discrete Fourier transform of {x/Jj-q1.

Definition A.3.4 Inverse Discrete Fourier Transform: Let {x;}^1 and {xk}k=o be
given as in Definition A.3.3. Then the discrete Fourier transform (IDFT) is defined by

awi
x( = -^xfcu$, ^ = 0,1,2,--- ,N — 1. (A.18)

v fc=0

Both the DFT and the IDFT can be computed in 0(N log2 N) steps using the fast Fourier trans­
form algorithm (FFT). The link between DFT and convolution is embodied in the convolution 
theorem, which we state as follows:

Theorem A.3.1 Convolution Theorem:

z — x*y^z — diag (x)y.

Proof: See [Nie98].
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Corollary A.3.2

Proof: See [Nie98].

x * y = y * x.

Lemma A.3.3 Let A and a be defined as in Definition A.3.1 and x € RN then

Ax = a * x

Proof: See [Nie98].

Theorem A.3.4 A is circulant A = F^AJF/v, Aa = diag(a).

Proof: See [Nie98].

Theorem A.3.5 Circulant matrices with the same dimensions commute. 

Proof: See [Nie98].

Theorem A.3.6 A is circulant -£=> A-1 is circulant.

Proof: See [Nie98].
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