List of Figures

•

1.1	Sawtooth Function	4
1.2	Fourier Coefficients of Sawtooth Function	5
1.3	Sawtooth Function and its truncated Fourier expansion with 17 terms	6
1.4	Scaling function in $ ilde{V}_2$	7
1.5	Scaling function in \tilde{V}_2	7
1.6	Scaling function in $ ilde{V}_2$	7
1.7	Wavelets in \tilde{W}_2	7
1.8	Wavelets in $ ilde W_2$	7
1.9	Wavelets in $ ilde W_2$	7
1.10	Wavelets in $ ilde{W}_3$	8
1.11	Wavelets in $ ilde{W}_3$	8
1.12	Wavelets in $ ilde W_3$	8
1.13	Wavelets in $ ilde W_3$	8
1.14	Wavelets in $ ilde W_3$	8
1.15	Wavelets in $ ilde W_3$	8
1.16	Wavelet Coefficients of $f(x)$	9

1.17	Projection onto a Coarse Space \tilde{V}_6 and a sequence of finer spaces \tilde{W}_8 -	10
	w_9 ,	10
1.18	Sawtooth Function and its truncated wavelet expansion	11
2.1	The steps of a 1D wavelet transform for $\lambda = 3$ and $J = 4, \ldots, \ldots$	54
2.2	The steps of a 2D wavelet transform for $\lambda = 3$ and $J = 4$	55
2.3	The transform of a square block on the diagonals yields four new square blocks.	55
2.4	The transform of a block below the diagonals yields two new rectan- gular blocks.	56
2.5	Transform of a block above the diagonals yields two new rectangular blocks.	57
2.6	The new notations for the block structure of H (for $\lambda = 3$)	66
2.7	The use of variables h_{ij} to implement the two dimensional wavelet transform of circulant matrix.	67
2.8	The structure of a wavelet transform of a 64×64 circulant banded matrix. Here, $L = 3$, $D = 4$ and $\lambda = 3$.	70
2.9	The band of $\mathbf{h}^{i,j}$ has length $L^{i,j}$ and start at index m_1, \ldots, \ldots	72
2.10	The computation in equation (2.57) can be viewed as a sliding filter of length $2D - 1$ applied to the band of $h^{j,j}$. The numbers indicate offset with respect to $2m = \frac{m_1 - D + 1}{2}$. The resulting bandwidth depends on how the initial bandwidth is aligned with this sliding filter. In this example $L^{j,j} = 5$, $D = 4$ so $L^{j-1,j-1}$ is either 5 (case <i>B</i>) or 6 (case <i>A</i>) depending on how the convolutions happen to align with the non-zero block. Thus, case <i>A</i> corresponds to rounding up and case <i>B</i> corresponds to rounding down in (2.82).	73
2.11	The difference between a wavelet transform of depth $\lambda - 1$ and λ for $\lambda = 3$.	74

2.12	The bandwidths for depths $\lambda = 0, 1, 2, 3$. The initial bandwidth is 3 and	
	D = 4	74
2.13	The structure of $y = Hx$ for $\lambda = 3$.	75
3.1	Communications on processor p involve $D-2$ elements from processor $p+1$. Here $D = 6$ and $N/(P2^i) = 8$. The lines of width D indicate the filters as they are applied for different values of n .	90
3.2	Multiple FWT. Data are distributed column-wise on the processors. The FWT is organized row-wise in order to access data with stride one.	92
3.3	Replicated FWT. The shaded block moves from processor 1 to 0	95
3.4	Communication of blocks, first block-diagonal shaded.	96
3.5	Communication-efficient FWT. Data in shaded block stay on processor 0	97
4.1	Solution of Wave equation for scaling function representation	130
4.2	Solution of Wave equation for scaling function representation	130
4.3	Solution of Wave equation for scaling function representation	131
4.4	Solution of Wave equation with respect to physical spaces	131
4.5	Solution of Wave equation with respect to physical spaces	132
4.6	Solution of Wave equation with respect to physical spaces	132
4.7	Solution of Wave equation with respect to wavelet spaces	133
4.8	Solution of Wave equation with respect to wavelet spaces	133
4.9	Solution of Wave equation with respect to hybrid spaces	134
4.10	Solution of Wave equation with respect to hybrid spaces	134
4.11	Solution of Regularized Long Wave equation for scaling function representation with $\gamma = 0.001$	135

4.12 Solution of R resentation w	Regularized Long Wave equation for scaling function rep- with $\gamma = 0.001$	135
4.13 Solution of R resentation w	Regularized Long Wave equation for scaling function rep- with $\gamma = 0.001$	136
4.14 Solution of F $\gamma = 0.001$.	Regularized Long Wave equation for physical space with	136
4.15 Solution of F $\gamma = 0.001$.	Regularized Long Wave equation for physical space with	137
4.16 Solution of F $\gamma = 0.001$.	Regularized Long Wave equation for physical space with	137
4.17 Solution of F $\gamma = 0.001$	Regularized Long Wave equation for wavelet space with	138
4.18 Solution of F $\gamma = 0.001$	Regularized Long Wave equation for wavelet space with	138
4.19 Solution of I $\gamma = 0.001$.	Regularized Long Wave equation for hybrid space with	139
4.20 Solution of I $\gamma = 0.001$	Regularized Long Wave equation for hybrid space with	139
4.21 Solution of R $\gamma = 0.0001$	Regularized Long Wave equation for scaling function with	140
4.22 Solution of R $\gamma = 0.0001$	Regularized Long Wave equation for scaling function with	140
4.23 Solution of R $\gamma = 0.0001$	Regularized Long Wave equation for scaling function with	141
4.24 Solution of R $\gamma = 0.0001$.	Regularized Long Wave equation for scaling function with	141
4.25 Solution of R $\gamma = 0.0001$	Regularized Long Wave equation for scaling function with	142

4.26	Solution of Regularized Long Wave equation for scaling function with	
	$\gamma = 0.0001 \dots \dots$	142
4.27	Solution of heat equation for scaling function representation	143
4.28	Solution of heat equation for scaling function representation	143
4.29	Solution of heat equation for scaling function representation	144
4.30	Solution of heat equation for physical space	144
4.31	Solution of heat equation for physical space	145
4.32	Solution of heat equation for physical space	145
4.33	Solution of heat equation for wavelet space	146
4.34	Solution of heat equation for wavelet space	146
4.35	Solution of heat equation for wavelet space	147
4.36	Solution of heat equation for hybrid space	147
4.37	Solution of heat equation for hybrid space	148
4.38	Solution of Burgers equation with wavelet method	148
4.39	Solution of Burgers equation with wavelet method	149
4.40	Solution of Burgers equation with wavelet method	149
4.41	Solution of Burgers equation with wavelet method in which shock appear	150
5.1	Daubechies 6 coefficient scaling function	174
5.2	Analytical and Numerical solution	185
0.2		
7.1	Gaussian Weight Function of First Kind	210
7.2	Different weight functions- I	212
7.3	Different weight functions- II	213

7.4	Ours weight function	214
9.1	Regular Distribution: All particles around the central particle	240
9.2	Regular Distribution: Only particles which are immediate surrounding to central particle.	241
9.3	Regular Distribution: More particles on left of central particle and some particle on right of central particle.	241
9.4	Regular Distribution: More particles on right of central particle and some on left of central particle.	242
9.5	Regular Distribution: Particles which are far right from central particle and some on left which are adjacent to central particle.	242
9.6	Regular Distribution: Particles which are far left from central particle and some on right which are adjacent to particles.	243
9.7	Regular Distribution: Particles which are far right and far left from central particle.	243
9.8	Irregular Distribution: All particles around the central particle	244
9.9	Irregular Distribution: Only particles which are immediate surround- ing to central particle.	244
9.10	Irregular Distribution: More particles on left of central particle and some particle on right of central particle.	245
9.11	Irregular Distribution: More particles on right of central particle and some particle on left of central particle.	245
9.12	Irregular Distribution: Particles which are far right from central par- ticles and some on left which are adjacent to central particle.	246
9.13	Irregular Distribution: Particles which are far left from central parti- cles and some on right which are adjacent to the central particles.	247
9.14	Random Distribution: Particles which are far left and far right from the central particle.	247

9.15	Distribution of particles for Neighboring Algorithm of Type - III (Our Algorithm - 1).	248
9.16	Distribution of particles for Neighboring Algorithm of Type - III (Our Algorithm - 2).	248
9.17	Distribution of particles for Neighboring Algorithm of Type - III (Our Algorithm - 3).	249
9.18	Distribution of particles for Neighboring Algorithm of Type - III (Our Algorithm - 4(a)).	249
9.19	Distribution of particles for Neighboring Algorithm of Type - III (Our Algorithm - 4(b)).	250
9.20	Distribution of particles for Neighboring Algorithm of Type - III (Our Algorithm - $4(c)$).	250
10.1	The Can of Coke	259
10.2	Center of one layer of Coke	261
10.3	Numerical Simulation of Cooling of Coke in a Can	265
10.4	Schematic of Lubricant flow channel	267
10.5	Shear stress on element of fluid	270
10.6	Lubricant flow channel with varying height	272
10.7	Pressure Distribution in Slider Bearing	275