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2.1 Introduction
Let {p,(x)};n = 0,1,2 ... be an orthonormal system of functions defined in the interval
[a, b]. We shall consider the orthogonal series
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n=0

where {c,} is a sequence of real numbers.

Let {s,,} be the sequence of partial sums of the series (2-1). We may write it as,

n
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The Banach mean,(N, p,,) mean, (N,p,,) mean, and (N,pZ, q%) mean of the series (2-
1) are denoted by
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respectively.

We may refer to equations (1-13), (1-16), (1-18), and (1-26) for more information.

2.2 Absolute Banach Summability of Orthogonal Series

Let f(t) be a periodic function with period 2 and Riemann integrable over (—m, ).
Suppose,

1 [ee] (o]
> %o + Z(an cosnt + b, sinnt) = Z A, ()
n=1

n=1

be the Fourier series of f(t). Then, the series

o)

Z (b, cosnt — a, sinnt) = Z B, (t)
n=1

n=1
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be the conjugate Fourier series of f(t).
Let

1
Y(©):i= S G+ 0 - fx =),

1

lpa(t): = @

f(t —uw)* ! Y)du, a>0,

VU, (t) =T(a+ Dt™ WY, (t), a =0,
Yo () =9(t)

[x] = The greatest integer which does not exceed x.

Bosanquet, L. et al. 1937 proved the following theorem for absolute Cesaro

summability of order B(0 < g < 1) for conjugate Fourier series:

Theorem 2.1
If, 0<a<1,
T
d¥, (1)
Y, (4+0) = d j >
0
then

is summable |C,B| att =x,B > a.

In the same direction Swamy, N. et al. 1980 proved the following theorem for
generalized absolute Cesaro summability of conjugate Fourier series.

Theorem 2.2
If,0<a<1,%/(+0)=0,

f“ dW, ()

ta

<

0
then the conjugate series of the Fourier series of f(t) is summable |C,§,8] at t =

x,0 > a.

Misra, S. et al. 2002 have generalized the Theorem 2.2 on absolute Banach
Summability. The theorem is as follows:

Theorem 2.3
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f,0o<a<1,¥,(+0)=0

and

f” dW, (t)

ta

< oo
0

then the conjugate series of Fourier series of f(t) is |B| summable at t = x.

Moreover, Paikray, S. et al. 2012 have proved the following theorem on absolute

Banach summability of factored conjugate Fourier series.

Theorem 2.4
Let Y,(+0)=0,0<a <1, such that

j" AW, (W)

u®log(n +U) <
0

then the series
B, (t)
log(n +1)
n=1
is |B| summable at t = x if
1
Z log(n + U)k* 1 = 0(U%log(n + 2));U = [—]
ks> !
“u

The Theorem 2.1, Theorem 2.2, Theorem 2.3, and Theorem 2.4 are based on
summability of conjugate Fourier series.
Tsuchikura, T. 1953, have proved the following theorem on Cesaro summability of

order a for orthogonal series.

Theorem 2.5

Let {p,(x)} be orthonormal system defined in the interval (a,b) and let a > 0 . If the

series
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converges, then the orthogonal series
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D anon(®

n=1

is summable |C, a| for almost every x.

In this chapter, we have extended the Theorem 2.5 of Tsuchikura, T. 1953 for the
absolute Banach summability.

Our theorem is as follows:

Theorem 2A

Let {¢,(x)} be an orthonormal system defined in (a, b).

If,

1

%) k 2
L C2 < [0'e)
k + 1 n+v
k=1 v=1

for all n, then orthogonal series (2-1) is absolutely Banach summable i.e. |B|

summable for every x.

2.3 Absolute (N,p%,q%),a > —1 Summability of General Orthogonal

Series

Strong approximation and strong summability problems were studied by Kantawala,
P. et al. 1991, Kantawala, P. et al. 1995, Leindler, L. 1966, Leindler, L. 1967,
Sunouchi, G. 1966, Sunouchi, G.1967.

Sunouchi, G. 1966 has proved the following theorem for (C, @), @ > 0 summability of

orthogonal series.

Theorem 2.6
If

oo

Z cz (loglog m)? < w

m=1

then, there exists a square integrable function f(x) such that

n

: 1 a-1 r
lim = " 487 sy, () = FG9)]" = 0
n v=0

forany a > 0 and r > 0 a.e. in [a, b] and for increasing sequence {n,}.
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Tiwari. S. et al. 2011, obtained the following result on strong Norlund summability of
orthogonal series.

Theorem 2.7

If the series

2

n
n=1\j=1

; ; 2

RTJL Rrjl—l 2

Ry Rui)

converges, then the orthogonal series (1-8) is summable |N,p,,q,| almost
everywhere. Refer to equations (3-3) and (3-5) for R,, and R,jl respectively.

We have generalized the Theorem 2.7 for |N,pg,q%|, « > —1 summability of an
orthogonal series. Our theorem is as follows:

Theorem 2B

If the series
1

oo n 2 2
>R o
a a
n=1 \v=1 Rn Rn—l
converges, then the orthogonal expansion

(0]

> e o,

v=0
is summable |N, pZ, qg%|, a« > —1 almost everywhere.
The corollary related to Theorem 2B is as follows:

Corollary 2B
If the series,

1
%) 2

n
BY Pnav pa 2 )
papa a Ra eyl

- n-v

converges, then orthogonal series

[ee]

Z Cn Pn(x)

n=0

is summable (N, p¥) almost everywhere.

2.4 Proof of Theorems

We shall use the following lemma to prove Theorem 2A,
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Lemma 2A (Paikray, S. et al. 2012)
Let

o

n=0

be an infinite series and {s,,} be a sequence of its partial sums. Let {t;(n)} be a

sequence defined by
k-1
z Sn+v; KEN
v=0

&=

tin) =
then,
-1
i) = s () = s ) Vs 2-2)
v=1

Proof of Theorem 2A

Now,

-1
te(n) — tp (n) = mz Vllpyy
v=1

where, U,y = CrivPniv
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= WZ VCntv Pn+v
v=

o b o b
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a k=1a
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Now

Hence, by Schwarz’s inequality,
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2( b 2
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a a
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k=

1\a
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k=1

k 2
sz(k + 1)2 (Z an+v(pn+v(x)> dx
Hence, by orthonormality we have
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k=1 v=1

where, M := /b — a is some constant.

Hence, by hypothesis of Theorem 2A

o b
Z f|t;2(n) — tr (M) dx < o0

k=1

Therefore, by Beppo Levi’s Theorem

D16 = i) < oo
k=1

This completes the proof of theorem.

Proof of Theorem 2B
Now, t?““(x) be the (N, pg, q%) mean of the series (2-1).

Therefore,

1
:Ra§ p%—kqg § Cy P (X)
n

k=0 v=0
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Hence, series (2-1) is summable |N, p&, g% | almost everywhere.
2.5 Proof of Corollaries

Proof of Corollary 2B

Let g¥ = 1 and we may use our Theorem 2B to prove the Corollary.

Now,

av av a a
Rn n-1 _ Pn—v _n-1-v
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dx

Hence, Schwarz’s inequality, and orthonormality gives
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Hence by hypothesis of Corollary 2B

o b
a ,a a ,a
> e - e o ax < o

n=1gq

Hence by Beppo Levi's Theorem
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o)

a ,a a 4 a
D | 00 - 4 0 dx < o0

n=1

Therefore, series (2-1) is absolutely (N, p#) summable almost everywhere.
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