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In this chapter, Support Vector Machine (SVM), a traditional kernel based method

and a very good nonlinear classifier, is discussed to diagnose regular(common) skin

disorders. SVM is originally designed for binary classification, but we have applied

it for multiclass data (Dataset-I) using one-to-one algorithm (refer 2.4.1). Kernel
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functions in SVM plays a very important role in classification accuracy. To diagnose

skin disorders of Dataset-I, different kernel functions are used and also analyzed their

effect by various accuracy measures of classification. Section 4.1 provides general

introduction about SVM and its applications in various fields. A mathematical

insight about the SVM is discussed in section 4.2. Section 4.3 discusses results to

diagnose skin diseases using Support Vector Machine and the chapter ends with the

summary.

4.1 Introduction

Support Vector Machine is a nonlinear generalization of the Generalized Portrait

algorithm introduced by Vapnik and Lerner in 1963 [127]. They discussed that the

pattern recognition problem includes, recognizing the patterns and classify them

using generalized portrait algorithm. The history of SVM started in the beginning

of 1960s when Vapnik et.al. have developed an algorithm to construct an optimal

separating hyperplane for separable data [127]. But, they went unnoticed till 1992.

In 1992 Boser et. al. have presented the algorithm to maximize the margin between

training data set and decision boundary [12]. They have constructed the optimal

separating hyperplane in Hilbert space using Mercer’s theorem, which explicitly map

the input vectors into higher dimension Hilbert space using kernel trick. In 1995

Cortes et.al. introduced the concept of soft margin which increase the generalisation

capacity of SVM [22].

SVM is very popular classifier due to its robust mathematical theory and good clas-

sification accuracy for nonlinear data. It can deal with high dimensional data with

less computational efforts [11]. SVM is not including knowledge about the geom-

etry of the problem, just like other high performance classifiers, even though the

classification accuracy of SVM is excellent. It is kernel based method where algo-

rithm depends on the dot product of the data and uses the kernel induced feature

space [18]. When data are non linear, it is not possible to separate data in input

space with linear classifier. For such data dot product can be replaced by non lin-

ear functions (similarity measures), which pull the data into high dimension where

classification with linear classifier is possible. When data is transformed into high di-

mension space using non linear function, it demands a lot computation power. SVM
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overcome this problem using kernel trick in which instead of computing non linear

function for training data in feature space, similarity between two training data

points are measured by inner product in Hilbert space. Due to this, computational

cost is reduced.

In SVM kernel functions are defined in reproducing kernel Hilbert space (RKHS)[118].

Kernels are Mercers kernel i.e., positive semi definite kernel and due to this SVM

gives global optimum. When classification is to be done with SVM, proper choice of

kernel function and its parameters are very important. Improper choice may reduce

the performance of SVM.

High learning ability, good generalization in classification and regression makes SVM

most popular learning algorithm. Therefore it applies to many real-life applications

such as bioinformatics, in drug design, in classification of drug and nondrug problem

[14], to diagnose diabetes and erythematous disease ([72], [10]). It is also useful in

electrical load forecasting [52], pattern recognition, image processing, in qualitative

and quantitative prediction from sensor data [64] and field of hydrology [106]. Me-

chanical property such as hot-rolled plain carbon steel can be predicted using SVM

[134], to evaluate level of coal mine underground environment [146], for forecasting

failures and reliability in engine system [138] SVM can be used. It is also useful

to build credit scoring models assessing the risk of default of clients [128], in fault

diagnosis [125] etc.

4.2 Mathematical Formulation of SVM

4.2.1 Linearly Separable Data

Let there be m separable training data (x1, y1),(x2, y2),...,(xm, ym). Construct an

optimal hyperplane, which separate these training data (binary data) into positive

and negative classes with the maximum margin, where the separating hyper plane

is given by:

〈w∗,x〉+ b∗ = 0 (4.2.1)
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Figure 4.1: SVM-Maximum Margin Classifier

The goal is to find the optimal hyperplane, i.e. to find the values of the normal

vector w = w∗ and the offset parameter b = b∗ in such a way that the margin is

maximum, given by [129]

maximize

(
min
{i:yi=1}

[〈
w

‖w‖
,xi

〉
+ b

]
− max
{j:yj=−1}

[〈
w

‖w‖
,xj

〉
+ b

])
(4.2.2)

subject to the constraints

yi
(
wTxi + b

)
≥ 1, i = 1, 2, ...,m. (4.2.3)

This is equivalent to find minimum of the quadratic function

min
{w,b}

1

2
‖w‖2 (4.2.4)

subject to,

1− yi
(
wTxi + b

)
≤ 0, i = 1, 2, ...,m.
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The Lagrangian of the optimization problem defined as (4.2.4) is given by:

L(w, α, b) =
1

2
‖w‖2 −

m∑
i=1

αi [yi (〈w,xi〉+ b)− 1] (4.2.5)

where, αi ≥ 0, i = 1, 2, ...,m are Lagrange Multipliers. The L(w, α, b) is to be

minimize with respect to w and b.

Karush-Kuhn-Tucker (KKT) conditions (refer 2.2.1) are the necessary and sufficient

conditions for convex optimization problem [107]. Optimization problem defined by

(4.2.4) is a convex optimization problem. So, if w = w∗, satisfy the KKT conditions,

then it becomes the optimum value. Now, applying KKT conditions to Lagrange’s

function defined by (equation 4.2.5), we have,

∂L

∂w
= 0⇒ w −

m∑
i=1

αi yi xi = 0.

and
∂L

∂b
= 0⇒

m∑
i=1

αiyi = 0.

So, the solution of the quadratic form (refer 4.2.4) is

w = w∗ =
m∑
i=1

αi yi xi (4.2.6)

The data points which satisfy yi (〈w,xi〉+ b) = 1 are the support vectors. So, the

vector w∗, gives the optimal hyperplane by maximizing the margin is a linear com-

bination of only support vectors, for which αi 6= 0, i = 1, 2, ..m [12].

Some observations:

1. If yi (〈w,xi〉+ b) > 1, the data point is classified correctly and does not lie on

the margin.

2. If yi (〈w,xi〉+ b) = 1, the data point lies exactly on the margin and is called

support vector.
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3. If 0 < yi (〈w,xi〉+ b) < 1, the data point is within the margin, but still on the

correct side of the decision boundary and classification is correct.

4. If yi (〈w,xi〉+ b) < 0, then classification is incorrect.

Subsituting the value of w∗ from (4.2.6) into the Lagrangian function given by (equa-

tion 4.2.5), the Lagrangian L(w, α, b) is a function of α only. The corresponding

dual optimization problem is:

max
α

w (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj〈xi,xj〉 (4.2.7)

subject to the constraints

m∑
i=1

αiyi = 0, αi ≥ 0, i = 1, 2, ...,m.

The optimal value of the intercept term b = b∗ is,

b∗ = −
min
{i:yi=1}

[
〈 w∗

‖w∗‖ ,xi〉
]
− max
{j:yj=−1}

[
〈 w∗

‖w∗‖ ,xj〉
]

2
(4.2.8)

Substituting the value of w∗ from (4.2.6) and the value of the intercept b∗ from

(4.2.8) into the equation of separating plane given by (equation 4.2.1), the separating

hyperplane is given by:

〈w∗,x〉+ b∗ =
m∑
i=1

αiyi < x,xi > +b∗ = 0. (4.2.9)

This optimal hyperplane separates the positive and negative training data using the

decision function:

f(x) = sgn

(∑
k∈SV

αkyk < x,xk > +b∗

)
(4.2.10)

where, only support vectors (SV) xk with non zero weights αk, appears in the

decision function.
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The function sgn(x) is defined as,

sgn(x) =



−1 x < 0

0 x = 0

1 x > 0

4.2.2 Nonlinearly Separable Data (Kernel Trick)

Figure 4.2: Hyperplane in Feature Space

When data is not separable, it can not be classified by linear classifier into input

space. But when we pull the data into higher dimension space, they can be separated

by linear classifier. Data are transformed from input space to higher dimension

feature space using nonlinear function φ : χ→ H , where χ is a non-empty set and

H be a Hilbert space. To map data from input space to higher dimension feature

space using non linear function it demands a very high computational power. In

1992 Boser et.al have given an effective way to construct the optimal separating

hyperplane in Hilbert space [12]. They discussed how to map input vector x without

explicitly mapping into the vectors z of Hilbert space. They used kernel trick, in

which inner product of two data points are used to find similarity. So, to separate

data points by hyper plane in high dimensional feature space, there is no need to

calculate the non linear kernel function φ at each data point. Instead the inner

product between two data points is to be taken, that reduces the computational

cost. Also, the kernel function should be Mercer kernel (definition 2.1.6). i.e. for

input data point x ∈ χ (input space), there exists a positive definite function k(x,x′),
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called the kernel function that defines the corresponding inner product in Z ⊂ H
space, such that, 〈z, z′〉 = k (x,x′) = 〈φ (x) , φ (x′)〉H.

The feature space associated with a given kernel is called Reproducing Kernel Hilbert

Space (RKHS) (definition 2.3.5).

Using kernel function, the dual problem (4.2.7) becomes,

max
α

w (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjk (xi,xj) (4.2.11)

subject to the constraints

m∑
i=1

αiyi = 0, αi ≥ 0, i = 1, 2, ...,m

where, k(xi, xj) is a Mercer kernels and Mercer’s kernels are positive (semi) definite.

Some popular Mercer’s kernel are:

1. Linear Kernel xTy + a0

2. Polynomial Kernel (αxTy + a0)
d ,

where d is the degree of the polynomial.

3. Radial Basis Function (RBF) exp(−γ‖x− y‖2),
where the γ parameter is the radius of influence of support vectors.

Equation of the optimal separating hyperplane(equation 4.2.9) becomes,∑
k∈SV

αkykk (x,xk) + b∗ = 0. (4.2.12)

And the decision function (4.2.10) is given by,

f(x) = sgn

(∑
k∈SV

αkykk (x,xk) + b∗

)
(4.2.13)
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4.2.3 Soft Margin - for Noisy Data

In 1995 Cortes et.al. have generalised the idea of maximal margin [22]. When

training data is not separable without error, they have introduced the concept of soft

margin, in which non separable data is separated with less error. They introduced

some non negative numbers ξi, i = 1, 2, ...,m, and the optimization problem (4.2.4)

becomes,

min
{w,b}

1

2
‖w‖2 + C

m∑
i=1

ξi (4.2.14)

subject to the constraints,

yi (〈w,xi〉+ b) ≥ 1− ξi, i = 1, 2, ...,m

ξi ≥ 0, i = 1, 2, ...,m

where, C is a positive constant called regularization parameter which controls the

tradeoff between complexity and classification accuracy. i.e. it controls the relative

weighing to make the normal vector ‖w‖2 small and also ensure that most of the

data have functional margin at least 1.

The Lagrangian is,

L (w, b, α, µ, ξ) =
1

2
(w,w)+C

m∑
i=1

ξi−
m∑
i=1

αi[yi (w, xi)+b−1+ξi]−
m∑
i=1

µiξi (4.2.15)

where, αi ≥ 0 and µi ≥ 0, i = 1, 2, ...,m are Lagrange multipliers.

Applying Karush-Kuhn-Tucker conditions (2.2.1) we obtain,

w∗ =
m∑
i=1

αiyixi,
m∑
i=1

αiyi = 0

and the dual problem (4.2.11) becomes,

max
α

w (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjk (xi,xj) (4.2.16)

subject to,
m∑
i=1

αiyi = 0 (4.2.17)
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0 ≤ αi ≤ C i = 1, 2, ...,m. (4.2.18)

The dual optimization problem (4.2.16) which involves Lagrange’s multipliers can

be solved by Sequential Minimal Algorithm(SMO) invented by John in 1998 [104].

Applying SMO (refer section 4.2.4), Lagrange’s multipliers are determined by solving

(4.2.16). Using the Lagrange’s multipliers, the normal to the hyperplane w and the

offset parameter b, can be determined using the formula defined by (4.2.6) and

(4.2.8).

If kernel function k (xi, xj) , i, j = 1, 2, ....,m in the optimization problem (4.2.16)

is Mercer’s Kernel then the problem (4.2.16) is convex optimization problem and

therefore global optimum is achieved.

4.2.4 Sequential Minimal Algorithm (SMO)

The algorithm is discussed in [91]. The optimization problem defined in (4.2.16) is a

function of Lagrange’s multipliers only. There is a one-to-one relation between each

Lagrange’s multiplier and training data. So, when set of training data is large in size,

the matrix formed by the Quadratic Programming (QP) Problem given by (4.2.16)

is large in size. This is because the total number of elements in the matrix is the

square of the number training examples. Due to this, it can not fit in the memory of

an ordinary personal computer or workstation. SMO train Support Vector Machine

by decomposing the QP problem (4.2.16) into QP subproblems of size two only, by

keeping all other variables as constants. This QP subproblems then can be solved

analytically. So, even though more subproblems are to be solved, they can be solved

very fast and hence overall QP problem can be solved very quickly.

In SVM, QP problem defined by (4.2.16) is a function of m Lagrange’s multipliers.

i.e the objective function is of m variables given by,

max
α

w (α1, α2, ...., αm) . (4.2.19)

Suppose, we keep α3, α4, ..., αm fixed and optimize the problem (4.2.16) with respect

to α1 and α2 only, then from the constraint (4.2.17),

α1y1 + α2y2 = −
m∑
i=3

αiyi (4.2.20)
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Right hand side of equation (4.2.20) is constant, say ϑ i.e.

α1y1 + α2y2 = ϑ (4.2.21)

Figure 4.3: Diagram related to Sequential Minimal Algorithm

From the constraints (4.2.18), α1 and α2 must lie within the box [0, C] x [0, C] as

well as they lie on the line given by (4.2.21). Both of these simultaneously satisfy if

l ≤ α2 ≤ h [104], where

l = max(0, α2 − α1), h = min(C,C + α2 − α1).

If y1 = y2 then

l = max(0, α1 + α2 − C), h = min(C, α1 + α2)

Now, from the equation of the line defined by the equation (4.2.21), α1 can be

written as,

α1 = (ϑ− α2 · y2) y1 (4.2.22)

Then the optimization problem (4.2.19) becomes:

max
α2

w ((ϑ− α2 · y2) y1, α2, ...., αm) (4.2.23)
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This is a quadratic function of only one variable α2, which can be solved analytically.

This can be expressed as a0α
2
2 + a1α2 + a2 and then be solved for some appropriate

values of a0, a1 and a2. Ignoring the box constraints (4.2.18), it is easy to maximize

the quadratic function (4.2.23) by taking it’s derivative to zero. Let the resulting

value of α2 as αnew2 . Since it is necessary to satisfy the box constraints, we determine

the resulting value αopt2 from αnew2 in such a way that it lie in the interval [l, h], by

defining

αopt2 =



h, if αnew2 > h

αnew2 , if l ≤ αnew2 ≤ h

l, if αnew2 < l

Substituting the value of αopt2 in the equation (4.2.22), we get the value of αnew1 as,

αnew1 = α1 + ϑ1
(
α2 − αopt2

)
(4.2.24)

where, ϑ1 = y1y2.

Heuristic to Choose Multipliers

The method is discussed by Platt in [104]. SMO optimizes the objective function

over two lagrange multipliers simultaneously. It is making heuristic choice for both

Lagrange multipliers separately. First it iterates over the entire training set and the

multiplier which violets the KKT conditions are eligible for optimization. Once the

violated example is found then second heuristic choice is made for second multiplier.

The feasibility of the dual optimization problem (4.2.16) is always maintained. For

fast training, the choice is made for only those examples which are not bounded. The

SVM is then updated using these two multiplier values. Again, heuristic choice for

the multiplier searching is started and the process is repeated until the entire train-

ing set satisfy the KKT condition within some tolerance. During the process, the

Lagrange multipliers which are at bounds are remain at bounds, but the Lagrange’s
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multipliers which are not at bounds will change. The algorithm will thus iterate over

the entire non bounded subset.Then, SMO scan the entire training dataset again to

search that any bound examples violets KKT condition due to optimization of non

bounded subset.

4.3 SVM to diagnose Skin Disorders

Kernel plays a very important role in classification of nonlinear data when SVM is

used as classifier. Improper choice of kernel function may reduce classification ac-

curacy. Various diseases discussed in the Dataset-I of the Appendix-A are classified

using different kernel functions and accuracy of the classifier is measured [99].

Following kernels are used in classification:

1. Linear Kernel: xTy + a0

2. Polynomial Kernel: (αxTy + a0)
d ,

where d is the degree of the polynomial.

3. Radial Basis Function (RBF): exp(−γ‖x− y‖2),
where parameter γ is the radius of influence of support vectors. If gamma is too

large, the radius of influence of support vectors only includes support vector

itself and no amount of regularization parameter C will be able to prevent

over fitting. If the value of gamma is very small, the model is too constrained

and cannot capture the complexity or shape of the data.

4. t-student kernel: 1

(1+‖x−y‖d)
, d is degree.

5. Inverse Multiquadratic(IM): 1

(a20+‖x−y‖2)
, a0 is a parameter of the kernel.

Numerical experiments are performed on MATLAB using LIBSVM 3.20 [76]. Lin-

ear Kernel, Polynomial kernel and Radial Basis Kernel are inbuilt kernel functions

of LIBSVM. We have also incorporated other two functions viz., t-student kernel

function and Inverse Multiquadratic kernel function in LIBSVM software. From

Dataset-I 70% of the data are selected randomly, as training data while remaining

30% data are used for testing. Parameters of the kernels are set using grid search
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method (refer 2.2.2). Classification accuracy defined by the formula (refer 2.4.3)

and other statistical measures of accuracy such as, F-score(which is good measure

of accuracy for imbalanced dataset) and G-score defined by the formulas given in

(2.4.6), (2.4.7) respectively are measured using the confusion matrix of each kernel.

Table 4.1: Confusion Matrix for various Kernels

Predicted +ve Predicted −ve

Actual +ve TP

Linear : 122

FN

Linear : 19

Polynomial :128 Polynomial :13

RBF :128 RBF :13

t Student :127 t Student :14

IM :126 IM :15

Actual −ve FP

Linear :19

TN

Linear :404

Polynomial :13 Polynomial :410

RBF :13 RBF :410

t Student :14 t Student :409

IM :15 IM :408

• TP : True Positive FN : False Negative

• FP : False Positive TN : True Negative
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Table 4.2: Performance of SVM using various kernels

Kernel Function Kernel Parameters Accuracy F-Score G-Score

Linear a0 = 1 93.26% 86.52% 90.91%

Polynomial α=2, a0 = 10, d = 3 95.39% 90.78% 93.80%

Radial Basis Function γ= 0.1 95.39% 90.78% 93.80%

t-Student d = 2 95.04% 90.07% 93.32%

Inverse Multiquadratic a0 = 10 94.68% 89.36% 92.84%

Figure 4.4: Graph of Accuracy, F-Score and G-Score for various kernels.

The results obtained are recorded in Table (4.2) and plotted graphically in figure

(4.4) exhibit that the accuracy obtained from the Radial Basis Function (RBF) and

Polynomial kernel is 95.39% (same for both kernels) using normal accuracy measure

for 70%-30% training-testing data partitions. For same kernels 90.78% and 93.80%
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accuracies are achieved using F-score and G-score statistical measures of accuracy.

The accuracies achieved from these two kernel are highest than the other kernels for

the Dataset-I.

4.4 Summary

In this chapter some common skin disorders viz. Bacterial infections, Fungal in-

fections, Eczema and Scabies are diagnosed by using the powerful kernel based

technique namely support vector machine. Since SVM is giving global optimum for

positive definite kernel, here training of SVM is performed by using various posi-

tive definite kernels. During training phase, randomly 70% data of the Dataset-I

discussed in Appendix-A is selected for training and remaining 30% data is used

for testing. During training, parameters of the classifier are set using grid search

method (refer 2.2.2) and 10 fold cross validation criteria (refer 2.4.8) is used for

validation. classification results for various kernels are obtained by using various

statistical measures such as Accuracy, F-score and G-score. It is observed skin dis-

orders are diagnosed with highest classification accuracy using Radial Basis kernel

and Polynomial kernel.
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