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In this chapter, the prerequisites to understand wavelets are described in brief.

2.1 Introduction

Wavelets have been extensively used in data analysis, data compression and image
processing. Its multiresolution property lead to the application of wavelet to esti-

mate the differential operator. As described in section 1.1 of chapter 1, numerical
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solution of a PDE is handled with various algorithms. The recent development in
this direction is the use of wavelets in solving PDEs.

As compared to these approaches, wavelets represents surface as a solution of PDE.
This approach however offers considerable advantages over alternative basis sets and
allows us to attack problems not accessible with conventional numerical methods.
So first we shall briefly mention what is wavelet? And why we are required to study
wavelets?

As shown in the figure 2.1, wavelets are small waves which satisfies the following

two properties in time domain:

e Wavelet has small concentrated burst of finite energy in the time domain

(Wavy).

o It exhibits some oscillations in time. (Little).

Wavelets exhibits rapid oscillatory behaviour in some interval and then decays

rapidly to zero outside the interval.

0.8

0.6

0.4r

0.2

Figure 2.1: Plot of a wavelet (db12)
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Basic Wavelet [20]: If ¢ € L*(R) satisfies the admissibility condition:

Cy = /_x WP 4 < oo (2.1.1)

~ |l

then ¢ is called a basic wavelet or mother wavelet. Here ¢)(w) represents Fourier
transform of ¢ (). From the continuity of function v (t), we say that Cy is finite and
which implies )(0) = 0 i.e.,

b(t)dt (2.1.2)

—
? 3
Il
(@)

hence 1 is called a wavelet.
This definition of basic wavelet indicates that the following statements are equiva-

lent:

1 J75 [w(@)Pdt < oo
2 J7 (t)dt =0
3 f_o; lwAl(%l)‘zdw < 00

Mother wavelet function 1 is used to generate an orthonormal basis for L?(R). These

basic functions form a double infinite family {¢; |7,k € Z} where,

Vik(e) = 2592w — k), (2.1.3)

which are translates and dilates of .

A function ¢ € L?(R) is called an orthonormal wavelet, if the family {t;;} forms
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orthonormal basis of L?(R) i.e. for j, k,I,m € Z,

1 ifj=land k=m
(Vs Yim) = 0510km = (2.1.4)
0 ifj#lork#m

2.1.1 Wavelet transform classification
Wavelets are classified [11] as,

e Continuous wavelet transforms (CWT)

e Discrete wavelet transforms (DWT)

Continuous wavelet transforms CWT [21][68]: Morlet gave the concept of
wavelet family being constructed by translation and dilation of a single mother
wavelet ¢ (t) € L*(R),

1 t—u

77Ds,u(t) = %I/}(TNUER,SGR* (215)

where wu is the translating parameter, indicating which region we concern and s is
the scaling parameter greater than zero because negative scaling is undefined. Con-
ceptually, the continuous wavelet transform is the coeflicient of the basis 1 ,,(¢). It

is defined as,

Wf(s,u) = (f(t),¥su) (2.1.6)

)
- / () bsn(t)dl (2.1.7)
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Using this transformation, one can map a one-dimensional signal f(¢) to a two di-
mensional coefficients W f (s, u). This two variables can perform the time frequency
analysis. We could locate a particular frequency (s) at a certain time instant (u).

If f(t)is a L*(R) function. The inverse wavelet transform is,

f(t) Cw/ / Wf(s,u \}gzb( )duﬁ (2.1.8)

where () is defined as in equation 2.1.1.

Discrete time wavelet transform (DTWT) [110]: The DTWT of
[(k) € ’(Z) is given by

DTWTf(m,n) =a * Y f(k)d(ay™k —no) (2.1.9)
k

which is time discretization, with ¢ = kT and sampling interval T' = 1. Here ag, 79
are sampling intervals and m,n are integers. 1 is the basic wavelet.
If ag = 2 there is an output only at every 2™ sample whenever 2™k is an integer.

This leads to the following definition,

Discrete wavelet transform (DWT) [87]: The DWT of f(k) € I?(Z) is given
by

DWTf(m,n) =223 f(k)(2 "k —n) (2.1.10)
k

where the discrete wavelet ¥ (k) can be (but not necessarily) a sampled version of
a continuous counterpart. When (k) is a discretization of a ¢(t), the DWT is

identical to DTWT, with ¢(¢) as given in equation 2.1.9.
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In real life, f is not given as a function, but in a sample version. One can compute
the integrals in equations 2.1.6 and 2.1.7, using quadrature formulas. For a smaller
values of s (with specific interest of study), this will not involve many samples of f,
and one can do the computations quickly. For larger values of s however one faces
huge integrals, which might slow down the computation of the wavelet transform of
any given function.

Multiresolution overcomes this computational slowdown. In the next section mul-

tiresolution analysis is discussed in brief.

2.1.2 Multiresolution analysis (MRA)

We look for ¢ € L?(R) where the collection of 9;x(t) = 2%¢(2jt — k), ey consti-
tutes an orthogonal basis for L?(R).
MRA decomposes space L?(R) into a set of approximate closed subspaces {V7};cz

and mutually orthogonal subspaces {W7},c, where,

L*(R) = P w?

jez

and

j—1
Vie @ wr

m=—0oQ

and therefore

J j—1
- @ @@
Wavelet subspace W7 is orthogonal complement of V7 that lies in V/+!,

Finally the process of MRA decomposes the space L?( R) into approximate subspaces

and mutually orthogonal subspaces which satisfies the following axioms:
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Monotonicity: {0} C---cV*cV'cV!c..-C L*R)forall je Z

Dilation property f(t) € VI & f(2t) € Vit for j € Z.

Intersection property

M.,V =10}

Dense property
UjezVi = L*(R).

Existence of a scaling function. There exists a function ¢ € V° such that

#(t —n) where n € Z is an orthogonal basis for V°

VO =" and(t — n)[{ontnez € 1*(2)}. (2.1.11)

nez

Now using the dilation property of MRA,
Vvecv!
so each vector in VY belongs to V1. So
o(t) e VP = ¢(2t) € V.

Hence ¢(t) could be expressed as a linear combination of the basis from V1 i.e.
{¢(2t —n) where n € Z}.

¢(t) satisfies the dilation equation [80],

O(t) = cad(2t —n) (2.1.12)

nez

16



K.P. Mredula 2.1. INTRODUCTION

here, ¢, € I*(Z),n € Z.
The equation 2.1.12 is also referred as two scale difference equation as here ¢(t) is

expressed in terms of its own dyadic dilation and translation.

Compactly supported An interval / C R is compact if I contains both of its
end points: [ = [a,b], for some a,b € R. Also, a function f : R — C has compact

support if there is a compact interval I = [a, b] such that f(x) = 0 for every « & I.

Compactly supported wavelets: If the mother wavelet ¢ is compactly sup-
ported then it is compactly supported wavelet.
¢, 1 have compact support < Finitely many ¢, 20  where ¢, is from equation

2.1.12.

2.1.3 Wavelet families

There are two functions that play a primary role in wavelet analysis, the scaling
function ¢;(¢) (father wavelet) and the wavelet function ;(¢) (mother wavelet).
Here we mention some well known scaling functions and wavelet functions (for some

wavelets) [42],

(1) Haar scaling function in [0, 1) is defined as,

L teny)

0 otherwise.
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and Haar wavelet function is defined as

1 iftela,p)
Vit) = hi(t) = ¢ —1 if Lt e [B,7) (2.1.13)

0 elsewhere.

here,

k
a=— - v (2.1.14)

here m = 27,5 = 0,1, ..., J indicates the levels of wavelet where integer k =

0,1,..,(m — 1), is the shift parameter. Maximum resolution is J, and i =
m + k + 1. Incase of minimum value m = 1 we get £k = 0,7 = 2. The maximal
value of ¢ is i = 2M = 2J + 1.

The graphical representation of Haar scaling and wavelet function is given in

figure 2.2
1.5
1
0.5F
0 ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Haar scaling function above and Haar wavelet function below
2 T T T T T
1
0 L
1}t
o s s s s s s
0 0.2 0.4 0.6 0.8 1 1.2 1.4

t axis

Figure 2.2: Haar scaling and wavelet function
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(2) Morlet family has no scaling function. Morlet wavelet (also known as Gabor

wavelet) has a basic wavelet representation as,

Q/}(t) _ 61111)01‘,670.51‘/2

with ¢ = /=1, wy > 5.
The graphical plot is given in figure 2.3.

Orthogonal and compactly supported wavelets include Daubechies, Symlet

Morlet wavelet function
0.1 T T T

Figure 2.3: Morlet wavelet

and Coiflet. Their scaling and wavelet functions are compactly supported.

(3) Symlet wavelet families have wavelets ranging from symlet 2 to 20. In this
study we have utilized symlet 4 with properties of near symmetric, orthogonal
and biorthogonal. Symlet wavelet scaling and wavelet plots are given in figure

2.4.
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t axis

Figure 2.4: Plot of scaling and wavelet function for Symlet wavelet

(4) Coiflet family consist of range Coiflets 1 to Coiflets 5. It has properties like
near symmetric, orthogonal and biorthogonal. The figure 2.5 gives the graph

of scaling and wavelet functions utilized in this study.

(5) Harmonic scaling function and wavelet function proposed by Newland [73] in
1993 is defined as,

6i27rt -1 1

t) = i47rt_ i27rt.
o Y=gt )

o(t) =
The graphical plot for wavelet function [88] within (—1,1) with 100 points is

given in figure 2.6.

(6) Shannon wavelet families have scaling and wavelet functions which is given by,

sin(7rt) t 3t

, () = sz’nc(ﬁ) cos(—

o(t) = sinc(wt) = 5 )

i
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Figure 2.5: Plots of Coiflet scaling and wavelet function

Figure 2.6: Plots of Harmonic scaling and wavelet function
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The graphical plot is given in figure 2.7

shan1-1.5 : psi real part. $han™-1.5 : psi imaginary part.
0.1 4
0 2
-0.1 0
-0.2 -2
-0.3 -4
-20 -10 0 10 20 -20 -10 0 10 20
shan1-1.5 : psi complex modulus. shan1-1.5 : psi phase angle.
0.4 4
0.3 2
0.2 0
0.1 -2
0 -4
-20 -10 0 10 20 -20 -10 0 10 20

Figure 2.7: Shannon wavelet

(7) Legendre multiwavelets utilize the two scale functions in the construction of

their family of wavelets which is given by scaling functions,

P =1 ¢'(1)=V32t—-1) 0<t<]1

The corresponding wavelet is given as,

—V/3(4t—-1), 0<t<i
WOt = i
V3(4t — 3), I<t<1
66—1, 0<t<3i
() =
6t -5 3<t<l

Gaussian wavelets, Morlet and Mexican hat wavelet families do not have scal-
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ing function. Analysis is not orthogonal and their wavelet function is not

compactly supported.

(8) The second derivative of a Gaussian is denoted as,

w(t) = (1— )e

The graphical representation is given in figure 2.8

cgau2 : psi real part. cgau2 : psi imaginary part.
0.5 1
0.5
0
0
-0.5
-0.5
-1 -1
-5 0 5 -5 0 5
cgau?2 : psi complex modulus. cgau?2 : psi phase angle.
1 4
0.8 2
0.6
0
0.4
0.2 -2
0 -4
-5 0 5 -5 0 5

Figure 2.8: Complex gaussian wavelet

(9) Mexicanhat wavelet has no scaling function and its wavelet function is derived
from a function that is proportional to the second derivative function of the
Gaussian probability density function. It is also known as the Ricker wavelet.

Mexican hat wavelet is given by,

U(t) = (1 —21%)e™"

Graph is represented by figure 2.9

23



K.P. Mredula 2.1. INTRODUCTION

Mexicanhat wavelet function
1 T T T

0.8 b

0.6 h

0.4 b

0.2} 4

Figure 2.9: Mexican hat wavelet

Few of the wavelet families do not have an explicit expression. Wavelet families
include a wide variety of choices, graphical representations are specified in the fol-

lowing figures:

Daubechies family of wavelets do not have an explicit expression except for dbl
which is Haar wavelet.
Meyer wavelet is infinitely regular wavelet. Their scaling and wavelet functions are

indefinitely derivable. They do not have compact support.
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0 0.5 1 1.5 2 25 3
t axis

Figure 2.10: Plot of Daubechies scaling function and wavelet function

Discrete Meyer wavelet
1.2 T ‘
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0.4r b

0.2} i

50 100 150 200 250

Figure 2.11: Discrete Meyer wavelet
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fbsp1-1-0.5 : psi real part.

fbsp1-1-0.5 : psi imaginary part.
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fosp1-1-0.5 : psi complex modulus. fosp1-1-0.5 : psi phase angle.
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Figure 2.12: B-Spline (fbsp) wavelet
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Figure 2.13: Biorthogonal spline wavelet
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rbio2.6 : phi dec. rbio2.6 : psi dec.
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Figure 2.14: Reverse biorthogonal wavelet

Wavelet analysis represents a time scale view of the input function.

The salient features of wavelet includes

Localization in both time and scale.

The position of the wavelet allows to locate the location of event in time.

The shape of the wavelet allows to incorporate the details or resolutions.

It can easily adapt to discrete discontinuous function representation.

Now we discuss the orthogonal wavelets on real line for Daubechies wavelet family.
Here we have also mentioned decomposition of function using single scale and also
with a multiscale using Haar wavelet which is dbl. A similar projection is utilized
later in chapter 5 and chapter 6 in the discussion of combined proposed algorithm

of wavelet based finite volume method.
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2.2 Orthogonal wavelets on real line

A wavelet decomposition involves two families of functions the scaling functions
and the wavelets. The two sets of functions are linked together to perform the
multiresolution analysis. The advantages for using wavelet as basis are

1. Different resolutions can be used in different regions of space.

2. The coupling between different resolution levels is easy.

3. The numerical effort scales linearly with respect to computational efforts.

The wavelet function is defined in terms of the scaling function for x € R as,
P(@) =V2 Y gmp(2w —m) (2.2.1)

where ¢, is to be determined. Example let,

1 ke[0,1)
p(k) =
0 olherwise.
where ¢ will satisfy the two scale relation equation 2.1.12 on real axis.
We can build an orthonormal basis for Hilbert space L*(R) of square integrable

functions ¢ and v by dilating and translating them to obtain basis functions:

in() = 22020 — k) (2.2.2)
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For a function f € L?(R), there exit a sequence {d;;} such that

fl@) = D3 dptin(z) (2.2.3)

JEZ keZ

where dj = /f(x)ﬁ(a:)dx

In this study we have utilized wavelet families namely Haar wavelet, Daubechies
wavelet, Coiflet wavelet and Symlet wavelets. The Daubechies wavelet family con-
sist of db 1 to 20. dbl represents Haar wavelet as in figure 2.2. For this study we
have utilized db 2 and db 4.

In particular, the MRA of L?[—1,1] is taken which is an increasing sequence of mu-
tually orthogonal closed linear subspaces [33].

Such an infinite nested sequence of subspaces is given by,
(VcV)c.cvpc..cr’-11} (2.2.4)

where,
Vit ={f : fis a polynomials of degree < k} (2.2.5)

where f has support in the interval of (—1 + 2=tV —1 4 2=n+1(j 1 1)), for
j=0,1,...,2" — 1. In particular, this property is valid for a function space,

V= {f: fis a polynomial of degree < k with support on [—1, 1]} with dimension
k 4+ 1 that can be spanned by a scaling basis ¢ as in figure 2.10.

From the father basis ¢ , it is possible to span any sub-space V,* via dilation and

translation [60], as
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() = 20292z + 1) = 2j — 1) (2.2.6)

withn =0,1,2,..N,j =0,1,...2" — 1, where n is dilation index and j is translation
index.
The wavelet sub-spaces W' (n > 0) is the orthogonal complement of V" in an+1

and they satisfy the conditions:

Vit =vrowe, o VR LW (2.2.7)

Taking Daubechies wavelet 1) as the mother wavelet given in figure 2.10, it spans
the space W) and any subspace W can be spanned by it translation and dilation

as,
P(x) = 202" (@ + 1) — 25 — 1). (2.2.8)

Using equation 2.2.3 any function can be linearly expressed in single scale decom-

position as an orthogonal projection in V" with respect to the bases ¢}, [107] as,

2"—-1 p

Brf(e) =Y sioi (2.2.9)

j=0 1=0

p is the order of legendre polynomial used in the generation of scaling space, with
7=0,1,...,2" — 1 as the resolution.
The legendre multiscaling bases ¢'; are obtained by dilation and translation in the

interval [—1, 1], followed by L?[—1, 1] normalization [107]. ¢, ; is the scaling function
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and the scaling coefficient is given by,

sii(@) = (f, o) (2.2.10)

which is single scale decomposition.

Now using the fact,
N _ 0 0 1 N1
Vit =V, + W+ W, + .+ W, (2.2.11)

The multi scale decomposition could be given as,

P = Y st 3 3 S0 (22.12)

=0 n=0 j=0 [=0

with 1y ; as the wavelet function and its corresponding detail coefficient as

dy; = (f, %1 ;). The space spanned by polynomial of degree zero for example is the
Haar wavelet family which is utilized as basis [28]. The basis functions are selected
from the above wavelet families to obtain different scaling ¢ and wavelet ) functions.
Here we illustrate for Haar wavelet family the construction of scaling functions. We
denote the scaling space V,' as a space of piecewise polynomial functions as, in
equation 2.2.5.

It satisfies all the conditions of MRA as the scaling function choosen ¢ are selected

to be orthogonal.

Example for wavelet decomposition and reconstruction of a function

To observe the effect of change in resolution, projection of a function f(z) = sin(27z)
given in figure 2.15 is studied. Projection formula of equation 2.2.9 is implemented

to obtain V(0,2), which is projection of function f onto the space V. The plot of
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V(0,2) is given in figure 2.16.

Now using equation 2.2.12, we obtain equation 2.2.13,

Original function

Figure 2.15: Original function sin(27z)

2 N—-12"—1 2
PY )= stodlo+ D D> > dip(x) (2.2.13)
=0 n=0 j5=0 [=0

V(2,2) which is projection of f onto the space V7 is obtained by implementing
equation 2.2.13. The plot of V/(2,2) is given in figure 2.17, which denotes the repre-

sentation of projection of original function onto space V.
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Figure 2.17: Projection of sin(27z) onto V2
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2.3 Literature survey Current status

Over the last two decades wavelets are being effectively used for signal processing,
fingerprint verification [68], Storing fingerprint electronically using wavelet, denois-
ing data, musical tones, etc [70] and solution of differential equations [12], [40], [76],
[67].

Wavelets have several properties which are encouraging their use for numerical so-
lutions of PDEs [85]. The Wavelet-Galerkin method [12], [43] is a powerful tool for
solving partial differential equations. The orthogonal, compactly supported wavelet
basis of Daubechies exactly approximates polynomial of increasingly higher order.
These wavelet bases can provide an accurate and stable representation of differen-
tial operations even in region of strong gradients or oscillations. In addition, the
orthogonal wavelet bases have the inherent advantage of multi resolution analysis
over the traditional methods [67]. The adaptive wavelet collocation method is able
to dynamically track the evolution of the solution’s irregular features and to allocate
higher grid density to the necessary regions. Therefore, the number of collocation
points needed is optimized, without damaging the accuracy of the solution [76].
Haar wavelet is also used in solving PDEs. The benefit of Haar wavelet approach
are their sparse matrices representation, fast transformation and possibility of im-
plementation of fast algorithms [70]. PDE that encounters cither singularities or
steep changes require non-uniform time spatial grids or moving element .Wavelet
analysis is an efficient method for solving such PDE. Work has been done using
the wavelet transform which can track the position of a moving steep front and
increase the local resolution of the grid by adding higher resolution wavelets. In the
smoother region, a lower resolution can be used. The wavelet transform is used in
signal analysis, e.g. for compression, denoising and feature extraction. For control

applications wavelets are used in motion tracking, robot positioning, identification

34



K.P. Mredula 2.3. LITERATURE SURVEY CURRENT STATUS

and both linear and nonlinear control purposes. Wavelets are also a powerful tool

for the analysis and adjustment of audio signals [70].

Wavelet analysis implemented to problems in physics as discussed in book by Fang
and Thews [22]. The reason for use of wavelets in solving PDE lies in the fact that,
when the solution have intermittency both in space and time, a very fine resolution
and small time steps are necessary to capture small scale structures of the solution.
Wavelet methods are capable to capture small scale structure of the solution while

the large scale structures are computed automatically with a coarser resolution.

Following are the important advantages of wavelet considerations [40] :

e The basis set can be improved in a systematic way.

e Different resolutions can be used in different regions of space.

e The coupling between different resolution levels is easy.

e There are few topological constraints for increased resolution regions.

e The regions of increased resolution can be chosen, the only requirement being
that a region of higher resolution be contained in a region of the next lower
resolution. If one uses for instance generalized plane waves in connection with
curvilinear coordinates to obtain varying resolution one has the requirement
that the varying resolution grid can be obtained by a mapping from a equally

spaced grid.

e The numerical effort scales linearly with respect to system size.

Our approach is to study the complexities involved in numerical algorithms of

wavelet based methods, their implementation and improvements. We start with
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the application of Haar wavelet to solve ordinary differential equation in the next

chapter.
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