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K.P. Mredula 3.1. INTRODUCTION

3.8 Extension of region of solution using Haar wavelets . . . 60

3.1 Introduction

The chapter discusses approximation of solution for ordinary differential equation
with wavelets. It presents a unified approach for wavelet collocation method, ap-
plied to solve both the initial value problems as well as boundary value problems.
The method was found to give good agreement with the analytical solutions. We
have directly solved the boundary value problem as against the traditional shooting
methods as given in section 1.2.3, where the boundary value problem itself is ap-
proximated by the initial value problem. This motivates us to implement wavelet

collocation methods [103], [105] as discussed in section 3.2.

3.2 Wavelet approximation for ODE

Haar wavelets were employed in solution of differential equations by various re-
searchers. Chen and Hsiao [18] were first to derive the operational matrix for inte-
grals of Haar wavelet. Siraj ul Islam, Imran Aziz, Fazal Hak [94] used Haar wavelet
and hybrid functions in numerical integration. Linear stiff systems were solved using
the Haar wavelets by Hsiao [17]. Nonlinear stiff system was solved using wavelets by
Wang [16]. Lepik [103] applied Haar wavelet in solving differential equations. Lepik
and Tamme [104] used Haar wavelets for solving differential equations and integral
equations. Glabisz solved boundary valued problems using Walsh wavelet [109]. We
propose a unified approach to the solution of both initial value and boundary value

problems by detailing the algorithms proposed by Lepik [103], Siraj [94] and Mishra
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K.P. Mredula 3.2. WAVELET APPROXIMATION FOR ODE

[105]. Here the extension of region of solution is formulated. We give examples with

plots to illustrate the implementation of the unified approach and its generalization.

Chen and Hsiao [18] had given the approach of integral of the basic vector ¢(1)
as

/ 6(r)dr = Po(1)

with ¢(t) = [do(t), d1(t), ..., dm_1(t)]T with elements ¢o(t), d1(t), ..., Pm_1(t) being
the basic functions orthogonal on certain interval [a,b] where a and b could be 0
and 1. The simplest Haar wavelet functions are utilised in the system analysis. The
integrals are expanded in terms of Haar series.

Considering the integral of the first four Haar wavelets,

(fmmmzam@

th

In particular for m = 27 with j € Z*, P, is given for an m' order system as

1 2mP,, o —H,, t
P = — & & mhmzvm@m%lgm)
2m -1
Hm/z 0 0
ho(t)
ha(t)
and H,,(t) = . . Hsiao and Chen solved a lumped parameter linear
hm—l(t)

system with n states x(¢), p inputs u(t) and ¢ outputs y(¢) which is described by
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K.P. Mredula 3.2. WAVELET APPROXIMATION FOR ODE

the state equation given as,

x(t) = Az(t) + Bu(t), z(0)=z9  and

y(t) = Cx(t) + Du(t), 0<t<1

where u(t) is expressed as a Haar series. We utilize a similar integral form in terms
of Haar series in the algorithm proposed.
Lepik [103] has also utilized the integral form and discussed the solution of evolution

equation on collocation points,
[—0.5
€T =
oM

where [ = 1,2, ..., 2M.

Mishra [105] solved the initial value problem

y'(z) +y(2) = u(x), y(0)=y'(0) =0,

where z € [0, 1], where y™(x) is approximated using Haar series as,

2M
y'(x) = Zaihi(x) with A<z < B.

i=1

For a < n,
2M

n—a—1
n ]‘ o aro
V(@) = D aPuai(®) + Y o= Ay
o=1 ’

i=1
where P, () is given by equation 3.2.1. He had implemented the procedure of solving
initial value ODE which consist of substituting various obtained derivatives to the
given ODE in Haar series form. Then calculation of a;s are performed which leads to
the numerical solution. Mishra restricted the algorithms to the domain with interval

0, 1].
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K.P. Mredula 3.2. WAVELET APPROXIMATION FOR ODE

The procedure suggested by Mishra [105] and Lepik [103] are combined to formulate

a unified approach [56], as discussed in this chapter article 3.2.1.

3.2.1 Unified collocation approaches for solving IVP and
BVP problems

We brief the collocation method used for solving initial value problem and boundary
value problem with simple examples to establish a common unified approach of
approximating derivative using wavelet function as basis. As discussed in section 3.2,
in this method higher order derivative is approximated using wavelet function and
the lower order derivatives and functions itself are expressed by repeated integration.
The orthogonal set of Haar wavelet function is used. This group of square waves has
magnitude in some interval and zero elsewhere. These zeros make Haar transform
faster than other square functions such as Walsh functions. Haar wavelet basis
lacks differentiability and hence here integration approach is used instead of the
differentiability for calculation of coefficients. Due to the local property of the
powerful Haar wavelet the new method is simpler.

The Haar wavelet family for, 2 € [0, 1) which is defined by equation 2.1.13 is utilized.
Using equation 2.1.13, the functions h; and hs is given by,

) DR z €0, 1)
1(z) = (3.2.2)

0 elsewhere.
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K.P. Mredula 3.2. WAVELET APPROXIMATION FOR ODE

1 ifz € (0,05)

ha(x) =4 -1 ifz €[0.5,1) (32.3)

0 elsewhere.

ho can be graphically vizualized as figure 3.1. In order to perform wavelet transform,

2

05

Haar wavelet for i

15 L L L
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X axis

Figure 3.1: Haar wavelet for specific interval

Haar wavelet uses translations and dilations of the function, i.e. the transformation

uses the following relation:

hin(z) =202z — k), k=0,1,..,(m—1), j=01,..,J (3.2.4)

We can obtain coefficient matrix H of order 2m x 2m as,

1 1 1 1

1 1 -1-1
H =

1-1 0 0

0 0 1 —1
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K.P. Mredula 3.2. WAVELET APPROXIMATION FOR ODE

with m = 2.

Haar wavelets being orthogonal leads to,

0 for ¢#1

P for i=1

The operational matrix p which is a 2m square matrix is define as in [105] by

pii(z) = /zhi(x’)dx’

and the recurrence relation is given by

T

Piwr1(x) = /pm(:r’)dx’ wherev =1, 2,
0

We will need the integral

p(z) :/x/x.../zhi(t)dt“: (u—ll)! /z(a:—t)“_lhi(t)dt
A A A

A

withu=2,3,...,nand7=1,2,...,2m.

(3.2.5)

(3.2.6)

(3.2.7)

The above integrals can be evaluated using equation 3.2.6 and 3.2.5, the first two

values are given by

(

r—a forxelaf)

pz‘,l(ﬂ?) =\y7—z forze|py)

0 elsewhere.

(3.2.8)
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K.P. Mredula 3.3. HAAR APPROXIMATION

3(z —a)?, for z € [a, B)

L2 -1y - 27 f )
piale) = ¢ 7= o), frzelfn) (3.2.9)

= for x € [v,1)

0 elsewhere.

and so on will be utilized in representing the derivative and function values in the
further discussion. Graphically the successive integrals of Haar wavelet function is

given in figure 3.2.
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Figure 3.2: Integral representation of Haar wavelets

3.3 Haar approximation

Considering the fact that Haar wavelets are orthogonal, we may take any function
f(z) which is square integrable in the interval [0,1) as an infinite sum of Haar

wavelets,
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K.P. Mredula 3.4. INITIAL VALUE PROBLEM IVP

where a; are Haar coefficients and h;(z) are Haar wavelet functions.
f(z) has finite terms and so f(z) is piecewise constant or can be approximated as

piecewise constant during each subinterval [105] as,
2M
f@) =" ahi(x) (3.3.2)

i=1

In this scheme the highest order derivative of the function is approximated by Haar
wavelets and the consecutive lower order derivatives and function itself is obtained

by repeated integration as explained in next section.

3.4 Initial Value Problem IVP

3.4.1 Algorithm-IVP

Consider the general n'* order linear differential equation
Niy"(z) + Noy "~V (z) + ... + Nay(a) = f (3.4.1)
for x € [A, B] with initial condition,
Yy (A) = Y,y (A) = Ve, y(A) = Y (3.4.2)

Now taking the r** order derivative of y as,

2M n—r—1

, 1 o, (rto
y'(z) = Zaipi,n—r(x) + Z ;(95 —A) y(() o (3.4.3)
=1 o=0 ’
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K.P. Mredula 3.5. BOUNDARY VALUE PROBLEMS BVP

we obtain y™~V(z),y™ 2 (z),... and y(x) at the collocation points,

T, = p=1,2, ..,2M (3.4.4)

2M

The expressions of y"(z), y™ Y(z), and y(x) are substituted in differential equa-
tion. Discretization is applied along the points given by equation 3.4.4 resulting in
a linear or non linear system of 2M x 2M. Solving the system for Haar coefficients

the approximate solution is achieved.

3.5 Boundary value problems BVP

Consider a second order boundary valued problem

y'(x) = f(z,y,9) (3.5.1)

for © € [0,1]. For such second order ordinary differential equations, there are four
different types of boundary conditions possible.

They are treated differently as follows:

Case 1 y(0) = R and y(1) = Q,

by integrating equation (3.5.1) between 0 to x yields,

2M

y'(x) = Z aipii(x) +y'(0)

i=1
as p;1(0) = 0. Integrating again and using condition y(0) = R we get,
2M

y(@) = R+y'(0)z + Y aipis(w) (3.5.2)

i=1
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K.P. Mredula 3.5. BOUNDARY VALUE PROBLEMS BVP

Now utilizing second condition y(1) = ) we obtain
2M
y'(0)=(Q—R) - Zaicil

i=1

with ¢;; = fol pi1(x)dz further simplifying we get,

y(z) = R+ (Q — R)x + Zai(m,z(m) —xcy) (3.5.3)
and
y(r)=Q — R+ Zai(pi,l(x) — i) (3.5.4)

Case 2 y'(0) = Ry and y(1) = @

Integrating equation 3.5.1 and using boundary condition y'(0) = R; we get

2M
y'(r) =Ry + Z a;piq(x) (3.5.5)
=1

2M
y(@) = Q1 — Ri(1— 1) =Y _ai(ca — pia(z)) (3.5.6)

i=1

Case 3 y(0) = Ry and ¢/(1) = Q)
where successive integration leads to,

2M
y'(x) = Qg —ay + Za,—pm(:z?) (3.5.7)

i=1
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K.P. Mredula 3.5. BOUNDARY VALUE PROBLEMS BVP

and
oM

y(z) =Ry + (Q2 — a)z + > _ ai(pia()) (3.5.8)

i=1

Case 4 3/(0) = Rz and /(1) = Q3

where by integrating and applying the first condition we obtain,

2M
y'(x) = R3 + > aipin(x) wusing y'(1),
=1

(3.5.9)
(QS - RS) =a; as pm(l) =1
so we get
y'(z) = (Qs — Ra)hi(2) + Z aihi() (3.5.10)
y'(z) = Rs + (Q3 — R3)pu(z) + Zamﬂ(ﬂ?) (3.5.11)
y(z) = y(0) + Rzz + (@3 — Ra)pia() + Z a;piz () (3.5.12)

which is obtained by equation 3.5.9, by integrating from 0 to . We have extended

the approach to second order differential equations with boundary conditions.

3.5.1 Algorithm-BVP

i The highest order derivative is approximated by Haar wavelet function.

ii The successive lower order derivatives and the function itself is replaced by
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K.P. Mredula 3.6. NUMERICAL EXAMPLES

the expressions obtained by repeated integration obtained in (i)

iii The algebraic expression in terms of Haar coefficients is represented in matrix

form.

iv The matrix is solved to obtain the Haar coeflicients a; which are then substi-

tuted in the expression of solution function.

Separate MATLAB routines are generated for computation of the matrix P and C
which appear in the algebraic representation. P represents the matrix formed by p;
and C represents the matrix formed by required c;7ks, where k depends on the order
of the equation handled. Now to get a clear idea of the methods we give examples,
one each for second order initial value problem and second order boundary value

problem in the next sections.

3.6 Numerical examples

Example 1 Consider an initial value ordinary differential equation
y" +y = sin(z) + x cos(x) (3.6.1)

with z € [0,1], y(0) = 1 and /(0) = 1.

The analytic solution is given by

2

y(x) = cosx + Zsinx + Z(w sinx — x cos x)
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K.P. Mredula 3.6. NUMERICAL EXAMPLES

Wavelet formulation is obtained by substituting

2M

y'(x) = aihi(w) (3.6.2)

i=1

and integrating twice equation 3.6.2 with respect to x we get,
oM
y(@) = app(r) + 1+ (3.6.3)
i=1
The differential equation 3.6.1 gets converted into,
2M
Zai(hi(x) +pio(x)) =sinx +xcosz — 1 — x.

Solving the system A[H + ] = B, we obtain the wavelet coefficient matrix A, where
H is the Haar matrix, P is the matrix consisting with rows p;;’s and B is right
hand side vector obtained by considering values of = at collocation points. From the
expression of y(x) given in equation 3.6.3, substituting the wavelet coefficients we
obtain the solution.

For 2M = 16,7 = 3 we obtain m = 16. Results are compared with its analytical
solution using matlab program and the plot is given in figure 3.3. Now figure 3.4
represents the graph of the Haar, analytical and inbuilt function implementation of

matlab results for the initial valued problem (example 1).

Example 2 Consider a second order boundary value problem as

v =y +y+e°(l-2x), (3.6.4)
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Figure 3.3: Comparison of Haar solution with exact

j=3

¥ axis

The solution with (a)
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*_..exact solution.
- ___haar solution.
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Figure 3.4: Plot for Haar implementation, analytic and inbuilt solution
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z € [0, 1] with boundary conditions y(0) = 1 and y(1) = 3e as mentioned in Case 1.

The analytical solution of this boundary value problem is

y=e"(1+2x).

Taking the Haar wavelet approximation for second derivative then successive inte-

gration leads to,

oM
y'(x) = 3e—1+ Z ai(pia(x) —cin) and (3.6.5)
i=1
oM
yl) = 1+ Be—1Dz+ Z a;(pia(x) — zeq). (3.6.6)
i=1

Therefore the boundary valued problem equation 3.6.4 gets transformed as,

2M

Z ai(hi(z) = pip(z) +ca(l + ) —pia(z)) = z(3e — 1)
i=1 (3.6.7)

+ (1 —2x) + 3e.

The system of equations are solved to obtain the Haar coefficients. By substituting
the coefficients a; so obtained in the equation for y(z) we get the required solution.
This result is compared with the analytical solution which is exactly similar at
2M = 16,75 = 3 that is at m = 16, as given in figure 3.5. The graph of the Haar
solution, analytical solution and inbuilt function implementation of matlab results
for the boundary value problem in (example 2) given by equation 3.6.4, for j = 3 is

given in figure 3.6.
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Solution for y"=dy/dx+y+e*(1-2x), y{0)=1, y({1)=3e >=0 to 1
8 T T T T T T T T T

®

_...exact solution
- ... haar solution

y axis

1 1 1 1 L 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09 1
X axis

Figure 3.5: Comparison of Haar solution with exact solution for example 2

The solution with {a) Haar solution (b) Analytical solution (c) BVP inbuilt function in matlab.
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Figure 3.6: Comparison of Haar solution with exact solution for BVP
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3.6.1 Observations

We have presented a unified way for solving the initial valued problem and the
boundary valued problem using the wavelet collocation method. As we stated ear-
lier this method gives accurate solution for boundary value problem and easy to
implement compared to the traditional shooting methods. To improve the accuracy
and optimize the computation an appropriate dynamic resolution adaptive scheme
could be formulated.

In case of nonlinear differential equation with relatively less non linearity, it gener-
ates manageable non linear algebraic equations, otherwise it becomes a complicated
system. The method is more amicable for linear differential equations. We pro-
pose to generalize the approach to an interval [A, B], which is discussed in the next

section and illustrated by an example.

3.7 Generalization proposed for the approach dis-

cussed

Since Haar wavelet function is defined in [0, 1] the collocation method with Haar
basis function can be used for obtaining solution in interval [0, 1], but when we seek
solution either for initial value or boundary value ordinary differential equation in
domain [A, B], we need to carryout transformation.

Consider a boundary valued ordinary differential equation 3.5.1, x € [A, B] with con-
ditions specified at any random points A and B as y(A) and y(53). We transform
the variable z to x; such that z; lies in the interval [0,1] with the transforma-

z_i which leads to a change in the differential equation and boundary

tiOD, xr] = B-A
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conditions. Derivatives will change with this transformation as,

dy dy dxr,
dy _ dy dm 71
dr dxr, dx ) (3.7.1)
d*y d dy d  dy dx,
2 ddd) T dn ) (372)

Accordingly the boundary conditions are modified and obtained between [0, 1]. Once
the above formulation is done, the equation is solved as specified in the section
3.7. Finally the solution is again transformed back to the original variable with
specified parametric changes to obtain the results in the domain [A, B]. We have
also extended the solution for an arbitrary interval [A, B] with initial conditions
specified at 0. Here we have converted the interval first to an interval [B — A, 0]
which is further transformed back to obtain the original region of solution. This
conversion helps in converting the problem to the required domain [0, 1] where Haar
collocation is implemented. Reverse conversion to [A, B] gives the required solution.
Here the variable x; = B — x gives the first derivative and second derivative in the

form as,

dy d ,dx,
— = —(— 3.7.3
der dx; dz ( )
d> d d d —dy.d d?
y_ LGy Lz 4y (3.7.4)

dr? ~ dr dax dxy dry ) de dxy?

The above concept is implemented in an example as discussed in the section 3.7 .
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Example 1 Consider a simple second order boundary valued problem as

y'(z) = 1 (3.7.5)
x € [—2,2], y(=2) = y(2)=4. (3.7.6)
Here a change in variable as mentioned in the section 3.7 is done with z; = ‘%’2 and

the modified equation obtained using the change of variable both for the differential

operator and the boundary conditions as,

y"(x)
16

=1 with y(0)=y(1) =4.
is solved. The analytical solution of this boundary valued problem is
y(z) = 82 — 8x + 4.

The wavelet formulation is obtain as,

2M

y'(z) = Zai(pi,l(l“) —Ci1) (3.7.7)
y(r) =4+ Z ai(pig(x) — wcin)

Therefore the boundary valued problem gets transformed as

2M

Z a;h;(z) = 16.

1=1

For 2M collocation points we get 2M linear algebraic equations with unknowns 2M

haar coefficients, which are obtained by solving the system of equations. By sub-
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stituting the coefficients a; so obtained in the equation for y(z) we get the required
solution. This result is compared with the analytical solution which is exactly sim-
ilar at 7 = 4. The comparison of Haar solution with exact solution for x € [0, 1] for

Plot of the normalized equation y"=16 with y(0)=4 and y(1=4
4 T T T T T T T T T

38

36

34+

32+

3

y axis

281

26+

24+

22+

2 1 1 1 L L
0 0.1 02 03 04 05 06 07 08 09 1

X axis

Figure 3.7: Comparitive study of normalized approach

the boundary valued ordinary differential equation 3.7.5, with j = 4 is shown in fig-
ure 3.7. Now figure 3.8 represents the graph of the Haar solution after transforming
back to the original domain, with its analytic solution.

The plot after conversion of variable for equation y"=1 y(-2)=4 and y(2)=4. with analytic solution
4 T T T T T T T

Figure 3.8: Haar solution after transforming for example 1
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Example 2 Considering the boundary value problem,

ey —y = —(er® + 1) cos(mz), y(—1)=y(l)=~1 (3.7.8)

Analytic solution is given by y(z) = cos(mzx) for e = 1. The variable is changed as

T = xT“ The equation takes the form,

——2 —y = (r*+ 1) cos(m(22; — 1))

Haar approximation as considered in section 3.5 simplifies the equation 3.7.8 as,

411 Z ahi(z) —1+2x — Zai(pig(x) —zciy) = —(7* + 1) cos(m(2z — 1)). (3.7.9)

The Haar approximation leads to the solution,

ylx) =1—-2z+ Z a;(pi2(z) — zcin)

i=1

The Haar solution along with analytic solution in normalized form is given in figure
3.9. The solution after conversion into actual domain is given in figure 3.10 for
example 2.

Extension in the region of solution is demonstrated with an example in section 3.8
having initial conditions specified at origin. Two cases are considered, the extension
is done in case 1 for positive domain and then the solution for negative domain is

shown in case 2.
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Plot of the normalized solution
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Figure 3.9: Haar solution along with analytic solution

; Plot after conversion with analytic solution
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Figure 3.10: Haar solution after transforming for example 2

59



K.P. Mredula 3.8. EXTENSION OF REGION OF SOLUTION USING HAAR WAVELETS

3.8 Extension of region of solution using Haar

wavelets

Consider an equation
y" +y = coswt (3.8.1)

with 4'(0) = 0 and y(0) = 0 with ¢ € [—10, 10]. The analytic solution for the equation

1S

2 (14w

(1 —w)t
=17 sin( 5

2

y(t) ) sin( ) (3.8.2)
e (Case 1 The Haar solution is done for w = 0.9 and the solution is then extended

from (0, 1) to (0, 10), as shown in figure 3.11.

the haar solution and analytic solution compared for y"+y=coswt with dy(0}=0 and y({0)=0.
5 T T T T T T T T T

X axis

Figure 3.11: Generalized solution for case 1 in the domain (0, 10)

e Case 2 The Haar solution for solving the equation in the interval [—10, 0] with

conditions specified at 0.
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The conversions to the differential equation is done as specified in previous
section 3.7. After reconversion of the domain Haar solution and its comparison

with analytic solution is shown in figure 3.12. Solutions are mapped and

the haar solution and analytic solution compared for y"+y=coswt with dy(0)=0 and y(0)=0.

al |

3 4

y axis
)
|

Figure 3.12: Extended solution case 1 in the domain (—10,0)

compared. The dotted values represent the Haar solution and lines represent
the analytic solution. The pattern agrees with the required solution even after

change of domain in Haar approach.
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