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6.1   Introduction  

              It is well known that squeeze phenomenon arise when two lubricated surfaces 

(plates or discs) approaches each other with a normal velocity (known as squeeze 

velocity). In this case the fluid layer between these two surfaces is known as squeeze-

film. Many authors have studied this phenomenon for different bearing design systems 

from different viewpoints because of having its numerous applications on lubrication 

technology. The studies were mainly focused on the improvement of the performances of 

various bearing characteristics like load-carrying capacity, friction, coefficient of friction, 

time-height relationship, etc. Various effects on the solid bearing surfaces like porosity, 

slip velocity, roughnesses, etc. are considered for the study. Moreover, effects of different 

lubricants like power-law fluid, couple-stress fluid, magnetic fluid (MF), etc. are also 

considered. The MHD based bearings are also studied. The following are some references 

related with squeeze-film designs. 

             Starting with 1970’s, Wu [1] in his analysis discussed the problem of squeeze-

film behaviour between porous annular discs, when upper disc with a porous facing 

approaches the lower impermeable disc, considering no-slip boundary condition at the 

film-porous interface. Sparrow et. al. [2] extended the Wu’s analysis [1] with the effect 

of velocity slip on the film-porous interface. Results for load-carrying capacity and time-

height relation are discussed. The results show that the insertion of porous layer leads to 

decrease in load-carrying capacity while it is effective in diminishing the response times. 

In particular, substantially faster response can be attained by the use of porous materials 

which accentuate velocity slip. Murti [3] studied squeeze-film behaviour in porous 

circular discs, where porous facing attached with the upper disc and lower disc is 
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impermeable, considering Wu’s analysis [1]. The modified Reynolds equation is solved 

in a closed form and expressions for pressure, load-carrying capacity and time of 

approach for the plates are obtained in terms of Fourier-Bessel series. It is found that due 

to enhanced value of the permeability parameter, pressure diminishes over the entire disc. 

However, adverse effect is observed on the load-carrying capacity and time of approach. 

Gupta and Patel [4] modified the problem discussed in [2] with the effect of axial current 

induced pinch and shown the improvement in the bearing performances. Gupta et. al. [5] 

analyzed annular squeeze-film between curved upper porous facing plate and lower 

impermeable flat plate considering the effect of rotation of both the plates. Expressions 

for pressure and load-carrying capacity are obtained. It is shown that load-carrying 

capacity decreases when the speed of rotation of the upper plate increased up to certain 

value of curvature parameter and then reverse trend is observed. It is also shown that 

load-carrying capacity could be increased without altering the speed of rotation and 

increasing values of curvature parameter. Prakash and Tiwari [6] studied effect of surface 

roughness on the squeeze-film between rotating annular discs with arbitrary porous wall 

thickness with the porous facing attached with the upper disc. An exact solution, valid for 

arbitrary wall thickness is discussed for the film pressure as well as pressure in the 

bearing material. Bhat and Deheri [7] discussed effect of MF on the curved squeeze-film 

between two circular discs, where porous facing is attached with the upper disc while the 

lower disc is flat impermeable. Expressions for pressure, load-carrying capacity and 

response time are obtained, and are found to increase with the increasing magnetization 

parameter. Elsharkawy and Nassar [8] studied hydrodynamic lubrication of three 

different types of squeeze-film porous bearings (parallel-surface bearing of infinite width, 
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journal bearings and parallel circular plates bearing), where porous facing is attached 

with the lower surface. The closed forms of analytical solutions are obtained. It is shown 

that with the increase of permeability parameter, both pressure and load-carrying capacity 

decreases in the case of pure squeeze motion. Shah and Bhat [9] studied circular squeeze-

film bearing made by curved upper plate with a porous facing and impermeable flat lower 

plate, considering rotation of both the plates, using MF lubricant. The results show that 

pressure, load-carrying capacity and response time increases with the increase in 

curvature of the upper plate as well as magnetization parameter. Shah and Bhat [10] 

studied combined effect of anisotropic permeability and slip velocity on porous walled 

squeeze-films between circular plates lubricated with ferrofluid (FF). It is shown that 

load-carrying capacity and response time decreases with the increasing values of radial 

permeability parameter while they increase with the increasing values of axial 

permeability parameter. Walicka et. al. [11] investigated inertia effects in a curvilinear 

squeeze-film bearing lubricated by a power-law fluid. The lower surface is attached with 

a porous facing. Using the average inertia method the closed form of solution of 

Reynolds equation is obtained. Shah and Bhat [12] studied squeeze-film between two 

parallel plates using FF lubricant with the porous facing attached with the upper plate and 

various bearing characteristics are studied.  Shah and Bhat [13] analyzed squeeze-film in 

an axially undefined journal bearing with anisotropic permeable porous facing and slip 

velocity considering FF lubricant. Results show that load-carrying capacity and response 

time increases with the increasing values of eccentricity ratio and anisotropic parameter 

while they decrease with increasing values of slip parameter or material parameter. 

Deheri and Patel [14] discussed MF based squeeze-film between porous circular discs 
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with sealed boundary with the porous facing attached with the upper disc. It is shown that 

load-carrying capacity increases significantly. Shah and Bhat [15] studied theoretical FF 

lubricated secant shaped squeeze-film bearing with the consideration of anisotropic 

permeability, slip velocity, material parameter and rotational inertia. Results show that 

load-carrying capacity and response time decreases with the increasing values of radial 

permeability, slip and rotational inertia. However, they increase with the increasing 

values of axial permeability and material constant. Bujurke et. al. [16] discusses surface 

roughness effects on the squeeze-film behaviour in porous circular discs with couple-

stress fluid. The porous facing is attached with the upper disc and the roughness 

presented at both the discs. Closed form of solution of the stochastic Reynolds equation is 

obtained in terms of Fourier-Bessel series. It is shown that the present case is more 

pronounced as compared to classical case. Rajashekar and Kashinath [17] analyzed effect 

of surface roughness on MHD couple-stress based squeeze-film between a sphere and a 

porous plane surface. Expressions for pressure, load-carrying capacity and mean squeeze-

time are obtained. It is found that load-carrying capacity increases (decreases) for 

azimuthal (radial) roughness patterns as compared to the smooth case. The response time 

is also lengthening in both types of roughnesses. With respect to porous parameter, load-

carrying capacity decreases whereas squeeze time increases. Shah and Patel [18] 

discussed impact of various porous structures on the squeeze-film between curved porous 

circular and flat plates using FF lubricant. Results show that load-carrying capacity 

increases in the case of globular sphere model of the porous plate. Fathima et. al. [19] 

studied hydromagnetic squeeze-film between parallel anisotropic porous rectangular 

plates in the presence of transverse magnetic field with couple-stress fluid. The porous 
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facing is attached with the lower plate. It is found that load-carrying capacity increases. 

The squeeze-time is also lengthening as compared to non-magnetic case. Shah et. al. [20] 

discusses review with contributions on some porous squeeze-film bearings with FF 

lubricant. The bearing performances are found to be better using FF as lubricant. Shah 

and Kataria [21] studied squeeze-film between a sphere and a flat porous plate using FF 

as lubricant. The results show the better performance of the bearing characteristics. 

In all above studies, Reynolds equation is derived or solved either by assuming 

Morgan-Cameron approximation (that the pressure in the porous region can be replaced 

by the average pressure with respect to the bearing wall thickness) or by continuity of the 

pressure at the film-porous interface. However, due to the effect of squeezing, vibration, 

etc. the pressure at the film-porous interface may not be equal and there may be an 

existence of pressure difference P (say). The present Chapter derived modified Reynolds 

equation for squeeze-film bearing made by flat circular porous upper and impermeable 

lower discs using FF lubricant (whose flow is governed by R.E. Rosensweig model [22]) 

controlled by oblique variable magnetic field (VMF) without using Morgan-Cameron 

approximation [3]. The VMF is considered because uniform magnetic field does not 

enhance bearing performances. Moreover, it is important because of its advantage of 

generating maximum field at the required active contact zone. In the present analysis the 

active contact zone is considered at the middle of the lower disc and so the applied 

magnetic field is chosen to be maximum at that point. Expression for film pressure is 

obtained in terms of Bessel function by considering the effect of existence of pressure 

difference (that is without assuming the pressure continuity condition as in [3,19]) at the 

film-porous interface and studied. The expression for load-carrying capacity is also 
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obtained and studied. In general, the same approach can be employed to study any other 

type of squeeze-film bearing geometry.  

6.2    Mathematical Formulation and Solution 

The schematic diagram of physical configuration of the problem under 

consideration is shown in Figure 6.1, which consists of two flat circular impermeable 

discs, each of radius a. The upper disc is attached with a porous facing (now onwards 

known as porous upper disc) of width H*. The two discs are separated by initial thickness 

h0. This thickness (known as fluid film region or film thickness) is filled with a FF 

lubricant. As FF is controlled by applied magnetic field, so oblique (to the lower disc) 

and VMF H with magnitude (strength) H of the form [21] 

 

                                                                                                                           (6.1) 

            is used for the study, where r is the radial coordinate. Here, K being a quantity chosen to 

suit the dimensions of both sides of the equation (6.1). Such a magnetic field attains 

maximum at r = 2a / 3 and vanishes at r = 0 and r = a. 

The porous upper disc approaches the impermeable lower one at a constant 

normal velocity (known as squeeze velocity)  

,
dt
dhh   

(6.2) 

where h  is film thickness and t  is time. 

The basic equation governing the pressure distribution p in the film region in   r - 

direction considering R.E. Rosensweig model for FF flow is given by [21]  

a
raKrH )(2

2 

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(6.3) 

            under the assumption that the flow is steady, laminar and axisymmetric, the fluid is 

incompressible and possesses constant properties, all the inertia terms neglected and 

derivatives of velocities across the film predominate. Here, 0μ , ,   , z are free space 

permeability, magnetic susceptibility, fluid viscosity and axial coordinate, respectively.  

 Also, 

( , , ) ( , , )r r z u rv w  q , 

(6.4) 

           where ( θ )r, ,z  are cylindrical polar coordinates and dot (  ) represents derivative with 

respect to t. So that u, v, w are respectively radial, tangential and axial velocity 

components of q. 

Integrating equation (6.3) twice w.r.t. z and using boundary conditions 

u = 0 when z = 0 and u = 0 when z = h, 

            the expression for u can be obtained, which on substituting in the integral form of  

continuity equation in cylindrical polar coordinates for the film thickness [0, h], yields 

3 2
0

1 1
μ μ 12 ,

2 z h
rh p H w

r r r 

    
        

 

(6.5) 

           where 
0

0
z

w

  as lower disc is impermeable. 

 Assuming that the porous matrix is homogeneous and isotropic, flow in the 

porous region is axisymmetric, velocities are continuous at the interface between film and 
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porous region and velocity components in the porous region is governed by Darcy’s law, 

equation (6.5) can be written as 

2 * 2
0 03

1 1 12 1
μ μ μ μ

2 2 z h

dhr p H p H
r r r h dt z 

          
                 

              

(6.6) 

            with 

2
* 2 * 2

0 02

1 1 1
μ μ μ μ 0,

2 2
r p H p H

r r r z
       

             
                             

(6.7) 

           where   is the permeability of the porous facing and p* is the pressure in the 

porous region.    

 Using equation (6.1), equations (6.6) and (6.7) becomes 

*

0 3 3

1 1 12 12
μ μ (4 9 )

2 z h

p h pr K a r
r r r a h h z



      
      

     
 

                                                                                                                                                      (6.8) 

            and 

 
2 * * 2 *

02 2

1 1
μ μ 4 9 ,

2
p p p K a r
r r r z a

  
   

  
 

        (6.9) 

            respectively. 

            Equation (6.8) with equation (6.9) is the required modified Reynolds equation for 

the present study. This equation includes the effect of FF lubricant which is controlled by 

oblique VMF of strength given by equation (6.1) in order to make the required active 
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contact zone in the neighbourhood of r = 2a/3. For other active contact zones, suitable 

form of magnetic field strength (6.1) should be chosen. 

 The separation of variables solution of equation (6.9) using boundary conditions 

*

*

0,
z h H

p
z

 





 

(6.10) 

*( , ) 0,p a z 
 

(6.11) 

*

0

0
r

p
r







 

(6.12) 

       becomes 

  

*2 ( ) 2* 2
0 0

1

1( , ) 1 ( ) μ μ ,
2

n n nz h H z
n n

n
p r z C e e J r H


    



    
 

 

(6.13) 

           where condition (6.10) indicates no flow through the impervious boundary at the top of 

the porous upper disc, condition (6.11) indicates zero ambient pressure at the end a of the 

porous facing and condition (6.12) indicates axisymmetric pressure distribution in the 

porous facing. Moreover, Cn are unknown constants, n=(4n1)/4a is the  nth-eigenvalue 

which satisfies J0(n a)=0, Bessel function of first kind of order zero.
 

 Using equation (6.13) with boundary conditions 
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(6.14) 

( ) 0,p a 
 

(6.15) 

            equation (6.8) gives an expression for pressure distribution p in the film region (film 

pressure distribution) as 

*22 2 2
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h h
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



 
     




 

(6.16) 

           where condition (6.14) indicates axisymmetric pressure distribution in the film region and 

condition (6.15) indicates zero ambient pressure at the end a of the film region.
 

 Invoking the modified pressure-continuity condition  

),()( * hrprpP   

(6.17) 

            at the film-porous interface, equations (6.13) and (6.16) yields 

*
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(6.18)   

            where pressure difference P at the film-porous interface may be positive or negative 

depending on whether porous upper disc applying pressure on film region or vice versa. 

Moreover, in general, P may dependent on porosity, permeability, width of the porous 
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facing and other porous medium properties as well as shape of the squeeze-film and 

lubricant used. 

              The unknown constants Cn occurring in equation (6.18) can now be evaluated by 

using the orthogonality of the eigenfunction J0(n r) and is obtained as 

* *

13
2 2

3 3 3
1 1

24 2 12(1 ) (1 ) .
( ) ( )

n n nh H H
n

n n nn n

h PhC e e e
h a J a ha h J a
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     

         
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(6.19)

 Defining the dimensionless quantities 
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                                                                                                                                 (6.20)

 

         the unknown constants Cn defined in equation (6.19) in dimensionless form becomes  
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(6.21)

 

            Using nC  obtained in equation (6.21) and dimensionless quantities defined in 

equation (6.20), the dimensionless form of film pressure p (using equation (6.16)) can be 

obtained as 
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        (6.22) 

             where 

 

     

(6.23) 

The load-carrying capacity W of the squeeze-film is found by integrating the 

pressure over the disc surface 
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             Using equations (6.20) and (6.22), the dimensionless form of load-carrying 

capacity can be expressed as 
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(6.25) 

6.3   Numerical Calculations and Discussion of Results 

            It is clear from equations (6.22) and (6.24) that, the increase in dimensionless film 

pressure p  and load-carrying capacity W  is due to the first term on the right hand side, 

when FF is used as lubricant. Whereas the increase in p  and W  due to the terms Pn in 

equation (6.22) (defined in equation (6.23)) and Wn in equation (6.24) (defined in 

equation (6.25)) are because of the presence of the effect of pressure difference at the 

film-porous interface. It should be noted here that  
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.

0
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Thus, any change in any of the parameters of f will effect on Pn , and so its 

influence on   the problem cannot be neglected. The similar argument can be made for W . 

                       The dimensionless film pressure p  and load-carrying capacity W  are numerically 

calculated and presented graphically for the following value of different parameters 

[21,23], which are remain fixed unless and until the calculation is made with respect to 

the variation of that particular parameter. 
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The calculation of magnetic field strength in order to make the required active 

contact zone in the neighbourhood of r = 2a / 3 is shown below: From equation (6.1) 

05.0aforK1037.0HMax 32    

)10(,37.0/10For 39 OHK   

Moreover, the formula for Bessel function of first kind of order zero and order 

one considered in the calculation [24,25] are respectively as follows. 

0
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6 3 2 3 2 6

x xJ x x
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                      

1
1 1 3 3( ) sin sin sin .
6 2 6 6 2

x xJ x x
        

                          

 Moreover, in equations (6.22) - (6.25) the summation extends for 10 terms. 

            Figure 6.2 shows variation in p  as a function of dimensionless radial parameter R 

(where r varies). It is observed that p  decreases rapidly with the increase of R. That 

means neighbourhood of the central area of the bearing bears greater load as compared to 

the area near the end of the bearing, which results in less wear. The variation in p  and W  

with respect to dimensionless minimum film thickness parameter (h0/h) (where h varies) 

is shown in Figure 6.3 and Figure 6.4, respectively. It is observed that with the increase 

of (h0/h), p  and W  decreases. That means for larger value of minimum film thickness 

(h), p  and W  increases. This may be because of the generation of stronger and nearer to 

fully developed FF spikes (which is due to the effect of magnetic field) for values of

10)/( 0 hh ; that is; for larger value of minimum film thickness. Moreover, it can also 

be seen from Figure 6.4 that W  decreases moderately with the increase of (h0/h). That 
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means even though rapid decrease in p  , the load-carrying capacity W  maintained well.  

Figures 6.5 and 6.6 shows respectively the variation in p  and W  as a function of 

dimensionless magnetization parameter *μ (where K varies). It is observed that p  and W  

remains same up to * 2μ 3.54 10  , but beyond that it increases. That means both p  and 

W  increases with the increasing values of magnetic field strength. This may be because 

of increasing strongest nature of the generated spikes. Moreover, it can also be seen from 

both the figures that W  increase proportionally with p . 

6.4   Conclusions  

Modified Reynolds equation is derived for FF lubricated squeeze-film bearing 

made by flat circular porous upper and impermeable lower discs. The equations from 

ferrohydrodynamics theory by R.E. Rosensweig and equation of continuity for film as 

well as porous region are used in the derivation under the assumption of validity of 

Darcy’s law in the porous region. In order to control FF, oblique VMF is used. The VMF 

is considered because uniform magnetic field does not enhance bearing performances 

(refer equation (6.3)). Moreover, it is important because of its advantage of generating 

maximum field at the required active contact zone. In the present analysis the active 

contact zone is considered at the middle of the lower disc and so the applied magnetic 

field is chosen to be maximum at that point. Expression for film pressure is obtained in 

terms of Bessel function by considering the effect of existence of pressure difference at 

the film-porous interface. The effect of existence of pressure difference is considered 

because it violets the assumptions of Morgan-Cameron approximation and continuity of 

the pressure at the film-porous interface.  The effects of dimensionless radial parameter, 
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minimum film thickness parameter and magnetization parameter are studied on p , 

whereas the effects of minimum film thickness parameter and magnetization parameter 

are studied on W . The Results show that p  increases for smaller values of radial 

parameter, larger values of magnetization parameter and when 10)/( 0 hh , whereas W

increases for larger values of magnetization parameter and when 10)/( 0 hh .  
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6.5   Figures 

 

 

 

 

Figure 6.1 

Schematic diagram of squeeze-film bearing made by flat circular porous upper and 

impermeable lower discs. 
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Figure 6.2 

Variation in dimensionless film pressure p  for different values of dimensionless radial 

parameter R 
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Figure 6.3 

Variation in dimensionless film pressure p  for different values of dimensionless 

minimum film thickness parameter (h0/h) 
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Figure 6.4 

Variation in dimensionless load-carrying capacity W  for different values of 

dimensionless minimum film thickness parameter (h0/h) 
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Figure 6.5 

Variation in dimensionless film pressure p  for different values of dimensionless 

magnetization parameter *μ  
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Figure 6.6. 

Variation in dimensionless load-carrying capacity W  for different values of  

dimensionless magnetization parameter *μ  
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