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3.1   Introduction  

            Ferrofluids (FFs) or magnetic fluids (MFs) [1] are stable colloidal suspensions 

containing fine ferromagnetic particles dispersing in a liquid, called carrier liquid, in 

which a surfactant is added to generate a coating layer preventing the flocculation of the 

particles. When an external magnetic field H is applied, FFs experiences magnetic body 

force (M  ) H which depends upon the magnetization vector M of ferromagnetic 

particles. Owing to these features FFs are useful in many applications including bearing 

design systems related to squeeze-films [1-6]. Squeeze-film phenomenon arise because of 

two lubricated surfaces approach each other with a normal velocity. This normal velocity 

is called squeeze velocity. In many applications squeeze-film behaviour are observed like 

in bearings, machine tools, gears, rolling elements, hydraulic systems, engines, clutch 

plates, human knee joints, etc. 

 It is well known that bearing surfaces in practice are all rough and roughness is 

inherent in the manufacture of bearings, therefore, any realistic analysis of these 

bearings must consider the contacting surfaces as rough. Christensen [7] developed 

stochastic models for the study of hydrodynamic lubrication of rough surfaces in which 

one-dimensional circumferential and radial roughness patterns were discussed. 

Christensen et. al. [8] derived generalized form of Reynolds equation applicable to 

rough bearings by assuming the fluxes to be represented by power series of a stochastic 

film-thickness function. Depending on the Christensen’s roughness model, Prakash and 

Tiwari [9] studied roughness effect on the squeeze-film between rotating porous annular 

discs with arbitrary porous wall thickness. An exact solution, valid for arbitrary wall 

thickness is given for the film pressure and pressure in the bearing material. Recently, 
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Bujurke et. al. [10] studied roughness effect on squeeze-film behaviour in porous 

circular discs with couple-stress fluid. They have shown that the effect of couple-stress 

fluid and surface roughness is more pronounced as compared to classical one. 

Naduvinamani et. al. [11] studied roughness effect on squeeze-film between porous 

circular stepped plates using couple-stress fluid. It was shown that the effect of magnetic 

field increase the mean load-carrying capacity and lengthen the mean squeeze time. 

Basti [12] discussed effect of surface roughness on squeeze-film between curved annular 

plates using couple-stress fluid. It was shown that the circumferential roughness pattern 

on the curved annular plate results in more pressure buildup whereas performance of the 

squeeze-film suffers due to the radial roughness pattern for both concave and convex 

plates. 

           With the advent of FFs, many researchers have tried to find its applications as 

lubricant. Agrawal [13] studied effects of MF on a porous inclined slider bearing and 

found that the magnetization of the magnetic particles in the lubricant increases load 

capacity without affecting the friction on the moving slider. Verma [14] studied 

squeeze-film bearing with MF as lubricant using three porous layers attached to the 

lower plate and show that load-carrying capacity increases due to the effect of MF 

lubricant as compared to conventional viscous fluid as lubricant. Chi et. al. [15] discuss 

new type of FF lubricated journal bearing consisting of three pads. One of them is a 

deformable elastic pad. The theoretical analysis and experimental investigation shows 

that the performance of the bearing is much better than that of ordinary bearings. 

Moreover, the bearing operated without leakage and any feed system.   Recently, 

Uhlmann et. al. [16] discuss about application of MFs in tribotechnical systems. The 
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rheological and tribological behaviour of MFs was investigated and compared with 

conventional lubricants between friction pairs under boundary conditions. Ahmad and 

Singh [17] studied about MF lubricated porous pivoted slider bearing with slip velocity. 

There it was discussed that the minimization of the slip parameter and permeability 

parameter increases the load-carrying capacity. Singh and Gupta [18] studied about 

curved slider bearing with FF as lubricant and shown that the effect of rotation and 

volume concentration of magnetic particles improves the stiffness and damping 

capacities of the bearings. Shah and co-authors [19-28] studied about FF lubricated 

various designed bearings like porous slider bearings of different shapes, long journal 

bearing, axially undefined journal bearing, squeeze-film bearings with the inclusion of 

effects of slip velocity at the porous boundary, anisotropic permeability of the porous 

matrix, etc. More recently, Shah and Kataria [29] theoretically discussed FF based 

squeeze-film characteristics between a sphere and a flat porous plate. It is concluded that 

loss in dimensionless load-carrying capacity due to the effect of porosity is almost zero 

because of using FF as lubricant for smaller values of thickness parameter of the porous 

layer and radial permeability parameter. Shah and Patel [30] studied squeeze-film 

characteristics between a rotating sphere and a radially rough plate and shown that better 

performance of the dimensionless load-carrying capacity can be obtained w.r.t. various 

parameters.  

           The purpose of the present Chapter is to develop a mathematical model of FF 

lubricated flat annular squeeze-film bearing which is formed when a porous upper disc 

(plate or surface) approaches a circumferentially rough impermeable lower disc 

considering radially variable magnetic field (VMF). The roughness effect is presented 
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on the basis of Christensen’s stochastic theory for hydrodynamic lubrication of rough 

surfaces [7,8]. The VMF is important because of its advantage of generating maximum 

field at the required active contact zone. Moreover, the magnetic field considered is 

oblique and maximum at the middle of the lower disc. The modified Reynolds equation 

is derived and its exact solution is obtained in terms of Bessel function. This method of 

solving Reynolds equation is important because it violets the assumption of replacing 

pressure in the porous matrix by the average pressure w.r.t. bearing wall thickness and 

then the average pressure equal to the film pressure at any section [31]. Dimensionless 

load-carrying capacity is calculated and discussed from different viewpoints. The effects 

of width of the porous layer, permeability, surface roughness, etc. are studied. The 

effects of micromodel patterns of two different porous structures suggested by Kozeny-

Carman and Irmay [5,27] are also discussed. This study of different porous structures is 

important because it has significant effect on the bearing characteristics [27]. Moreover, 

the porous structures are also important because of self-lubricating property of the 

bearing design systems. 

3.2    Mathematical Formulation of the Problem  

           The physical configuration of the problem of squeeze-film bearing made up of 

two flat annular discs is shown in figure 3.1. Both the discs are having inner radius b and 

outer radius a.  A porous layer (disc or region or surface or matrix or facing) of 

thickness l  is attached to the upper impermeable disc (solid housing) while the lower 

impermeable disc is circumferentially rough.  Initially the two discs are separated by a 

lubricating film of FF (known as film region) with thickness h, where 
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( ) ( ,θ,ξ),n sh h t h r   

                                                                                                                                        (3.1) 

            which is made up of two parts as follows : 

(1) ( )nh t  denotes the nominal, smooth part of the film geometry with t as time, and  

(2) )( ,,rhs  is the part due to the surface asperities measured from the nominal level 

and   is regarded as a randomly varying quantity of zero mean with r as radial co-

ordinate,  as angular co-ordinate and   as the index parameter determining a 

definite roughness arrangement. 

            During engagement, an axial force is applied to the upper disc and it starts to 

approach the lower one with a normal velocity (squeeze velocity) /h dh dt , till the 

mechanical contact is made. 

           While deriving the Reynolds equation, it is assumed that the flow is laminar, the 

fluid is incompressible and possesses constant properties, the porous matrix is 

homogeneous and isotropic, all the inertia terms can be neglected, flow in the film and 

the porous region is axisymmetric, derivatives of velocities across the film predominate 

and velocities are continuous at the interface between porous region and film region.  

            On the basis of these assumptions, the equation governing the pressure distribution 

p in the film region considering cylindrical polar co-ordinates in r – direction is obtained 

as 

2
2

0 2

1
μ μ η ,

2
up H

r z
  

  
  

 

(3.2) 

           where H is strength of the radially VMF. 
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                       Using continuity equation (2.26) in cylindrical polar co-ordinates and integrating it 

w.r.t. z over the film-thickness [0, h] yields 

0

1 0,
h

z h
ru dz w

r r 


 

 
 

(3.3) 

            where 
0

0
z

w

  as lower disc is impermeable. 

             Integrating equation (3.2) twice w.r.t. z and using boundary conditions 

u = 0 when z = 0 and u = 0 when z = h, 

            the expression for u can be obtained, which on substituting in equation (3.3) yields 

3 2
0

1 1
μ μ 12η .

2 z h
rh p H w

r r r 

    
       

 

(3.4) 

            Using velocity components in the porous region governed by Darcy’s law, 

equation (3.4) can be written as 

3 2 2
0 0

1 1 1
μ μ 12η 12φ μ μ

2 2 z h

dhrh p H P H
r r r dt z



         
                 

              

  (3.5) 

with  P satisfying the equation 

2
2 2

0 02

1 1 1
μ μ μ μ 0,

2 2
r P H P H

r r r z
       

             
                             

(3.6) 

            where φ  is the permeability of the porous facing and P is the pressure in the porous 

region.    

 Choosing oblique radially VMF strength 2H  of H as [6] 
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2 ( )( ),H K r b a r    

(3.7) 

so that it is maximum at the middle of the lower disc and vanishing at r = b, a . Here, K is 

a constant to be chosen to suit the dimensions of both sides. 

            The reason for choosing this H2 lies in the observation that uniform magnetic field 

does not have any effect on the present analysis as can be seen from equation (3.2). 

Moreover, it has an advantage of generating maximum field at the required active contact 

zone. Here, active contact zone is considered at the middle of the lower disc. For other 

active contact zones, different forms of magnetic field should be chosen. 

 Using equation (3.7), equations (3.5) and (3.6), respectively, becomes 

3 3
0

1 1 4 μ μ 12η 12φ ,
2 z h

p a b dh Pr h Kh
r r r r dt z 

        
        

       
  

                                                                                                                             (3.8) 

2

0 02

1 1
μ μ ( ) 2μ μ .

2
P Pr K b a K

r r r z r
   

    
   

     

                                                                                                                                        (3.9) 

  Taking expected values of both sides of equation (3.8) yields 

3 3
0

1 1 ( )4 μ μ ( ) 12η 12φ ,
2 z h

p a b dE h Pr E h K E h
r r r r dt z 

          
                 

  

     (3.10) 

 where expectancy operator ( )E   is defined by 

 

                                   

                                                                                                                                     ( 3.11) 

( ) ( ) ( )s sE f h dh




  
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and f  is the probability density function of the stochastic film-thickness sh . Such a 

probability density function approximated by Christensen in [7,8] as 

2 2 3
7

35( ) ( )    ;   
32

         0                         ;    elsewhere

s s sf h c h c h c
c

    



 

(3.12) 

           where c is the maximum asperity deviation from nominal film height and the function 

terminates at 3 c  with  being the standard deviation. 

            Equation (3.10) is dependent on the structure of the surface roughness. In the 

context of stochastic theory, one-dimensional circumferential roughness is one of the 

roughnesses of special theoretical interest [7] and thus it is considered here for study. For 

one-dimensional circumferential roughness, the surfaces have the form of long, narrow 

ridges and valleys running in  - direction, the film-thickness given by equation (3.1), 

therefore, assumes the form 

( ) ( ,ξ).n sh h t h r   

(3.13) 

             For this type of roughness pattern, equation (3.10) reduces to  

03 3

1 1 ( ) 1 1 ( )4 μ μ 12η 12φ ,
( ) 2 ( ) z h

d dE p a b dE h Pr K
r dr E h dr r E h dt z 



      
       

    
 

(3.14) 

           which is the required modified Reynolds equation for the present study. 
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3.3   Solution of the Problem  

           For solving equation (3.9), the following suitable boundary conditions are 

considered. 

                       Assuming that there is zero ambient pressure at both the ends a and b of the 

porous facing, therefore 

( , ) 0P a z   

(3.15) 

and 

( , ) 0.P b z   

(3.16) 

             Also, assuming that there is no flow through the impervious boundary at the top 

of the porous disc, therefore 

0 at .P z h l
z


  


   

(3.17) 

With the above boundary conditions, solution of homogeneous problem of 

equation (3.9) using method of separable variable becomes 

α 2α ( )

0
1

e [1 e ] (α ),n nz h l z
n n

n
P C U r


 



   

(3.18) 

where nC  are constant coefficients and  

0 0 0 0 0(α ) (α ) (α ) (α ) (α )n n n n nU r Y a J r J a Y r   

(3.19) 
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            in which 0J  is the Bessel function of first kind of order zero, 0Y  is the Bessel function of 

second kind of order zero. 

   The α (4 1)π / 4n n a   is the nth-eigenvalue which satisfies  

.bU n 0)(0   

(3.20) 

 The complete solution of equation (3.9), therefore becomes  

            α 2α ( ) 2
0 0

1

1e [1 e ] (α ) μ μ .
2

n nz h l z
n n

n
P C U r H


 



    

                                                                                                  (3.21) 

 Using (3.11), 

( ) nE h h                                                                                                                       

                                                                                                                                      (3.22) 

            and  

3 2 2 2 2 2 2
7

35( ) 3(5 )( ) ln 2 (15 13 ) .
32

n
n n n n

n

h cE h h c c h ch h c
c h c

  
     

 
 

                                                                                                                                      (3.23) 

            Equation (3.14), using equations (3.21), (3.22) becomes
 

2α3 3
0 0

1

1 ( ) 112η ( ) 12φ ( ) α (1 e ) (α ) 4 μ μ ,
2

nln
n n n

n

dhd dE p a br E h E h C U r K
r dr dr dt r


 



   
      

   


 

(3.24) 

where  

αe n nh
n nC C  

 (3.25) 



69 
 

            are constants to be determined. 

 Integrating equation (3.24) twice w.r.t. r and making use of the boundary conditions  

[ ( )] 0,E p a   

(3.26) 

,0)]([ bpE  

(3.27) 

      

            which indicates zero ambient pressure at both the ends a and b of the film region, yields 

the mean pressure in the film region as 

2α3 3 0
0

1

μ μ( ) 3η ( ) ( ) 12φ ( ) (1 e ) (α ) ( )( ) ,
α 2

nn ln
n

n n

dh KCE p E h R r E h U r r b a r
dt


 



       

(3.28) 

           where  

2 2 2 2
2 ( ) ln ln ln( ) .

ln ln
b a r a b b aR r r

a b
  

 


 

(3.29) 

 Considering the pressure continuity at the film-disc interface; that is 

[ ( )] [ ( , )]E p r E P r h , 

(3.30) 

            using equation (3.21) and orthogonality of eigenfunctions )(0 rU n , yields 

3
0

2α 2α 3
0 0

12πη ( ) (α ) 1 .
α [ (α ) (α )] (1 e )α 12φ(1 e ) ( ) tanh(α )n n

n n
n l l

n n n n n

E h h J bC
J a J b E h l




  

     

 

(3.31) 
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 Substituting this nC   in equation (3.28) implies 

3 0 0 0
3

1 0 0

(α ) (α ) μ μ1( ) 12πη ( ) ( )( ) .
α [ (α ) (α )] α 12φ ( ) tanh(α ) 2

n n n

n n n n n n

dh J b U r KE p E h r b a r
dt J a J b E h l







      
 



 

    (3.32) 

 The definition of mean load-carrying capacity  

( ) 2π ( )

a

b

E W E p rdr    

               (3.33) 

implies 

3 0 0
3 3

1 0 0

3
0

16π{ (α ) (α )} 1( ) 3η ( )
α { (α ) (α )} α 12φ ( ) tanh(α )

1                                                                                     μ μπ ( ) ( )
12

n n n

n n n n n n

dh J b J aE W E h
dt J a J b E h l

K a b a b







 
   

  

  


 

  (3.34) 

with equation (3.23). 

 Here, permeability  may be chosen in different way as follows. 

2 3

2

22 1
23 3

3

3
1

φ , for arbitrary porous structures

ε
φ , for globular spheres porous structures

180(1 ε)

1 1
; 1 ε , for capillary fissures porous structures

12 ( )

c

s
s

s

D

m m D
Dm

m D b








 



      

     


 

(3.35) 

Defining dimensionless quantities 
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2
φ , ,
n n

ll
h h

   ψ ,l   
n

cC
h

 ,  ak
b

 , bnn  ,  
b
lL  ,   

3
0μ μ

μ ,
η

n

n

K h
h

    

(3.36) 

the dimensionless load-carrying capacity can be obtained as  

13
3

04
1

( ) 12ψ 148π (α ) ( ) tanh(α ) μ π( 1) ( 1),
α 12η

n
n n

n nn

E W hW J G C L k k
Lb h




 



 
       

 
  

(3.37) 

where  

0 0
0 4

0 0

[ (α ) (α )](α ) ,
α [ (α ) (α )]

n n
n

nn n n

J J kJ
J J k

 



 

                                             (3.38)  

1
2 2 2

7

35 1( ) 3(5 )( 1) ln 2 (15 13 ) .
32 1

CG C C C C C
C C



   
        

 

(3.39) 

3.4   Results and Discussion  

                      When FF is used as lubricant, then the variation in dimensionless load-carrying 

capacity W  is due to the second term of the equation (3.37). The radially VMF 

considered is oblique to the lower disc and its strength is maximum at the middle of the 

disc r  (a + b)/2. The order of magnetic field strength for different K  is shown in figure 

3.2 when a = 0.075 (m) and b = 0.05 (m). The dimensionless load-carrying capacity is 

numerically calculated from different viewpoints and presented graphically for the 

representative values of different parameters given in section 3.4.3. 
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3.4.1   Discussion on Dimensionless Load-Carrying Capacity 

Figure 3.3 shows the comparative study of variation in W  as a function of 

dimensionless thickness of the porous matrix L for dimensionless permeability parameter 

for arbitrary porous structure     = 0.01390 and  = 0.1390. It is observed that W  

increases as L decreases. The increase rate of W  is more for   = 0.1390 when  L < 0.02. 

In the same way the increase rate of  W  is more for   = 0.01390 when L < 0.2. 

Moreover, the increase rate of W  is more in the case of    = 0.01390 as compared to    

= 0.1390.The maximum increase rate difference is observed when L = 0.002. At this L, 

W  8 for    = 0.1390 and W  21 for     = 0.01390, therefore, increase rate of  W  is 

almost 163   more for     = 0.01390 as compared to  = 0.1390.  

            Figure 3.4 shows the variation in W  as a function of dimensionless surface 

roughness parameter C for different values of L. It is observed that  W  increases as C 

increases for  0.0002    L < 0.02. After L = 0.02, the roughness effects become 

negligible. Also, for C = 0.1179 when  L = 0.2, W  1 and when L = 0.02, W  7, 

therefore, the increase rate of  W  is almost 600 when L = 0.02. Similarly, for C = 

0.1179 when L = 0.002, W  16, therefore the increase rate of W  is almost 129% from 

L = 0.02 to L = 0.002. 

From the above observations, the decreasing tendency of W w.r.t. increasing 

values of  and L may be interpreted by the physical process as under: According to 

[32], the pressure in the porous medium provides a path for the fluid to come out easily 

from the bearing to the environment. The higher the permeability, the more readily does 
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fluid flow through the porous material. In this way, the presence of the porous material 

decreases the resistance to flow in r – direction and as a consequence the load-carrying 

capacity is reduced. This behaviour of decreasing load-carrying capacity with the 

insertion of porous matrix and higher permeability also agrees with the conclusions of 

Prakash and Tiwari [33] while discussing the problem of squeeze-film of rough porous 

rectangular plates theoretically and experimentally by Wu [34]. In our case, the above 

behaviour of W  w.r.t.  and L matches because it may be possible that in the porous 

matrix the FF effect may be less and the FF behaves like conventional fluid under the 

action of magnetic field. Moreover, it is observed that the increasing effect of surface 

roughness increases the load-carrying capacity. This may be because of the generation of 

spikes due to presence of FF in the surface pattern and retention of the fluid therein 

(which resist the mechanical contact of the upper and lower surfaces). 

            Figure 3.5 shows the variation in W  as a function of dimensionless parameter k, 

which is ratio of outer radius a by inner radius b defined in equation (3.36), for different 

values of L. It is observed that  W  increases as k increases; that is, as the width of the 

annular part b  r  a increases. This is because FF in the presence of magnetic field 

generates spikes and greater the generation of spikes may lead to better load-carrying 

capacity because of their strength. In addition, it can be seen from Table 3.1 that just by 

smaller increasing change in the value of k; that is, increasing width of the annular part, 

the rate of W  increases suddenly and jumps to higher value. Thus, the smaller change in 

k  results greater change in W . 
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3.4.2   Effects of Two Different Micromodel Patterns of Porous Structures        

              

When the porous matrix designed with micromodel pattern of globular spheres 

suggested by Kozeny-Carman [5,27], then the permeability of the upper porous matrix as 

defined in equation (3.35) is given by 

,
)1(180 2

32




 c

g
D

        

           where Dc is a mean particle size and  is the porosity of the porous matrix (Refer 

Figure 3.6).  

              Similarly, when the porous matrix designed with micromodel pattern of capillary 

fissures composed of three sets of mutually orthogonal fissures as suggested by Irmay 

[5,27], then the permeability of the upper porous matrix as defined in equation (3.35)  is 

given by 
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               where Ds
 is a mean solid size and b1 is the thickness of the fissure (Refer Figure 3.7). 

             By considering sample values   

2.0 , Dc=Ds=0.000007 )m( , 

                        the value of the dimensionless permeability parameter   for the both the cases can be 

obtained respectively as follows. 

7
2

φ
4.7297 10g

g
nh

     (For globular sphere model) 
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  7
2

φ
5.0390 10f

f
nh

     (For capillary fissures model) 

             From the above value of , it is observed that fg  ; that is, for the same data 

values, the permeability obtained in the case of globular sphere model is less. From figure 

3.8, it is observed that up to L = 0.02, W  almost remains same and constant for both the 

porous structures. But after that W  decreases. It is also observed that there is a moderate 

difference in the decrease rate between both the porous structures. The slightly better 

performance of W  is obtained in the case of globular structure.   

Limiting Cases 

(1) When 2H  0, the present analysis reduces to [9] for nonmagnetic case without 

rotation effect. 

(2) When 2H 0,   0 or l  0, the present case reduces to [31], which is 

approximated under the assumption that the pressure in the film at any section is 

equal to the average pressure in the bearing matrix at that section.  

(3) When 2H 0, C0, the present case reduces to smooth porous surfaces [35] 

without rotation effect. 

(4) When C0, the present case reduces to [6] for exponential pad of the upper 

surface. 

3.4.3   Representative Values and Formula for Bessel Function  

                       The following representative values are taken in computations which are common 

for all   figures and table.  

)ms(08.0,)NA(104
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              Values taken for different figures are as follows: 

For figure 3.3: a = 0.075 (m), b = 0.05 (m), c = 0.000030 (m),  = 10-9 (m2),   

                         = 10-10 (m2), K = 1010/1.56(A2/m4) so that O(H)  3. 

For figure 3.4: a = 0.075 (m), b = 0.05 (m),  = 10-10 (m2), c = 0.00001 (m), 

                        c =  0.000015 (m), c = 0.000020 (m), c = 0.000025 (m),  

                        c = 0.000030 (m), K = 1010/1.56(A2m-4) so that    O(H)  3. 

For figure 3.5: a = 0.075 (m),  = 10-10 (m2), c = 0.000030 (m), 

                        (b = 0.02 (m), K = 1010/7.5625(A2m-4)),   

                        ( b = 0.03 (m), K = 1010/5.0625 (A2m-4)), 

                        (b = 0.04 (m), K = 1010/3.0625 (A2m-4)) ,  

 (b = 0.05 (m), K = 1010/1.56 (A2m-4)) so that O(H)  3. 

For figure 3.8:  a = 0.075 (m), b = 0.05 (m), c = 0.000030 (m),  

                         K = 1010/1.56 (A2m-4)   so that O(H)  3. 

            Here, O(H) indicates the order of magnetic field strength. 

 Also, the formula for Bessel function of order zero considered in the calculation is [36] 

0
1 1 1 3 1( ) cos cos cos ,
6 3 2 3 2 6

x xJ x x
          

                        
 

             and in equation (3.37), the summation extends for 10000 terms. 

3.5   Conclusions  

                       Based on the ferrohydrodynamic theory by R.E. Rosensweig and stochastic theory 

for hydrodynamic lubrication by Christensen, the present Chapter developed a 

mathematical model of FF lubricated flat (parallel) discs squeeze-film bearing which 

formed when a porous annular upper disc approaches a circumferentially rough 
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impermeable annular lower disc considering radially VMF. The VMF is important 

because of its advantage of generating maximum field at the required active contact zone. 

The magnetic field used is oblique and maximum at the middle of the lower disc. 

Moreover, porosity is considered because of getting advantageous property of self-

lubrication. The modified Reynolds equation is derived and its exact solution is obtained 

in terms of Bessel function. This method of solving Reynolds equation is important 

because it violets the assumption of replacing pressure in the porous matrix by the average 

pressure w.r.t. bearing wall thickness and then the average pressure equal to the film 

pressure at any section [31]. Dimensionless load-carrying capacity is calculated and 

discussed for the effects of width of the porous layer, permeability, surface roughness, etc. 

The effects of micromodel patterns of two different porous structures defined by globular 

sphere model and capillary fissures model are also discussed. The following conclusions 

can be drawn from results and discussion. 

W   increases when  

(1) thickness of porous matrix attached to the above disc decreases 

(2) permeability of the porous matrix decreases 

(3) effect of surface roughness increases 

(4) width of the annular part increases 

Moreover, slightly better performances of the bearing are observed in the case of 

globular sphere permeability model suggested by Kozeny-Carman. The VMF is having a 

significant effect on the problem as uniform magnetic field does not have any effect as 

can be seen from equation (3.2). It is believed that the predictions obtained from the 

results are useful for the bearing design Engineers. 
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3.6    Table 

 

 

 

 
 

 

 

 

K 

1.5 1.875 2.5 3.75 

W  24.7386 62.2777 197.7555 986.6270 

% variation in 

W as 

compared to 

k =1.5 

0 151.7() 699.4() 3888.2() 

 

 

Table 3.1 

 

 Effect on W for different values of k when L = 0.0002 
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3.7    Figures 

 

 

 

 

 

 
Figure 3.1 

 Schematic diagram of the squeeze-film bearing configuration between porous and 

circumferential rough discs 
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Figure 3.2 

 

 Order of magnetic field strength for different values of K when k = 1.5  
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Figure 3.3 

          Variation in dimensionless load-carrying capacity W  for different values of 

dimensionless thickness of the porous matrix L and dimensionless permeability 

parameter for arbitrary porous structure  
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Figure 3.4 

Variation in dimensionless load-carrying capacity W  for different values of 

dimensionless roughness parameter C  and dimensionless thickness of the porous 

matrix L 
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Figure 3.5 

 Variation in dimensionless load-carrying capacity W  for different values of k  and 

dimensionless thickness of the porous matrix L 

 
 
 
 
 



84 
 

 
 
 

Figure 3.6  

 

Micromodel globular sphere model of porous matrix suggested by Kozeny-Carman 

 
 

 
 
 

Figure 3.7 

 

 Micromodel capillary fissures model of porous matrix suggested by Irmay 
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Figure 3.8 

Variation in dimensionless load-carrying capacity W  for different values  of 

dimensionless roughness parameter C  and dimensionless thickness of the porous 

matrix L and dimensionless permeability parameter in globular and capillary 

fissures model 

 

 



86 
 

3.8    References  

1. R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, New York, 

1985. 

2. V.G. Bashtovoi and B.M. Berkovskii, Thermomechanics of ferromagnetic fluids, 

Magnitnaya Gidrodinamika 3 (1973) 3-14. 

3.    N.C. Popa, I. Potencz, L. Brostean and L. Vekas, Some applications of inductive 

transducers with  magnetic fluids, Sensors and Actuators A  59 (1997) 197-200. 

4. R.V. Mehta and R.V. Upadhyay, Science and technology of ferrofluids, Current 

Science 76 (3) (1999) 305-312. 

5. J. Liu, Analysis of a porous elastic sheet damper with a magnetic fluid, Journal of 

Tribology 131 (2009) 0218011-15. 

6. R.C. Shah, S.R. Tripathi and M.V. Bhat, Magnetic fluid based squeeze-film 

between porous annular curved plates with the effect of rotational inertia, Pramana-

Journal of Physics 58(3) (2002) 545-550. 

7. H. Christensen, Stochastic models for hydrodynamic lubrication of rough surfaces, 

Proc. Inst. Mech. Eng. (Part J) 184 (55) (1969) 1013-1026. 

8. H. Christensen, J.B. Shukla and S. Kumar, Generalized Reynolds equation for 

stochastic lubrication and its application, Journal of Mechanical Engineering 

Science 17 (1975) 262-270. 

9. J. Prakash and K. Tiwari, Effect of surface roughness on the squeeze-film between 

rotating porous annular discs with arbitrary porous wall thickness, International 

Journal of Mechanical Science 27(3) (1985) 135-144.  



87 
 

10.  N.M. Bujurke, D.P. Basti and R. B. Kudenatti, Surface roughness effects on 

squeeze-film behaviour in porous circular disks with couple stress fluid, Transp. 

Porous  Med. 71 (2008) 185-197. 

11.   N. B. Naduvinamani, B. N. Hanumagowda and S.T. Fathima, Combined effects of 

MHD and surface roughness on couple-stress squeeze-film lubrication between 

porous circular stepped plates, Tribology International 56 (2012) 19–29. 

12.  D.P. Basti, Effect of surface roughness and couple stresses on squeeze-films between 

curved annular plates, ISRN Tribology, Volume 2013, Article ID 640178, 8 pages. 

13.  V.K. Agrawal, Magnetic fluid based porous inclined slider bearing, Wear 107 (1986) 

133-139. 

14.  P. D. S. Verma, Magnetic fluid – based squeeze-film, International Journal of 

Engineering Science 24(3) (1986) 395-401. 

15.    C.Q.  Chi, Z.S. Wang and P.Z. Zhao, Research on a new type of ferrofluid –                          

          lubricated journal bearing,   Journal of Magnetism and Magnetic Materials  

                      85 (1990) 257-260. 

16. E. Uhlmann, G. Spur, N. Bayat and R. Patzwald,  Application of magnetic fluids in 

tribotechnical systems, Journal of Magnetism and Magnetic Materials 252 (2002) 

336–340. 

17. N. Ahmad and J. P. Singh, Magnetic fluid lubrication of porous-pivoted slider 

bearing with slip velocity, Journal of  Engineering Tribology 221 (2007) 609-613. 

18. U. P. Singh and R. S. Gupta, Dynamic performance characteristics of a curved 

slider bearing operating with ferrofluids, Advances in Tribology, Article ID 278723 

(2012) 6 pages. 



88 
 

19. R. C. Shah and M. V. Bhat, Ferrofluid lubrication in porous inclined slider bearing 

with velocity slip, International Journal of Mechanical Sciences 44 (2002) 2495-

2502. 

20. R. C. Shah and M. V. Bhat, Effect of slip velocity in a porous secant-shaped slider 

bearing with a ferrofluid lubricant, FIZIKA A 12 (1) (2003) 1-8.   

21. R. C. Shah and  M. V. Bhat, Ferrofluid lubrication equation for porous bearings 

considering anisotropic permeability and slip velocity, Indian Journal of 

Engineering & Materials Sciences 10 (2003) 277-281. 

22. R. C. Shah and M. V. Bhat, Ferrofluid squeeze-film in a long journal bearing, 

Tribology International 37 (2004) 441- 446. 

23. R. C. Shah and M. V. Bhat, Ferrofluid lubrication of a porous slider bearing with a 

convex pad surface considering slip velocity, International Journal of Applied 

Electromagnetics and Mechanics 20 (2004) 1-9. 

24. R. C. Shah and M. V. Bhat, Anisotropic permeable porous facing and slip velocity 

on squeeze-film in an axially undefined journal bearing with ferrofluid lubricant, 

Journal of Magnetism and Magnetic Materials 279 (2004) 224-230. 

25. R. C. Shah and M. V. Bhat, Magnetic fluid lubrication of bearing, each having a 

porous faced stator and a slider having various shapes, Magnetohydrodynamics 

40(1) (2004)  91-97.  

26. R. C. Shah, Effect of rotation on ferrofluid based squeeze-film of various shapes 

between two annular plates, International Journal of Applied Mechanics and 

Engineering 12(2) (2007) 515-525. 

http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=3nZ0YqUAAAAJ&citation_for_view=3nZ0YqUAAAAJ:IjCSPb-OGe4C
http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=3nZ0YqUAAAAJ&citation_for_view=3nZ0YqUAAAAJ:IjCSPb-OGe4C
http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=3nZ0YqUAAAAJ&citation_for_view=3nZ0YqUAAAAJ:ufrVoPGSRksC
http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=3nZ0YqUAAAAJ&citation_for_view=3nZ0YqUAAAAJ:ufrVoPGSRksC


89 
 

27. R. C. Shah and D. B. Patel, Squeeze-film based on ferrofluid in curved porous 

circular plates with various porous structure, Applied Mathematics 2 (2012) 121-123. 

28. R. C. Shah and D. B. Patel, Mathematical analysis of newly designed ferrofluid 

lubricated double porous layered axially undefined journal bearing with anisotropic 

permeability, slip velocity and squeeze velocity, International  Journal of Fluid 

Mechanics Research  40 (5) ( 2013 ) 446-454. 

29. R. C. Shah and R. C. Kataria. On the squeeze-film characteristics between a sphere 

and a flat porous plate using ferrofluid. Applied Mathematical Modelling 40 (2016) 

2473-2484. 

30. R. C. Shah and D. A. Patel, On the ferrofluid lubricated squeeze-film characteristics 

between a rotating sphere and a radially rough plate, Meccanica. DOI: 

10.1007/s11012-015-0337-3. 

31.   J. Prakash and K. Tiwari, Effect of surface roughness on the squeeze-film between 

rotating porous annular discs, Journal of Mechanical Engineering Science 24 

(1982) 155-161 

32.   E. M. Sparrow, G. S. Beavers and I. T. Hwang, Effect of velocity slip on porous 

walled squeeze-films, Journal of Lubrication Technology 94 (1972) 260-265. 

33.   J. Prakash and K.Tiwari, Lubrication of a porous bearing with surface corrugations, 

Journal of  Lubrication Technology 104 (1982) 127-134. 

34.   H. Wu, A review of porous squeeze-films, Wear 47(1978) 371-385. 

35. H. Wu, The squeeze-film between rotating porous annular disks, Wear 18 (1971) 

461-470. 



90 
 

36. M. T. Abuelma’Atti,  Trigonometric approximations for some Bessel functions, 

Active and Passive  Elec. Comp. 22 (1999) 75-85. 

 


