CHAPTER 4

TEXTUAL IMAGE BINARIZATION USING GRAPH CUTS

4.1 INTRODUCTION

For last century, the importance of extraction and interpretation of textual information in digital
images has grown tremendously. In most of the cases, the text hidden in the image or video clip
provides significant piece of information. In last few decades, this has evolved as an important
research area. To distinguish the textual area from other image pixels sometimes turn out to be
challenging task. Optical Character Recognition (OCR), Content based retrieval of image,
segmentation of textual image are some of the important computer vision problems related to images
which has confined attention of researchers. Identification of number printed on the number plates of
vehicles captured in the CCTV footage of a toll booth, identification of sign boards and hoardings in
the scene of highways has also captured attentions of researchers as dealing with video clip and scene
analysis. Digital note taking and document archiving are few of the important application of computer
vision problems associated with textual image.

After the emergence of social networking sites and mobile phones with good digital cameras, image
capturing, sharing and interpreting has become a task which is by and large performed by laymen. In
day to day life, we come across many textual images which are not obtained through flatbed scanner
but captured using digital camera or mobile phones. Due to portability and high speed mechanism of
such devices, acquisition of images through them has become more common and has significantly
affected human interaction. However, images produced in this manner don’t have uniform brightness
and hence traditional methods of document analysis fail miserably in case of images captured by
mobile phones and digital camera because of perspective distortion and blur, non-uniform brightness
and poor resolution. Most of the systems dealing with document analysis initially binarize the image
in order to reduce the computational cost and complexity. Robustness of the binarization achieved at
this stage is obviously important as a minor error in the binarization may greatly affect the inferences
of document analysis.

The simplest and widely used binarization approach dealing with majority of computer vision
problems related to text is global thresholding. If the quality of image is good and with uniform
background brightness, pixel intensity called global thresholding is evaluated based on the average
intensity of image pixels and the image is segmented in text (foreground) and background using this
number. As all images do not have uniform brightness feature, local thresholding technique is
employed for segmentation, which imitates the task of global thresholding on small pieces or blocks
of images having somewhat uniform intensity throughout the block. Texture based techniques
introduced in [8],[9] and methods based on connected components discussed in [45], [65], [67], [77]
and [126] are the two main approaches with which textual image segmentation problems are being
dealt with. Techniques mentioned in [9],[10] are time consuming and also depends on the font size of
the text. For text with variety of font sizes or rather with scanned image of hand written text, this
method is not so efficient. This method is highly efficient in detection of text from low resolution
textual images. The methods based on the approach of connected component ([45], [65], [67], [77]
and [126]) have impressive performance with reference to the time they consume.

In this chapter, the core work of the thesis (i.e. formulation of a mathematical model using graph cuts
for a particular application and its implementation) is presented. In chapter 3, various graph cuts

90 |Page

models were discussed. We have formulated a mathematical model to address the task of binarization
of textual images using graph cuts terminology. The application has its own significance as in Optical
Character Recognition (OCR), binary image of good quality is the first pre-requisite. Most of the
prevailing methods of binarization rely in one or other way on thresholding, whether it is local or
global or on the approach of connected components.

4.2 DEFINITION OF THE PROBLEM TO BE ADDRESSED

We transform the problem of image binarization into an equivalent optimization problem and attempt
to solve it through network flow terminology (i.e. Graph cuts). Max flow min- cut theorem given by
Ford and Fulkerson plays a very crucial role in the model as in all graph cuts models.

A digital image of text document (i.e. scanned text) is composed of rectangular arrangement of pixels,
each of which represents intensity. Binarization is a process of defining a function X : ¥V — {¢',b}

(where V is the set of all pixels of the textual image) which reassigns a binary value ¢' (Text) or b
(Background) to every pixel vof the image, subject to the given data. The choice of the function
depends on two constraints. 1) The neighboring pixels should be assigned similar value by the
function almost everywhere with the exception of the pixels representing boundary of the text. 2) The
assignment should be made in light of the data given by scanned image. We have employed these
constraints to construct the function. The first step includes construction of an objective function
considering the constraint of the problem. Let ¥ be a set of all pixels of the image and

{g, v eV }be the set of grey values of pixels. The objective function O:€)—> R provides the

measure of inappropriateness for every possible binarization function X from {2 and plays a crucial
role in the selection of most suitable function

Le.O(X)= > kp,+D |X, -g, (4.1)
(u,v)eN velV
u,vel’

Where, N denotes the set of all pairs of neighboring pixels of V, k is a nonzero constant, p, denotes

the penalty imposed by the objective function O to X for assigning different binary values to the
neighboring pixels and is defined as

P =X, - X, 4.2)
and X is defined as,
0, if X(u)=t'
Xu = . (4.3)
255,if X(u)=>b

The objective function takes care of both the constraints imposed on the required binarization function
X. Hence our reduced problem is to find a binarization function X that minimizes the objective
function. This optimization problem is computationally expensive as the space all possible

binarization functions has dimension|V’|, which is in thousands. Making the situation worst, the

function being non-convex may have many local minima. Our model uses the approach of network
flow for the minimization of objective function. We construct a network flow using the objective

91| Page

function and the scanned image. Minimum cut of the network flow plays a decisive role in the
evaluation of the required binarization function.

Given a scanned textual image with pixel set V, our model considers its gray value set
{g,:veV}as an input data. A network flow G (¥, E, W) using the input data is constructed with

vertex set V' containing vertices v corresponding to each member vof pixel set V' and a pair of

distinguished vertices s and ¢ for source and sink resp. Every such vertex has a pair of edges ej and

eé joining it with source s and sink ¢ resp. Their edge weights are|X , —&,|. For every pair of

neighbors u and v, an edge e:V with weight k.p, is created in the network flow. The cut of the

network flow is a minimum collection of its edges, whose removal from the network flow makes the
terminal vertices s and ¢ disconnected. A minimum cut of the network flow is a cut with minimum
cost. The minimum cut of the network flow gives the partition of the vertices v into two sets S and 7.
This also gives the most suitable choice of binarization function for the image. All pixels v whose
corresponding vertices are part of the set S in the induced graph should be assigned binary value ¢',
whereas the remaining pixels of the image should be assigned value b. In the next session, we present
the results showing that, the model gives the binarization function which minimizes the objective
function.

4.3 THEORETICAL JUSTIFICATION OF THE MODEL

In this section, we will prove that, the model efficiently minimizes the objective function and
produces the binarization of the image which has minimum value under objective function (4.1). This
also proves the superiority of the model among prevailing binarization techniques in light of the
objective function.

THEOREM 4.3.1

For any scanned textual image, the set () of all corresponding binarization functions and the set C of
all cuts on the network flow corresponding to the image are in one to one correspondence.

Proof: Let X :V — {t ',b} be a binarization function corresponding to the given scanned image.

Then, there exists a cut C = {£S, 7} on the network flow corresponding to the image defined as follows:
S={v|X,=0land T= {v| X, =255}
Note that, X, =0, when X (v) =¢"and X, =255when X (v) =b.

This proves that, every binarization function gives rise to a cut on the network flow constructed for
the textual image under consideration.

Conversely, let C = {S, T} on the network flow for the given textual image. Then, we can define X as
follows:

Xv)=t,ifveS

X(Ww)=b,itveT

92| Page

This proves the theorem.

THEOREM 4.3.2

The minimum cut on the network flow constructed for the textual image gives binarization which
minimizes the objective function.

Proof: let X be the binarization corresponding to any cut C of the network flow. First, we show that,
cost of the cut Cis O(X).

Note that, cost of any cut is sum of weights of the edges which are member of the cut set. In case of

our network flow, there are two types of edges: (i) non-terminal edges e:v joining neighboring

vertices u and v of the network flow (ii) Terminal edges ei and ei connecting vertex v with the

terminal vertices s and ¢ respectively.
Thus, the cost of C is given by,

cl= 2 fen]+ X lel+ 2

(u,v)eN e e ec
e" ¢ u u
uv

el (4.4)

Claim 1: For every vertexV , exactly one of the edges ej and ei can be part of the cut C.

If both of the edges are part of the cut C, the cut C’ obtained by removing one of the edges e;v and
eé is again a cut, which is contradiction with the fact that C is a cut, as no proper subset of a cut can

be a cut. This proves that, at most one of the edges e‘f and eé can bein C.

If the cut C contains none of the edges evs and eﬁ then, the terminals s and ¢ stays connected even

after removal of all edges of C, (because of the existing path s - ej -V - ei- tin G | C) which

contradicts with the fact that, C is a cut.
This proves claim 1.

As a result, every vertex v of the network contributes to exactly one of the last two terms of (4.4).
Thus, (4.4) becomes,

|C|: Z el +Z{e: ,e;}
(u,v)eN uel’
e;lveC
ICl= D len|+ XX, —e, (4.5)
(u,v)eN uel
e;lveC
Aslel |=k.p,, ,(4.5) becomes,

93| Page

(u,v)eN uelV’
e:;veC

Claim 2: For every pair of neighboring vertices u# and v, the edge e:}v is part of C iff either ej and ei

are both in C or elt, and ej are both in C.

Assume that, e; and eé are in C but e; and e;" are not. If possible, assume that, e;’v ¢ C . Then there
is a path s- e‘j -v- e; - t joining s and ¢ in G \ C, which is a contradiction with the fact that C is a cut.

. . n .
Hence, in this case €,, must be in C.

Assume that, e; and ej are in C but e; and ei are not. If possible, assume that, e:;v € C. Then,

C\ {e:v} is still a cut, which is a contradiction with the fact that, C is a cut and no proper subset of C

can be a cut.
Remaining two cases can be addressed by analogous argument. Thus, claim 2 is proved.

The first term in the expression of cost of C mentioned in (4.4) represents the sum of weights of all

e;’v corresponding to neighboring vertices # and v which are connected to different terminals in the
induced graph G\ C. The edges e:v not contained in C, are the ones, for which corresponding u and

v are assigned same binary value by X. Hence, weights of such e;'V will be zero.

Thus, equation (4.6) becomes,

|C|: Z kpuv+Z|Xu_gu

(u,v)eN uelV’
u,velV
But, by (4.1),
Le.O(X)= > kp,+D |x,—g,
(u,v)eN velV
u,vel
Thus, |C |= O0X).

This proves that, the cost of the minimum cut C minimizes the objective function O(X).

Note that, we start with an arbitrary binary labeling of the image and then refine it through graph cut
terminology in order to improve it in terms of its value under objective function (4.1). The time
complexity of the model is dependent on the initial binary labeling. This suggests that, the choice of
the initial binarization function assigned to the function should be made tactfully.

94| Page

4.4 IMPLEMENTATION AND RESULTS

The model is implemented using Java programming language. The input image is first converted into
grayscale in order to facilitate the computation. The initial binary labeling is obtained through
thresholding. Then after, the network flow is constructed, where weights of the edges are decided
based on the binary value assigned to a particular pixel by the initial labeling. The code finds the most
cost effective (with reference to cost / value / penalty assigned by the objective function) possible
binary labeling in the move space. Following is the code for implementation of the model in Java
programming language:

/***

* Compilation: javac FordFulkerson3.java

* Execution: java FordFulkerson3 V E

* Dependencies: FlowNetwork java FlowEdge.java Queue.java
*

* Ford-Fulkerson algorithm for computing a max flow and

* a min cut using shortest augmenthing path rule.
sk

***/

import java.awt.image.BufferedImage;
import java.awt.image.Raster;
import java.awt.image.ColorModel;
import java.io.lIOException;
import java.io.File;
import java.io.PrintWriter;
import javax.imageio.lmagelO;
public class FordFulkerson3 {
private boolean[] marked; // marked[v] = true iff s->v path in residual graph
private FlowEdge[] edgeTo; // edgeTo[v] = last edge on shortest residual s->v path
private double value; // current value of max flow
// max flow in flow network G from s to t
public FordFulkerson3(FlowNetwork G, int s, int t) {
if s <0 s>=G.V() {
throw new RuntimeException("Source s is invalid: " + s);
}
if <0 t>=G. V() {
throw new RuntimeException("Sink t is invalid: " + t);

}

if (s==t1) {

throw new RuntimeException("Source equals sink");
}

value = excess(G, t);
if (!isFeasible(G, s, t)) {
throw new RuntimeException("Initial flow is infeasible");
}
// while there exists an augmenting path, use it
while (hasAugmentingPath(G, s, t)) {
// compute bottleneck capacity
double bottle = Double. POSITIVE_INFINITY;
for (int v=t; v !=s; v =edgeTo[v].other(v)) {
bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));
h

95| Page

// augment flow
for (int v=t; v !=s; v=edgeTo[v].other(v)) {
edgeTo[v].addResidualFlowTo(v, bottle);

value += bottle;
i
// check optimality conditions
assert check(G, s, t);
}
// return value of max flow
public double value() {
return value;
}
//'is v in the s side of the min s-t cut?
public boolean inCut(int v) {
return marked[v];
}
// is there an augmenting path?
// if so, upon termination edgeTo[] will contain a parent-link representation of such a path
private boolean hasAugmentingPath(FlowNetwork G, int s, int t) {
edgeTo = new FlowEdge[G.V()];
marked = new boolean[G.V()];
// breadth-first search
Queue<Integer> q = new Queue<Integer>();
g.enqueue(s);
marked[s] = true;
while (!q.isEmpty()) {
int v = q.dequeue();
for (FlowEdge e : G.adj(v)) {
int w = e.other(v);

// if residual capacity from v to w
If (e.residualCapacityTo(w) > 0) {
if (!marked[w]) {
edgeTo[w] =¢;
marked[w] = true;
g-.enqueue(w);
H
}
H
H

// is there an augmenting path?
return marked[t];

}

// return excess flow at vertex v
private double excess(FlowNetwork G, int v) {
double excess = 0.0;
for (FlowEdge e : G.adj(v)) {
if (v ==e.from()) excess -= e.flow();
else excess += e.flow();

}

return excess;

}

// return excess flow at vertex v

9% |Page

private boolean isFeasible(FlowNetwork G, int s, int t) {

}

double EPSILON = 1E-11;
// check that capacity constraints are satisfied
for (intv=0;v<G.V(); v++) {
for (FlowEdge e : G.adj(v)) {
if (e.flow() < -EPSILON || e.flow() > e.capacity() + EPSILON) {
System.err.println("Edge does not satisfy capacity constraints: " + e);
return false;
}
}
}

// check that net flow into a vertex equals zero, except at source and sink
if (Math.abs(value + excess(G, s)) > EPSILON) {
System.err.println("Excess at source = " + excess(G, s));
System.err.println("Max flow =" + value);
return false;

}

if (Math.abs(value - excess(G, t)) > EPSILON) {
System.err.println("Excess at sink =" + excess(G, t));
System.err.println("Max flow =" + value);
return false;
§
for (int v=10; v<G.V(); vt++) {
if (v==s|| v==t) continue;
else if (Math.abs(excess(G, v)) > EPSILON) {
System.err.println("Net flow out of " + v+ " doesn't equal zero");
return false;

i
}

return true;

// check optimality conditions
private boolean check(FlowNetwork G, int s, int t) {

// check that flow is feasible

if (! isFeasible(G, s, t)) {
System.err.println("Flow is infeasible");
return false;
¥
// check that s is on the source side of min cut and that t is not on source side
if (1inCut(s)) {
System.err.println("source " + s + " is not on source side of min cut");
return false;

H

if (inCut(t)) {
System.err.println("'sink " +t + " is on source side of min cut");
return false;

}

/I check that value of min cut = value of max flow

double mincutValue = 0.0;
for (int v=10; v <G.V(); v++) {
for (FlowEdge e : G.adj(v)) {

97| Page

if (v =="e.from()) && inCut(e.from()) && !inCut(e.to()))
mincutValue += e.capacity();
}
§
double EPSILON = 1E-11;
if (Math.abs(mincutValue - value) > EPSILON) {
System.err.println("Max flow value =" + value + ", min cut value =" + mincutValue);
return false;

}

return true;

}

// test client that creates random network, solves max flow, and prints results
public static void main(String[] args) {
/I create flow network with image of file args[0]

long strt = System.currentTimeMillis();
String fileName = args[0];
File imageFile = new File(fileName);
BufferedImage image = null;
try {
image = ImagelO.read(imageFile);
} catch (IOException e) {
e.printStackTrace();
}

Raster rstr = image.getData();
int width = image.getWidth();
int height = image.getHeight();
int[][] intensities = new int[height][width];
int type = image.getType();
for (inti=0;1i<height;i++) {
for (intj=0;j <width; j++) {
if (type == Bufferedlmage. TYPE BYTE GRAY) {
intensities[i][j] = rstr.getSample(j,i,0);
H
}
}

/[PrincetonFlows gc = new PrincetonFlows(image);
//In in = new In(args[0]);

FlowNetwork G = new FlowNetwork(intensities,height,width);
StdOut.println(G);
ints=0,t=G.V()-1;

/I compute maximum flow and minimum cut

FordFulkerson3 maxflow = new FordFulkerson3(G, s, t);
StdOut.println("Max flow from " +s+"to " +t);
for (int v=10; v<G.V(); vt++) {
for (FlowEdge e : G.adj(v)) {
if (v ==-e.from()) && e.flow() > 0)
StdOut.println(" " + e);
H

98| Page

}

// print min-cut

int rows = height;

int cols = width;

int numberOfVertices = G.V();

if (numberOfVertices != rows*cols +2) {
System.out.println(" Error in image data ");
System.exit(0);

}

int [] linear = new int[numberOfVertices];
for (inti=0; i <numberOfVertices; i ++)
linear[i] = 1;

StdOut.print("Min cut: ");
for (int v=0; v <numberOfVertices; v++) {
if (maxflow.inCut(v)) {
StdOut.print(v + " ");
linear[v] = 0;

h
}
StdOut.println();

StdOut.printin("Max flow value =" + maxflow.value());
System.out.println(" Binarized image ");
int[][] binmat = new int[rows][cols];

for (inti=1;1<=rows * cols ; i++) {
System.out.print(" "+linear[i]);
if (1% cols==0)
System.out.println();

}

long ends = System.currentTimeMillis();

long secs = (ends-strt)/1000;

System.out.println(secs + " seconds taken to binarize image "+args[0]);
System.err.println(secs + " seconds taken to binarize image "+args[0]);

j
}

We implemented the code on various textual image segments for binarization, results of which are
presented in next few pages. The code worked considerably well in case of image segments of smaller
dimensions. Due to limitations of the computing system (parallel computing environment and
configuration of the system), all the implementations were made on a dual core system. The
binarization resulted through the code are of good quality but the running time is considerably high.
The present code cannot handle the entire document (of A4 size) at single go and hence needs
refinement. However, the quality of the binarization is considerably good and proves the efficiency of
the mathematical model implemented through the code.

Due to limitations of programming skills and computing infrastructure, the code is not time efficient
and the real time implementation using the code is not practically feasible. Thus, the mathematical
model needs to be re-implemented through efficient coding.

The results obtained through the code are given below:

99| Page

Figure: 4.1(a) Input image (b) Binarization of the image

100|Page

Figure: 4.2(a) Input image (b) Binarization of the image

101 |Page

sl

(@

000
000
00110000000000000000000000000
0001111110000000000000000000000
0001111001111110000000000000000000000
0011111000110000000001111111000000000010000000000
0001110000000000000000000000000000000000001100000000110000000000000011000000000110000000000
0000100000000000000000000000000000000000001110000000110000000000000011100000000110000000000
0000000001100000000000000000000000000000001110000000110000000000000011100000000110000000000
0000000001100000000010000000000000000000001110000000110000000000000011100000000110000000000
0000000001100000000011000000000000000000001110000000110000000000000011100000000110000000000
0000000001110000000011000000000000000000001110000000110000000000000011100000000110000000000
0000000011110000000011000000000001111111111110000000110000000000000011100000000110000000000
0000000011110000000000000000001111111111111110000000110000000000000011100000000110000000000
0000000011110000000000000000011111111111111110000000110000000000000011100000000110000000000
0000000001110000000000000000011110000000011110000000110000000000000001100000000110000000000
0000000001110000000000000000111000000000001110000000110000000000000001100000000110000000000
0000000001111000000000000000111000000000001110000000110000000000000000111100001110000000000
0000000000011110000000000000110000000000001111000000110000000000000000011111111110000000000
0000000000000000000010000000110000000000001111000000111000000000000000001111111110000000000
0000000000000000011110000000110000000000001111000000110000000000000000000001111110000000000
0000000000000000111110000000111000000000001111000000110000000000000000000000001110000000000
0000000000000001111110000000011000000000001111000000111000000000000000000000000000000000000
0000000000001111110000000000011000000000001111000000111000000000000000000000000000000000000
0000000000011111000000000000001000000000001111000000111000000000000000000000000110000000000
0000000011111100000001000000001100000000001111000000111000000000000000000000000111000000000
0000001111111000000001100000000110000000000111000000111000000000000000000000000111100000000
0000011111100000000001110000000010000000000111000000111100000000000000000000000111110000000
0000011111000000000001110000000011000000000111100000111111000000000000000000000111111000000
0000000000000000000001111000000000000000000111110000111111000000000000000000000111111000000
0000000000000000000000111000000000000000000111110000011111000000000000000000000011110000000
0000000000000000000000011000000000000000000011100000011110000000000000000000000000000000000
000
000
001

®)

Figure: 4.3(a) Input image (b) Binarization of the image

102 |Page

ond, dd 4sdl dial, dd
dla 5, iy 5d) dd
wial I del el el
AN amug s,

Rl R umAetAl Y LS L g My

e saadl oudl dadl B r Wy oy
wd 4R iﬂ, GHQL‘U.“‘U. d.‘uibu "r‘fi. ')H, ‘U‘[‘ M:"l Ll g

e ol 2ist w Gol Al ol o 5, i

. g Ur, - guyd A 00

ol Qo5 21280 WAL AL, “Yaluy o “j»,. Mo el
L i
iy Bz, @aHReUs,” HAsda oley g, vt

a dl udel mel adl” 7
el ol yil sdlel” sy, " Il zzru "
gl MRl oy A ol Al @ o o 1z v

4, sl R B, & (5ell 2120 23 vy o il il

2 e Baaid augael @t dl vl o W s fan

w auizg ¥ § A g € Sl Wy e
wggy il ol 8ol WA vl ud w1t

59 1" wieaid RAe sl .

v, 24 R udl det gdan sl daa

s o ol sl B, wand A eell CIEL *L?ﬂ

b Asusia, 2undl wdl 944 csuc 49 1 t&dil

Lo dd af & o3 usd dl And @
§ waar dl”

“dlay, 5] o G wuud o A ﬂw@

EE

(@ (b)

Figure: 4.5 (a) Binarization of the image (b) input image

A 8"
2, o6l 25 Hsadud dl g Wl 2
a2 o 53 B ua flasud
Q] AR 55, “@md, wd. ¢, %
i, ® d ¢ ag] ! wud yaldl A
0Bl o aUdl wilag, 2 Rl
w2 ugll 3 o Hddd sadl usel A |
a5 R4 wudl 2l ad dl wd v s
ale & 24 d g wHRs L 49
wAdial Hl-iall WA A s Fedl
1R d ezl qdll edl, cud Al dg

ARl AR Bl A5, MF w3
W dawo eleal, “sued W 4y
A0 ¢l |7

Higreld gl il 3adl dlg, s,
E_S 44 od. el Al ke W

Figure: 4.6 (a) Binarization of the image (b) input image

104|Page

1 qalal ul 2u el e A
Cwaie 59, cud fawoud v R
R el ! '

1 asoddi 58], “ol, § FUR A
] edl, AR AR Wil ve SN -
g ouog, ARUA A SO axgrl BH
L el cuR wRu WA ad «
LAl vl 2 Wt R
0 Buad o cud il vwilel
R e G Buadl oAs adl
2 0 @dd ad el ad
ga 30l Al vl asd)

QA us o E?

(@

i~ = o2

Figure: 4.7 (a) Binarization of the image (b) input image

Figure: 4.8 (a) Binarization of the image (b) input image

105|Page

Figure: 4.9 (a) Binarization of the image (b) input image

b

AN B8l

T TmERT . B

Please remember this resourcegpy (Please rememb

- SRR N o AR S |, PR 10 smanad £

(@ (®)

Figure: 4.10 (a) Binarization of the image (b) input image

106 |Page

Analysis of computational time

/

/

—4—timetaken (second)

)
T
c
=]
o
v
]
c
=
c
0
==
T
-
v
£
=

(]

Bt ——
20000 40000 60000 80000 100000 120000

No. of pixels

Figure 4.11 various image sizes versus Time required for binarization

As discussed earlier, the code turns out be quite expensive in terms of time it takes to handle the
image for binarization, especially for larger image segments. Table 4.1 presents the time taken by the
code for the image segments of various dimensions. For images of more than one tenth of a million
pixels, the code takes about 38 minutes, which is very high time when compared to other popular
binarization methods. Methods based on global threasholding take comparatively very small time for
images of same size. Figure 4.11 shows that the time required for binarization of the image using our
code grows exponentially with image size after a fixed stage. This is very serious drawback of our
model. However, this deficiency could be easily overcome by better coding. Due to our limited
programming skills, the code we wrote has vast scope for improvement.

Dimension of the scanned image | No. of pixels in the image | Time taken (in Seconds)

91 X33 3003 2
91 X35 3185 2
89 X 45 4005 3
100 X 63 6300 5
92X 92 8464 10
120 X 95 11400 15

320 X 200 64000 75

480 X 216 103680 2258

Table 4.1 Time required for binarization for various image sizes

107 |Page

F-Measure

il”llf

Proposed Sauvola lelore TMMS Otsu Niblack Kim
method

Figure 4.12 Bar graph showing various binarizatin methods and corresponding F-measure

There are many evaluation techniques to measure the quality of the binarization based on two main
approaches: (1) pixel based accuracy evaluation and (2) OCR based evaluation. We have used some
of the most prevalent evaluation techniques to measure the quality of our binarization results. The
results are presented in the table 4.2.

We have used PERR, MSE and F-measure as evaluation techniques to measure the quality of
binarization.

Kim
Niblack
Otsu
TMMS
lelore

Sauvola

Proposed method

Figure 4.13 Bar graph showing various binarization methods and corresponding PERR value

108 | Page

Pixel Error Rate abbreviated as PERR is defined as PERR :%. It gives the total number of

X

misidentified pixels in the binarization (i.e., total number of those pixels which are of black colour in
binarized image but of white colour in the original image and those which are white in the binarized
one but are black in the original image). If x(i, j) represents the value of the pixel situated at i" row
and /™ column of the original image x and If y(i, j) represents the value of the corresponding pixel (i.e.
pixel situated at /" row and ;™ column) of the binarized image y, the Mean Square Error rate (MSE)
is defined as,

MSE=—"———
MxN

D> eli,j)

Figure 4.14 Line graph showing various binarization methods and corresponding MSE
As another measurement parameter, we have also used F-measure, which is defined as,

_ 2x Recall x Precision

Recall + Precision

From the definition of Pixel Error Rate (PERR), smaller value of the PERR indicates that the
algorithm for which PERR is measured is very accurate in terms of binarization results. In the same
manner, smaller value of MSE (Mean Square Error) leads to the conclusion that, the quality of
binarization produced by the algorithm is of high quality. On the contrary to this, the other third
measurement technique, F-measure is quite opposite. Smaller value of F-measure proves superiority
of the binarization technique.

Note that, our algorithm gives the maximum F-measure value (of 93) among all other methods listed
in the table. It is 5 units higher than one of the most popular binarization method called Sauvola
method. Thus, with respect to F —measure our method turns out to be superior to the popular methods
listed in the table. The other two measures namely MSE and PERR measure some form of error in the
binarization results. Hence, smaller values of these measures for the algorithm prove it better from the

109 |Page

others. As shown in the table, our method has the value of 1101.021 for MSE and 1.00312 for PERR,
which is quite less than other binarization methods.

Method FM MSE PERR
Proposed method 93 1101.021 | 1.00312
Sauvola 88 1622.132 | 2.00012
lelore 90.1 1321.001 | 1.80114
TMMS 91.2 | 1300.564 | 1.65842
Otsu 89 1551.256 | 2.01239
Niblack 86.4 | 1832.534 | 2.98560
Kim 88.1 1776.723 | 2.45601

Table 4.2 Comparison of our algorithm (Proposed method) with popular
binarization algorithms

In nutshell, the new binarization method based on our mathematical model produces results better
than existing and popular binarization methods. The underlying mathematical model efficiently
minimizes the objective function and hence theoretically guarantees significant results. However, the
only limitation emerging out of experimental results is high computational time, which needs to be
addressed by better programming skills and re-coding of the algorithm.

110 | Page

