CHAPTER 2

INTRODUCTION TO LABELING PROBLEMS OF COMPUTER
VISION

2.1 LABELING PROBLEMS

Many image processing and computer vision problems can be considered as labelling problems. For
example, an image segmentation problem can be easily considered as a labelling problem. Consider a
picture shown in Figure 2.1(a). The basic image segmentation operation applied to the image will
yield two disjoint sets of pixels: the set C of pixels representing cat and the set B of pixels
representing the background (i.e. complement of C). The segmented image is shown in Figure 2.1(b).
The problem can be viewed as an image labelling problem with labels ¢ (Cat) and b (Background).
Speaking mathematically, the labelling problem is to construct the most appropriate function from the
set of all pixels of the image to the set of labels {c,b}. By the term ‘most appropriate’, we mean a
function, which associates all pixels of the image representing Cat with label ‘c’ and all remaining
pixels of the image to label ‘b’.

Figure 2.1: (a) image of a cat (b) Segmentation of the image

Let’s try to define the terminology in general. In general, } stands for the set of all pixels or set of all
edges or set of all segments of the image. In short, V represents a set of entities related to a particular
image feature. For our work, V refers to set of all pixels. Image pixels, being a two dimensional array
constructing the image have an inbuilt ordering. Every pixel except the one those belonging to the
border of the image have four neighbouring pixels: pixel above it, pixel below it, pixel to the left and
the one to the right. The natural ordering of the pixels is quite convenient when the interactions
between the pixels are to be studied.

Let V be the set of all pixels of the image and let ©Q denote the set of all possible labels. A labeling of

the image is a function X:V—>Q The labeling problem is to find the best labeling for the given
image subject to the constraints imposed by a particular computer vision problem. Note that, the
same image can lead to different (best) solutions of a labeling problem under different objectives.
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2.2 CONSTRAINTS OF LABELING PROBLEMS

We will discuss some of the constraints which are common to most of the computer vision problems
and hence to labeling problems. Let’s consider a simple vision problem. Suppose we have two images
of a moving car taken with the interval of a second. Our problem is to match objects of first image to
that of the second image. Both images contain car, but the position of the car will be different in both
the images due to movement of the car. Our task is to identify where the particular pixel of image 1
has moved in the image 2. In general, the problem is to define a one to one correspondence between
the pixels of both the images. As there are number of parameters causing the noise in the imaging
process, the pair of corresponding pixels can differ in terms of intensity. Thus, the problem is not a
trivial. However, the pair of corresponding pixels can not differ drastically in terms of intensity. Thus,
it is very improbable for a pixel with intensity 20 in image 1 to correspond to a pixel with intensity
120 in image 2.
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Image 1(intensities) Image 2 (Intensities)

Figure 2.2 Two images of the same moving object with interval of a second

Labelling Error 1| Error 2 | Total error
37681 37656
19593 19584
305 280
249 240
18683 18679
19197 19193
269 265
325 316
19197 19193
231 227
251 242
249 240
251 247
269 265
271 262
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Figure 2.3 Table showing the error due to data constraint in labelling problem with motion analysis

For sake of simplicity, we have considered simple images of 5 pixels shown in the figure 2.2. As
mentioned, both the images are captured with the interval of one second. The task is to establish one
to one correspondence between pixels of image 1 and pixels of image 2. There are many possible
solutions, some of which are discussed in the table shown in Figure 2.3. The column 3 of the table
shown in Figure 2.3 shows the pixel numbers of image 2 corresponding to pixels of image 1. In other
words, the table shows the mapping of association (i.e. labelling) between both the images. The
quality of possible solutions is measured only on the basis of data constraints, i.e. with the view of
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minimization of the sum of square of differences of intensities of corresponding pixels. The quality of
about 15 different labelling is measured based on data constraints and the error values are presented in
the last column. Lesser the value of the error better is the labelling on the basis of data constraint.
Thus, solely on the basis of data constraints, solution 10 seems to be the best.

But, the vision problems also have to take care of structural constraint. This constraint is about the
tendency of pixels (which compose the object) of staying intact and moving together. In our example
of the moving car, all pixels representing the car move together as a coherent unit as during the
movement of car, no deformation in the shape of car takes place. However, due to change in lighting
conditions and in other parameters, the intensities of the pixels can change a bit. If we employ this
constraint along with the data constraint, the best solution shown in the table shown in Figure 2.3 may
not be most appropriate. We can define the error due to second constraint as negative of the square of
number of pixels moving together. More number of pixels moving together in the labelling makes it
more plausible. On the basis of constraint 2, solution 1 is the best possible solution. However,
considering both the constraints, it follows that, solution 10 is the most appropriate solution of this
motion problem.

In most of the labelling problem, following form of objective function turns out to be efficient.

O(X) = 0, (X) +cO, X Q.1

tructural

Where, O,,,(X) measures the penalty imposed on the labelling X due to data constraint and
o

structural
constant which controls the comparative importance of both the terms corresponding to constraints in
value of the objective function. If the value of ¢ is high, structural constraint relatively plays more
decisive role in determination of the value of objective function than that of data constraint. i.e.,
labelling which respects structural constraint but does not respect data constraint has a chance to get
selected as a best labelling by the objective function in this case. For example, for ¢ = 4, the solution
(i.e. labelling) 4 shown in Figure 2.3 is assigned the least value by the objective function. In nutshell,
the value of ¢ plays a decisive role in the dependency of objective function on both the constraints.
More the value of ¢, more is the structural constraint respected by the objective function compared to
data constraint.

(X) measures the penalty imposed on the labelling X due to the structural constraint. ¢ is a

2.3 OBJECTIVE FUNCTION IN STANDARD FORM

Equation (2.1) gives the standard form of energy function in case of labelling problems involving two
(X).
The first term of (2.1) favours labelling which assigns to more no. of pixels labels compatible with the
data. It less penalizes such function compared to the one which has more deviations from the data in
terms of labels assigned to pixels.

constraints. However, there are numerous ways to define the expressions O,,,(X) and O,

tructure

We will define the expression O,,,(X) by,

Ouata X) =D 9,(x,) 2.2)

vel

Where, ¢, (x,)measures how unsuitable is label x, for pixel v with reference to data constraint.

Thus, it assigns penalty to every label assigned to the pixel in the light of the data. The definition of
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0,12 (X) mentioned in (2.2) is reasonable only if we assume that observation of the pixel depends

only on the pixel under consideration and not on any other pixels. But, this is a common assumption
in many image processing and computer vision problem and hence does not impose any major
limitation on the application of (2.2). Note that, the expression O,,,(X) does not assign negative

value to any label, or in other words, the range of O,,,, (X)is set of positive reals.

The design of sub-function taking care of structural constraint is little difficult. Generally, the
expression this sub-function is more of a problem specific kind. The task is so tricky that even in the
case when it is known which labelling is more justified by structural constraint than the other, to
formalize the idea in terms of mathematical equation is a tough job. In majority of computer vision
problems and related labelling sub-problems, labels of neighbouring pixels tend to be similar. Two
neighbouring pixels representing the same object are not likely to differ drastically. However, two
neighbouring pixels, one of the two being on the border of the object can differ significantly and
sharply. In short, in the light of structural constraint, it is desirable for labelling to be smooth almost
everywhere. Ideally, a label of pixel depends on the set all neighbouring pixels and their labels. But,
for sake of simplicity of the model, generally second order clique is used to take care of structural
constraint. i.e. it is assumed that, the label of a pixel depends only on its four neighbours (of standard
4 neighbour system). Speaking mathematically, the term O, (X) is defined as follows:

structural

Ostructural (X) = Z l//v,w(xv’xw) (23)
{v.wjeN

The sum on the right of (2.3) runs over set of all neighbouring pairs of pixels. For the sake of clarity,

we would like to define neighbourhood system and fix the notations at this juncture. The figure 2.4

shows a neighbourhood system in the image. Note that, every pixel on the boundary of the image has

two or three neighbour. All pixels lying inside the boundary of the image has four neighbours.

Figure 2.4 Neighbourhood system N, = {vz,vﬁ},Nv18 = {v14,v17,v19,v23}

For a pixel v, its neighbourhood is a set of pixels, denoted by N satisfying the following properties:
1) A pixel v cannot be member of NV, .

2) wis member of N iff visamemberof N, .

As mentioned above, we are going to consider 4 - neighbourhood system, where every pixel except
those belonging to boundary of the image will have four neighbouring pixels (above, below, left and
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right.). However, the optimization approach for vision problem mentioned in the thesis works
efficiently for any type of neighbourhood system.

The second term of the objective function is v/, ,(x,,x, ) and is called neighbour relation function.

This function fosters the neighbouring pixels v and w to have same or similar labels. If the
neighbouring pixels are allotted different labels, the neighbour relation function penalizes them.
Lesser the similarity between the labels of the neighbouring pixels, higher is penalty imposed by the
neighbour relation function to the labelling. The penalties assigned by the neighbour relation function
to two pairs of neighbouring pixels having same pair of labels can be different. In other words,

¥, .w(x,,x,)and v, (x,x,)could be different even if x, =x, and x,, =x,. The function ¥, , can
be defined in numerous different ways. Different definitions of , ,, give rise to different structures.

o

RY

sucnrar(X) 18 the sum of v/, (x,,, ) running over all pairs of pixels v and w.

Note that, by restricting ourselves to cliques of size two in the definition of O,,,,,..(X), we have

gained in terms of complexity of the function but have lost in terms of its analytical features. The
form of O ,(X)simulates only the properties based on derivatives of the first order and not those

structura

properties depending of higher order derivatives.

Adding both the sub-functions, we get the objective function (2.1) in its working form,

oX)=Y o,(x)+ D v, .(x,.x,) (2.4)

velV’ {v,wleN

As mentioned above, this function takes care of both the constraints together. The first sub-function
takes care of data constraints, whereas the second one takes care of structural constraint.

2.4 STRUCTURAL DIFFERENCES

Priors or structures refer to the structural characteristics of the image with reference to specific vision
problem. There are enormous types of structures. We are going to address some of the basic structures
appearing in the applications. Few of them are elaborated here.

2.4.1 UNIVERSALLY SMOOTH STRUCTURE

This type of structure prefers labelling which are universally smooth over other labellings by
assigning them lower penalty. For example, refer to the labelling shown in Figure 2.5. Labelling (a)
shows a labelling where all the pixels are grouped into two segments. In each segment, the pixels have
similar labels. In the labelling (b), all pixels have similar labels. Universally smooth structure prefers
labelling (b) over labelling (a) by assigning labelling (b) smaller penalty compared to that of labelling

(). To reinforce the structure, one can define the term w,, ,,(x,,x,,) in such a way that it assigns

higher penalty for higher difference among neighbouring pixels and less penalizes labelling with
smaller differences among neighbouring labels. One possible way of defining

W,w(X,,x,) is|xv - xw| . This type of structure has a major limitation. To labelling with just a single

pixel with abnormal label (with reference to its neighbouring pixel labels) the structure may impose
heavy penalty to the labelling. Unfortunately, in most of computer vision problem, the desired or ideal
labelling can have certain pixels with abnormal labels compared to those of their neighbours. If we
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use universally smooth structure, such labelling will not be preferred by the objective function.
However, there are certain vision problems, where the structure can be useful.

45 45 45 46 | 45
46 47 45 45

46 47 45 46

l//v,w('xv’xw) = |xv _xw|

Figure 2.6 Graph of v, ,, for universally smooth structure

The graph of universally smooth structure will be the same as that of absolute value function as shown
in the figure 2.6. The graph plots x, —x,, versus ¥, ,(x,,x,,) with universally smooth structure.

2.4.2 SEGMENT-WISE CONSTANT STRUCTURE

This is a structure where labelling assigning constant labels over the entire segment are preferred by
the objective function. For example, refer to two structures (a) and (b) given in figure 2.7. The
labelling (a) has five segments with constant structures whereas the labelling (b) has only two
segments with constant labels. We want the segment wise constant structure to assign lesser penalty to

labelling (b) compared to that of labelling (a). For that, we define the term v/,  (x,,x,,)as delta

function 6(x,,, x,,) . Delta function is given by,

0,if x, = x,,

5(‘xv 3 ‘xw) = {

Lifx, # x,,
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Thus, penalty imposed on labelling (a) by  function will be sum of all o(x,,x,,) (which runs over

all pairs of neighbouring pixels v and w of the image), which is 25. For the labelling (b), the penalty is
5, which is much lesser than that of labelling (a). This type of structure is important in many vision
problems. Thus, labelling (b) is preferred over labelling (a) by the segment wise smooth structure. The

graph of v, (x,,x,) for segment wise constant structure is shown in figure 2.8. The graph plots

x, — X, versus ¥, (x,,x,) with segment wise constant structure.

@
Wy w (xv:-ij = 5(3:»':1#)

Figure 2.8 Graph of v, ,, for universally smooth structure

2.4. 3 SEGMENT WISE SMOOTH STRUCTURE

This structure prefers labelling consisting segments with smoothly changing labels. Optimal labelling
preferred by segment wise smooth structure can have more than one segment, but in each segment,
the labels should vary smoothly. Figure 2.9 shows two labelling (a) and (b), where (a) is assigned high
penalty compared to that of labelling (b) as labelling (b) is in the form preferred by segment wise

smooth structure. For this structure, we can define the term v, ,,(x,, x,,) as follows:
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3 |xv - X, if|xv —xw| <k
Vi) =00 5, x), i, — x| > &

where, £ is a fixed number. If the absolute difference between the neighbouring pixels is less than £,
the structure assigns the penalty|xv —xw|. But, as we want to allow sharp change in the labels of

neighbouring pixels in the labelling, for such sharp change we have to restrict the penalty to be too
large. That’s why, for the absolute difference in the labels of neighbouring pixels not less than &, we
assign the penalty k. Figure 2.10 shows the graph of segment wise constant structure with

x, — x,, along horizontal axis and v, ,(x,,x,,) along vertical axis. Obviously, this structure is richer

in terms of its applicability in practical vision problems compared to earlier two structures.

lr//v,w (xv > xw)

Figure 2.10 Graph of v, ,, for universally smooth structure
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2.5 PREVALENT OPTIMIZATION APPROACHES

In this section, we are going to consider some of the optimization approaches which are customary in
computer vision problems. These approaches are broadly divided into two subclasses: The one which
strives for global optimum solution and the one striving for local optimum solutions.

2.5.1 GLOBAL OPTIMIZATION TECHNIQUES

To optimize an arbitrary objective function is computationally expensive task. If we assume that, an
image with n pixels {v,v,,....... ,v,} 1s to be assigned labelling where the set of all possible labels

is {01,050, 1, there will be intotal n” distinct possible labelling. The objective function has to

determine the most suitable labelling with reference to constraints under consideration from these n”
labelling. Let J,.(X)be an objective function defined on the set of all possible labelling on

", V55000 v, § glVED by,
5. = Lif X#X'
X B 0, otherwise

It is clear that, there are such n” objective functions, one corresponding to each labelling X. Any
algorithm which aims to minimize all these n” objective functions will have to go through all these

n’ labelling and hence global minimization of arbitrary objective function has exponential time
complexity or in other words, is an NP — hard problem.

Simulated annealing is a global optimization method which is widely used not only in computer
vision but in general optimization applications. Gemans [111] initiated its usage in vision problems.

The method imitates the process of physical annealing, where the point with low energy is determined
by systematic variation in the energy. The process is governed by the temperature factor. The process
starts with the high value of the temperature, which is changed (decreased) strategically. The
objective function optimization using simulated annealing starts with an arbitrary choice of labelling.
The algorithm traverses through pixels and introduce a random change in the label at the pixel at
every stage. The change is adopted by the algorithm, if the change decreases the penalty imposed by
the objective function on the labelling with this newly introduced change. In some of the cases, the
changes are accepted with some probability conditioned to temperature factor. The change yielded at
the low temperature is less likely to get accepted. The higher the temperature, the higher is the
probability to obtain the global optimum solution. The algorithm results in local optimum in case of
lower temperature. However, there are certain techniques applied to the simulated annealing which
guarantees global optimum solution. But, these techniques hamper the speed of the algorithm
significantly. That is why, in majority of optimization applications, such techniques are not used. The
major reason behind the popularity of simulated annealing is its ability to not get trapped into a
particular local optimum.

There are methods which can be used as alternatives of simulated annealing. Few of them are
continuation methods like graduated non-convexity, mean field approach and dynamic programming.

Graduated non-convexity, popularly abbreviated as GNC is a method which optimizes non-convex
objective function considering sequence of convex functions approximating it. At every stage, the
optimum value of the convex function of the previous stage is considered as an initial guess for the

29| Page



approximation of convex function of the current stage. The method, for a specific class of objective
function works exceptionally well and reaches to optimum value of the given non convex objective
function. However, in general, the method doesn’t guarantee the global optimum solution.

In the method of Mean field approach, the objective function gives rise to a probabilistic model

ror~(L) gy

partition function, whereas ¢ refers to temperature parameter. As ¢ tends to zero, X - the average

, where C is a constant used for normalization, sometimes referred to as

quantities of the field optimizes the objective function. The process initiates with the high value of z,

which later on lowered down to zero. X evaluated initially at high value of ¢ is tracked down at ¢
tending to zero using continuation methods.

For a selected class of objective functions, dynamic programming is capable of optimizing them
globally. But, the objective functions which are two dimensional can’t be optimized globally by
dynamic programming. However, dynamic programming can decrease the complexity of such
functions.

2.5.2 LOCAL OPTIMIZATION TECHNIQUES

Although global optimization can provide the best possible solutions in the computer vision problems,
most of the classes of optimization sub-problems arising out of computer vision problems can’t be
efficiently addressed by any global optimization techniques. In some of the cases, even if the exact
global optimum can be determined, the high computational cost needed to arrive at the solution makes
it impractical in real usage. Thus, most of such problems are addressed as local optimization
problems. To optimize the function locally is easy and less expensive in terms of computational cost,
but it leads to other issues. If we address some computer vision problem (e.g. labelling problem) using
local optimization of objective function, in case of its failure, the cause of the failure becomes
intractable. It is very difficult to recognize whether the algorithm has failed due to improper selection
of objective function (i.e. the objective function could not encode the constraints of the problems
properly) or because the local optimum returned by the algorithm differs significantly from global
optimum solution. The other important issue with local optimization technique is its dependence on
the initial estimate.

Variational methods were suggested by Horn [12] in the field for local optimization. The method uses
Euler’s equations. As Euler’s equations hold good at the local minimum, the method takes advantage
of this characteristic. An iterative conditional mode (ICM) is another popular technique used in vision
for local optimization.

For a particular class of two dimensional objective functions, graph cuts can be employed. However,
Graph cuts can only optimize binary objective functions. But iterative usage of graph cuts can
optimize some important non binary objective functions. Graph cut guarantees global optimum in
case of certain objective functions. However, there are objective functions, for which graph cut leads
to local optimum which are within some known multiple of global optimum. The approach of
optimization in vision problem has gained popularity in the field of computer vision mainly due to
emergence of some efficient algorithms using graph cuts in last few decades. This approach, being the
heart of the thesis will be discussed in greater detail in the future chapters.
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2.6 STATISTICAL JUSTIFICATION OF THE APPROACH

In the study, we attempt to solve the problem of pixel labeling by objective function
minimization approach. At the first glance, the approach seems to be a deviation from the main goal
but, it can be defended by Baysian statistics. In this section, prerequisites of Baysian statistics have
been briefly discussed.

2.6.1 MARKOV RANDOM FIELD

Structural interdependence between labels of pixels can be well explained by Markov Random field.
S. Geman and D. Geman [101] were first among those, who initiated the usage of this approach in
image processing. Let J denote set of all pixels, N, denote the set of all neighbors of pixel v (in a 4-

neighbor system of pixel), and Q be the set of all possible labels of pixels. Let |V| =n and

X:V—Q be a random variable. A specific X can be given by X :(xv) which gives a

vel ?

configuration of the image field. For simplicity of notation, we will use X, to refer to any X
with X(v) =x,,(x, €€Q),Vvel . The set of all such labeling X, denoted by F, is said to be a

Markov random field if it satisfies the following properties:

i)y P(X)>0,VXeF
i) P(x,/ Xy )=Px,/X,_q,)

In simple terms, the first condition reinforces that each possible labeling should have a nonzero
probability of occurrence, whereas the second term introduces a constraint on the structural
interdependence of labels of pixels. It does not allow label of any pixel to depend on any other labels
except that of its neighbors’. The first property is needed for unique value of joint probability using
conditional probabilities.

For modeling interdependence of values of random variable (one dimensional), Markov processes are
widely used in statistics. Markov Random Field is also being considered as two dimensional
generalization of the notion of Markov process. However, the notion of Markov Random Field
involves more technical complexity compared to Markov process.

Defining joint probability distribution is one of the effective ways of specifying Markov random field.
However, the Markov random field can also be specified by means of its local conditional
distributions. But due to some technical limitations of the second approach, the first is widely used
and we have also chosen to use the same. Hammerely and Clifford proved the equivalence of Markov
random field to Gibbs random field.

As the Gibbs random field models interdependence of members belonging to the same structural
group called ‘clique’, let’s first define this term graph-theoretically. A set of vertices is said to be a
clique if each of the vertex is directly connected to all the remaining vertices by means of edges.
Redefining the term in our context, a set of pixels are said to be clique, if each pixel of the set is
neighbor of each of the remaining pixels of the set.

Gibbs distribution defined as follows can be used to specify the Gibbs random field:
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1

[

VeV,

P(X)=

Where, V, denotes the set of all cliques, ¢, is a constant which normalizes the expression and
Oic (X)is a function from the set F of all random variables X toR, the set of real numbers.

Oic (X)is also known as clique potential function. For the MRF under consideration, the potential

function is defined as follows:

1

0, (X)= Ot} (xvl’xvz)’ if v, ={w,v, } foranyv,,v, eV

0, ifjv|>2

VC

Note that, in our approach, O{IVI’VZ}(le,x‘,2 )measures the penalty that should be assigned to the

objective function O for assigning labels x, and x, to neighboring pixels v, andv, . Hence, the joint

distribution of the Markov random field becomes,

P(X) = 1 _ 1
o! Xy o
c H e[ :Vl ’VZ}( M2 ]] VgVO{lvl,vz}(x‘)l ’XVZ)
! Pel-2
VCC 14 cle
=

Where, the multiplication runs over all cliques ¥, of size two.

2.6.2 MAP ESTIMATION

Generally, Markov random filed is estimated by its Maximum a Posteriori (MAP) estimate. In
problems under consideration, the labeling X depends on variety of parameters and hence in most of
the cases, it is unidentifiable from the experimental data. However, its estimation can be made using
the observed data X' . S. Geman and D. Geman [101] were among those who initiated the usage of
this framework in the image processing problem.

The goal of Maximum a Posteriori (MAP) estimation is to maximize the value of the probability
term P(X / X") . According to Baye’s rule,

P(X/ X)P(X)

P(X/X"= o0

Thus, in order to maximize the value of the left hand side probability term, we need to maximize the
value of the RHS. In simple terms, the task could be achieved by maximizing P(X"/ X)P(X) . Thus,

the Maximum a Posteriori estimate X¢ reduces to (arg max P(X"/ X)P(X )) . In order to estimate the
XeF
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value of P(X'/ X), we will make an assumption. Before going into details of the assumption, let’s
specify the notation. Let X'  denote the observation for pixel v. Then, we will

have P(X/ X )=HP(X’V/ X,), which is true under the assumption that all observations are

vel

independent of each other. This assumption, in most of the problems of image processing matches

with the reality. But, P(X',/X,)=C,/ eOg(XV)forXV €Q, where O2(X,)measures how well the

label X fits the data whereas, C, is a constant. Due to this new expression of P(X' /X,), the

deﬂ
probability P(X' X)is now proportional to l/e["e” . With all these modifications, the

. . . . e
Maximum a Posteriori estimate X now reduces to,

argmax exp| — z ng’vz}(xvl,xvz)—zqz (X,) | which is equivalent to minimizing the objective

XeF VeV velV
b2
function O(X)= 3" O, 1 (x,.x, )+ D 0:(X,).
VeV vel
‘Vc‘=2
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