CONTENT

Abstract	and the second sec
Certificate	IV
Acknowledgements	V
Content	VI

1 INTRODUCTION 1.1 Earthquakes and their Effects

1.1	Earthquakes and their Effects	1
1.2	Basic Concepts of Structural Dynamics	3
1.3	Introduction to Seismic Analysis	5
1.4	Types of Structural Analysis	9
1.5	Scope and Objectives of the Present Work	13
1.6	Organization of the Thesis	16

2 METHODS OF ANALYSIS FOR EARTHQUAKE FORCES

2.1	General	19
2.2	Method for Linear Static Analysis	19
2.3	Methods for Linear Dynamic Analysis	20
2.4	Methods for Non linear Analysis	21
2.5	Modal Analysis	24
2.6	Response Spectrum Method	24

3 REVIEW OF LITERATURE

3.1	Seismic Response of Buildings	26
3.2	Seismic Performance of Semi Rigid Joints	40
3.3	Behaviour of Beam Column Joints	50
3.4	Post Tensioned Slabs and Beams	53
3.5	Outcome of the Literature Survey	58

4	Perfo	PERFORMANCE BASED SEISMIC EVALUATION AND DESIGN			
	4.1	Performance Objectives	59		
	4.2	ATC-40 Provisions	60		
	4.3	Potential Plastic Hinge Zones	64		
	4.4	Evaluation of Performance	66		
	4.5	Methods to Perform Non linear Analysis	67		
	4.6	Steps to Determine Capacity	71		
	4.7	Steps to Determine Demand	75		
	4.8	Steps for Checking Performance	84		
	4.9	Conversion of Demand and Capacity to ADRS Format	85		
5	SEISM	SEISMIC PERFORMANCE OF RC FRAMES WITHOUT INFILL WALLS			
	5.1	General Remarks	88		
	5.2	Steps for Analysis Through SAP2000	88		
	5.3	Mathematical Models Developed	89		
	5.4	Results of the Push Over Analysis	92		
	5.5	Discussion of Results	108		
6	SEISM	IC EVALUATION OF FRAMES WITH INFILL WALLS			
	6.1	Mathematical Model	110		
	6.2	Loads Considered for Analysis	112		
	6.3	Definition of Pushover Cases	112		
	6.4	Modeling of Infill Walls	113		
	6.5	Results of the Analysis	114		
	6.6	Observations and Discussions	129		
7	SEISMIC EVALUATION OF RC FRAMES WITH T SHAPED COLUMNS				
	7.1	Numerical Model	132		
	7.2	Loads Considered for Analysis	133		
	7.3	Definition of Pushover Cases	134		
	7.4	Modeling Aspects	135		
	7.5	Results of the Analysis	137		
	7.6	Observations and Discussions	145		

8	EFFECT OF SEMIRIGIDITY OF JOINT ON RC PLANE FRAMES			
	8.1	Need for Incorporating Semi Rigid Joints	148	
	8.2	Example for Verification of Modeling Aspects	148	
	8.3	Effect of Semirigidity on Beam Moments	151	
	8.4	Effect of Semirigid Joints on Seismic Performance	167	
	8.5	Discussions of Results	186	
9	EFFECT	OF SEMIRIGIDITY OF JOINT ON RC SPACE FRAMES		
	9.1	Incorporating Semi Rigid Joints in a Space Frame	188	
	9.2	Semirigidity in Space Frames with Varying Storeys	191	
	9.3	Summary of Results	200	
	9.4	Seismic Performance of Semirigid Space Frames	202	
	9.5	Observations and Discussion of Results	212	
10	ANALYS	SIS OF HYBRID FRAMES UNDER SEISMIC FORCES		
	10.1	General Concept	217	
	10.2	Mathematical Models Considered for Analysis	220	
	10.3	Types of Frames Considered	220	
	10.4	Geometric Properties and Loads Considered	222	
	10.5	Parameters for Pushover Analysis	224	
	10.6	Results Obtained from the Pushover Analysis	227	
	10.7	Observations and Discussion	242	
11	Hybrii	CONCEPT EXTENDED TO BIGGER FRAMES		
	11.1	Mathematical Models Developed	245	
	11.2	Results of the Pushover Analysis	249	
	11.3	Discussion of Results	280	
12	Seismic	CRESPONSE OF FRAMES WITH POST TENSIONED BEAMS		
	12.1	The Concept of Post Tensioned Concrete System	283	
	12.2	Reinforced and Post Tensioned Concrete Floors	285	
	12.3	The Effect of PT Floors on Seismic Performance	287	

12.4 The Hybrid Concept Applied to Frames with PT Beams 288

	12.5	Models Developed to Study the Effect of PT Beams	290	
	12.6	The Results of Push Over Analysis	294	
	12.7	The Comparison of Results	307	
	12.8	Outcome of the Study	308	
13	Seismi	C EVALUATION USING OPENSEES SOFTWARE		
	13.1	The Open Source Software OpenSEES	309	
	13.2	Pushover Analysis of a Frame with OpenSEES	313	
	13.3	Comparison of Results - OpenSEES and ETABS	322	
	13.4	Comments on Results	327	
14	THE EF	THE EFFECT OF FLOATING COLUMNS ON SEISMIC PERFORMANCE		
	14.1	The Concept of Floating Columns	328	
	14.2	Mathematical Models with Floating Columns	329	
	14.3	The Results of Analysis	333	
	14.4	Important Observations	346	
15	PERFORMANCE OF RC FRAMES UNDER TIME HISTORY ANALYSIS			
	15.1	Preamble	349	
	15.2	The Mathematical Models Considered	349	
	15.3	The Results of Analysis	354	
	15.4	Observations and Discussions	363	
16	CONCLUSIONS AND CONTRIBUTIONS			
	16.1	Summary	367	
	16.2	Conclusions	369	
	16.3	Contributions	375	
	16.4	Future Scope	377	
	Refere	NCES	380	
	APPEND	DIX - I LIST OF PAPERS PUBLISHED	390	
	APPENDIX – II PAPERS UNDER COMMUNICATION		392	