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2.1 A summary of Density Functional Theory 

The accurate description of the structure and dynamics of many-body systems and the 

solution of the Schrödinger equation is a complex problem in the field of theoretical physics 

and computational material science. The basic building blocks of materials are nuclei and 

electrons. The explanation of the nucleus belongs to classical theory because of the heavy mass 

as compared to electrons. The strongly localized wave function of the nucleus differs from the 

electrons which exhibit overlapped orbitals. The interaction of electrons is subjected to both, 

stationary nuclei in terms of the attractive Coulomb force and the repulsive Coulomb force 

with neighboring electrons. The interaction phenomenon of electrons specifically makes the 

electronic structure calculation more complex in terms of many‐body problems. To determine 

the systematic theory for the electronic structure calculations, Hohenberg, Kohn, and Sham 

established a theory termed density functional theory (DFT). DFT has been recognized for its 

extraordinary predicting ability despite being independent of experimental input. In the 

framework of DFT, all the physical quantities are calculated through the self-consisting 

methodology of solving the quantum mechanical equation. The popularity of DFT has 

increased and resulted in receiving large appreciation from the theoretical and computational 

community [1-3].  

Crystalline materials are generally considered as many-electron systems with non-

distinguishable mutual interaction in a lattice composed of nuclei. The effective potential in 

the Schrödinger equation includes Coulomb potential (because of the electronic charge 

distribution which is termed as Hartree potential) and exchange-correlation potential. The term 

exchange potential is based on the Pauli’s exclusion principle and the correlations term 

originates due to the effect of a single electron on the overall charge distribution of the system.  

In the formulation of DFT, the electron density distribution function 𝑛(𝑟) is used instead of 
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many electron wave functions Ψ(𝑟1,   𝑟2,  𝑟3………𝑟𝑁) to determine the ground state energy E 

for any system consisting of N nuclei and electrons [4]. This reduces the solution of many body 

problem to that of single-particle Schrödinger equation with ground-state density distribution. 

Any crystalline material can be treated as a system of heavy nucleus and electrons interacting 

with each other based on quantum mechanics. The ground state energy of this system can be 

evaluated by solving the corresponding many-body Schrödinger equation [5]: 

Hψ = Eψ         (2.1) 

where H is the many particle Hamiltonian, ψ is the many-body wave function and E is the 

ground state total energy. In the case of a hydrogen (H) atom which possesses one electron and 

one proton, one can solve the above equation exactly for an H atom with the calculated energy 

of -13.6 eV. However, for the crystal structures with many electrons and ions system, it is 

treated with complex interactions of the electron and ions. The Hamiltonian for such a system 

of interacting electrons and nuclei can be written as follows: 

Ĥ = T̂N + T̂E + V̂EE + V̂EN + V̂NN      (2.2) 

were T̂N and T̂E are the kinetic energy operator for the nuclei and electrons 

respectively,V̂EE, V̂EN and V̂NN are the electrostatic potential energy operators for electron-

electron, nuclei-nuclei, and the electrons-nuclei interactions respectively. The many body 

Schrödinger equation can be rewritten as: 

Hψ = [−
ħ2

2me
∑

∂2

∂r̅i
2i −

ħ2

2M
∑

∂2

∂R̅k
2 +

1

2
∑

e2

4πε0

ZlZl′

|R̅k−R̅k′|
k,k′

k≠k′
k +

1

2
∑

e2

4πε0

1

|r̅i−r̅j|
i,j
i≠j

−

∑ ∑
e2

4πε0

Zl

|r̅i−R̅k|
]ψ =  Eψki                    (2.3) 

where 𝑖, 𝑘 are the indices consecutively for electron and nuclei, 𝑚𝑒 , 𝑀 are the mass of electron 

and nuclei respectively, 𝑍𝑘, Zk′  defines the charges on different nuclei, 𝒓̅𝒊 − 𝒓̅𝒋, 𝑹̅𝒌 − 𝑹̅𝒌
′  , 𝒓̅𝒊 −

𝑹̅𝒌 are the distances between electron-electron, nuclei-nuclei, and electron-nuclei respectively. 

The solution of Equation 2.1 gives the energy eigenstates i.e., the total energy of the system. 

Hence, the solution of the above equation is computationally costly and the solution is 
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computationally feasible only for simple systems. Therefore, some approximation is essential 

to determine the properties of the complex systems.  

2.2 Wave Function-based Methods to Solve Many-body Problem 

2.2.1 The Born-Oppenheimer Approximation 

Born-Oppenheimer approximation [6] exploits the fact that the nucleus is heavier as 

compared to the electrons (𝑀𝑛 ≫ 𝑚𝑒). Therefore, the kinetic energy of the nuclei is very less 

than the moving electrons. Further, the assumption is based on the idea that the nuclei is static 

with respect to the moving electrons thus their kinetic energy can be neglected. Hence the wave 

function can be simplified into two parts i. e., the electronic part and ionic part leading to many-

body wave functions as: 

 𝜓 = 𝜒𝑙(𝑅̅) 𝜙𝑖(𝑟̅,  𝑅̅)                 (2.4)

 Here 𝜒𝑙(𝑅̅) denotes ionic, and  𝜙𝑖(𝑟̅,  𝑅̅) represents the electronic wave function. 

Thus, the simplified form of equations based on the ionic and electronic wave function is 

written as: 

  [−
ħ2

2M
∑

∂2

∂R̅k
2l + VII(R̅) + EE(R̅)] χk(R⃗⃗ ) = Eχk(R̅)              (2.5) 

[−
ħ2

2me
∑

∂2

∂ri̅
2̅̅ ̅̅i + VIE(r̅,  R̅) + VEE(r̅)]  ϕi(r̅,  R̅) = EE ϕi(r̅,  R̅)                 (2.6) 

where r̅ = 𝑟̅1, 𝑟̅2, 𝑟̅3, .. and 𝑅̅ = 𝑅̅1, 𝑅̅2, 𝑅̅3, represents a collective symbol for electronic and 

ionic coordinate respectively. The first term of Equation 2.2 vanishes under Born-Oppenheimer 

(BO) approximation and the last term will be a constant [7]. The resulting Hamiltonian can be 

written as: 

Ĥ = T̂E + V̂EE + V̂EN +  Constant      (2.7) 
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The Hamiltonian operator can be written as the sum of the kinetic energy of electrons (T̂E), the 

interaction between the electron-electron (𝑉𝐸𝐸) and the interaction with the external potential  

(𝑉𝑒𝑥𝑡)  

Ĥ = T̂E + V̂EE + V̂ext              (2.8) 

where the electron kinetic energy operator T̂E is given as 

T̂E =
−ℏ2

2me
∑

∂2

∂ri̅
2̅̅ ̅̅i                    (2.9) 

and the potential due to electron-electron interactions 𝑉𝐸𝐸 is: 

          V̂EE =
1

2
∑

e2

|ri−rj|
i≠j                        (2.10) 

The external potential of the electron-nuclei interactions is defined as:  

V̂ext = ∑ V(|ri − RI|)i,I           (2.11) 

were ri is the coordinate of 𝑖𝑡ℎelectron and V is the external potential.     

2.2.2 Hartree Approximation 

Hartree approximation is based on the fact that electron-electron interaction possesses its 

stability following classical electrostatics and the Coulomb repulsion. The distribution of 

electronic charge 𝑛(𝑟) yields an electrostatic potential through Poisson's equation given by; 

∇2𝜑(𝑟) = 4πn(r)          (2.12) 

The potential energy called Hartree potential VH(r) which satisfies the Poisson’s equation [8] 

is given as: 

∇2VH(r) = −4πn(r)                                               (2.13) 

Equation 2.9 transforms in Hartree units and the potential energy VH(r) = −φ(r), known as 

Hartree potential. Utilizing the Hartree potential, the complete Schrödinger equation for the 

electronic part can be written as:  

                       −
ħ2

2me
∇i 
2ϕi −

1

4πε0
∑

𝑍𝑘e
2

|r̅i−R̅k|
ϕi +

1

4πε0
𝑘 ∑ ∫

e2|Ψj|
2

|r̅i−r̅j|
d3rjj≠i =  𝐸iϕi             (2.14) 
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The equation can be simplified in three parts, first is the kinetic energy of electrons (first term), 

the second is ion-electron interaction depending on the position of the electron and the last term 

represents the Hartree potential. The solution of the Hartree equation (Equation 2.14) is given 

by the variational principle that estimates the energy by minimizing the expectation value of 

energy E. 

E =
⟨ΨH|H|ΨH⟩

⟨ΨH|ΨH⟩
                          (2.15) 

Hartree reduced many-body problems into one electron problem which is also known as 

independent electron approximation which neglected correlations between electrons and the 

asymmetric wave function for electrons. 

2.2.3 Hartree-Fock (HF) Approximation 

Since electrons are fermions and follow Pauli’s exclusion principle, the asymmetric nature 

of wave function and the effect of correlation cannot be ignored. Hartree and Fock considered 

the asymmetric wave function given by the equation below: 

ΨHF(r1̅, σ1, … , ri̅, σi,  … , rj̅, σj, … ) = −ΨHF(r1̅, σ1, … , ri̅, σi,  … , rj̅, σj, … )     (2.16) 

In HF approximations, the minimization of Equation 2.14 is done by considering the above 

asymmetric wave function in the determinant form known as Slater’s determinant [9].  

ΨHF(r1̅, σ1, … , rN̅̅ ̅, σN) = |

Ψ1(r1̅, σ1) Ψ1(r2̅, σ2)… Ψ1(rN̅̅ ̅, σN)

Ψ2(r2̅, σ2) Ψ2(r2̅, σ2)… Ψ2(rN̅̅ ̅, σN)

ΨN(rN̅̅ ̅, σN) ΨN(rN̅̅ ̅, σN)… ΨN(rN̅̅ ̅, σN)
|         (2.17) 

The determinant of the wave function can be written as  

ΨHF =
1

N!
∑ (−1)pP Ψ1(x1) Ψ2(x2)…  ΨN(xN)P      (2.18) 

where x = (𝑟̅𝑖, 𝜎), P is the permutation number and p is the number of interchanges for making 

up this permutation. Substituting the Slater determinant of many body wave function in 

Equation 2.14 gives the expectation value of Hamiltonian as 
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E = ∑ ∫  Ψi
∗(r ) [−

ħ2

2me
∑ ∇i

2
i + VI(r )]  Ψi(r )d

3ri  +
1

2
∑ ∑ ∬

e2

4πε0

| Ψi(xi)|| Ψj(xj)|
2

|r⃗ −r⃗ ′|
d3rd3r′i≠ji   

       −
1

2
∑ ∑ ∬

𝑒2

4𝜋𝜀0

𝛹𝑖
∗(𝑟 )𝛹𝑗

∗(𝑟 ′) 𝛹𝑖(𝑟 
′) 𝛹𝑗(𝑟 )

|𝑟 −𝑟 ′|
𝑑3𝑟𝑑3𝑟′𝑗≠𝑖𝑖,𝑗                                                (2.19) 

where the last term is the consequence of Pauli’s exclusion principle known as exchange 

energy. Minimization of Equation 2.19 leads to Hartree-Fock equation 

[−
ħ2

2me
∑ ∇ 

2
i − V𝐼(r ) + VH(r )]Ψi(r ) −

1

2
∑ ∑ ∬

e2

4πε0

Ψj
∗(r⃗ ′) Ψi(r⃗ 

′) Ψj(r⃗ )

|r⃗ −r⃗ ′|
d3rd3r′j≠ii,j = EiΨi(r )                      

       (2.20) 

This is an improvement over the Hartree method due to the involvement of exchange energy 

considering the asymmetric nature of wave-function. However, total energy E𝑖 involves 

minimization over the sum of N particle Slater’s determinant (Equation 2.17) and this type of 

determinant are quite large, hence this approximation becomes computationally very costly for 

large as well as small systems. 

2.3 Density Based Method; Density Functional Theory 

The basic purpose is to calculate the ground state energy of many electron systems 

through solving many body Schrödinger equation given in Equation 2.3. For a system with N 

electrons, there exist 3N variables leading to the complex solution of Equation 2.3. The DFT 

depends on a density-based method where the interaction energy and potentials depend only 

on the density of electrons which decreases the computational cost.  

2.3.1 Hohenberg and Kohn Theorem 

Hohenberg and Kohn built the basis of DFT based on two theorems.  

Theorem I: For any system of interacting particles in an external potential Vext(r), the potential 

Vext(r) is determined uniquely, except for a constant, by the ground state particle density n(r).” 

[10-12] 
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Theorem II: The function that delivers the ground state energy of the system, describes the 

lowest energy if and only if the input density is the true ground state density. 

2.3.2 The Kohn-Sham Equation 

The Kohn-Sham perturbed DFT into a practical tool by the construction of an auxiliary 

system of non-interacting quasiparticles that have the density same as that of the true 

interacting problem.. If there exist a system of non-interacting electrons with the same density 

as of interacting system, according to the Hohenberg-Kohn theorem, the total energy for the 

interacting system can be written as:  

      ( ) ( )++= rdrnrVnVnTnE ext

3
             (2.21) 

where T[n], V[n] and Vext(r) are the kinetic energy functional, Coulomb potential functional 

and external potential respectively. Since the single-particle system and the interacting system 

are assumed to have the same density, adding and subtracting Ts[n] (the non-interacting kinetic 

energy) and EH[n] (the Hartree energy) to (2.21), gives 

𝐸𝐾𝑆[𝑛] = 𝑇𝑠[𝑛] + 𝐸𝐻[𝑛] + {𝑇[𝑛] − 𝑇𝑠[𝑛] + 𝑉[𝑛] − 𝐸𝐻[𝑛]} + ∫𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)𝑑
3𝑟         (2.22) 

𝐸𝐾𝑆[𝑛] = 𝑇𝑠[𝑛] + 𝐸𝐻[𝑛] + 𝐸𝑥𝑐[𝑛] + ∫𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)𝑑
3𝑟            (2.23) 

where the exchange-correlation energy is defined as: 

𝐸𝑥𝑐[𝑛] = 𝑇[𝑛] − 𝑇𝑠[𝑛] + 𝑉[𝑛] − 𝐸𝐻[𝑛]   (2.23) 

where the difference in kinetic energy T[n]−Ts[n] is the kinetic contribution to correlation and 

the difference V[n]−EH[n] is the electrostatic and exchange contribution to correlation. Though 

the exchange-correlation potential spans all important quantum many-body effects, the 

evaluation of exact exchange-correlation functional is very challenging. Therefore, 

approximations are done by simple functionals as discussed in Section 2.3.3. The non-

interacting kinetic energy Ts density n(r) and particle count N of the non-interacting system can 

be evaluated from the single-particle wave functions as: 

 −=
N

i

iis nT  2

2

1
][       (2.24) 
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2

)()( =
N

i

i rrn         (2.25) 

= rdrnN 3)(      (2.26) 

Ts[n] is explicitly expressed as a functional of the orbitals whereas all other terms are 

functionals of the density, the solution of Equation 2.23 is the problem of minimization with 

respect to density n(r). 

𝛿𝐸𝐾𝑆

𝛿𝜓𝑖
∗(𝑟)

=
𝛿𝑇𝑠[𝑛]

𝛿𝜓𝑖
∗(𝑟)

+ [
𝛿𝐸𝑒𝑥𝑡[𝑛]

𝛿𝑛(𝑟)
+
𝛿𝐸𝐻[𝑛]

𝛿𝑛(𝑟)
+
𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝑟)
]
𝛿𝑛(𝑟)

𝛿𝛹𝑖
∗(𝑟)

= 0          

(2.27) 

From Equation (2.24) and (2.25): 

𝛿𝑇𝑠[𝑛]

𝛿𝜓𝑖
∗(𝑟)

= −
1

2
𝛻2𝜓𝑖(𝑟)     and       

𝛿𝑛(𝑟)

𝛿𝜓𝑖
∗(𝑟)

= 𝜓𝑖(𝑟)     (2.28) 

which leads to the KS Schrödinger like equations: 

(𝐻𝐾𝑆 − 𝐸𝑖)𝜓𝑖(𝑟) = 0                (2.29) 

where the εi are the eigenvalues, and HKS is the effective Hamiltonian 

𝐻𝐾𝑆(𝑟) = −
1

2
𝛻2 + 𝑉𝐾𝑆(𝑟)            (2.30) 

 

𝑉𝐾𝑆(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑥𝑐(𝑟)           (2.31) 

 

Equations (2.29)-(2.31) are the well-known Kohn-Sham equations, where the total 

energy EKS and density n(r) are given by (2.23) and (2.26). These are independent particle 

equations and the potential can be found using the density self consistently. The exact ground 

state density and energy can be obtained if exact functional Exc[n] is known.   

2.3.3 Exchange and Correlation Functionals 

   Framing a good approximation for exchange correlation energy (Exc) is an active field 

of research. There are different functionals available for any particular system which shows 

valid results with theory and experimental data. The typically used approximations are the local 

density approximation (LDA) and the generalized gradient approximation (GGA). In local 

density approximation (LDA), the functional is implicit to have a dependence on the electron 
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density of homogeneous electron gas (HEG). It depends on the electron density [13] and is 

based on the uniform homogeneous electron gas (HEG). In LDA, the exchange of uniform 

electron gas of a density equals to the density at the point where the exchange is to be assessed 

is used: 

  ( ) ( ) rdrnnE LDA

xc

33
4

3
1

23
4

3
−= 


            (2.32) 

However, a serious limitation of LDA is that it cannot provide an estimation of the long-ranged 

Van der Waals (vdW) interaction. Generalized gradient approximation (GGA) is a 

modification over LDA where first-order gradient terms are included such that the exchange-

correlation energy is dependent on the local densities and their gradients [14]. The functionals 

are defined in generalized form as: 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛↑, 𝑛↓] = ∫𝑛(𝑟) 𝜀𝑥𝑐(𝑛

↑, 𝑛↓, |𝛻𝑛↑|, |𝛻𝑛↓|)𝑑3𝑟     (2.33) 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛↑, 𝑛↓] = ∫𝑛(𝑟) 𝜀𝑥

ℎ𝑜𝑚(𝑛)𝑥𝑐(𝑛
↑,𝑛↓,|𝛻𝑛↑|,|𝛻𝑛↓|)

3

          (2.34) 

where xcF is a dimensionless quantity and ( )nx

hom is the exchange energy. Many studies have 

demonstrated that the GGA improves the LDA error in calculating cohesive energies of solids 

and molecules [15].  

2.4 Density Functional Perturbation Theory  

Many physical properties depend upon a system response to some sort of perturbation. 

Examples include polarizabilities, phonons, Raman intensities, and infra-red absorption cross-

sections. Density functional perturbation theory (DFPT) is a particularly powerful and flexible 

theoretical technique that allows calculation of properties such as calculate response function, 

phonon frequencies and Born effective charges [16-18] within the density functional 

framework, thereby facilitating an understanding of the microscopic quantum mechanical 

mechanisms behind such processes, as well as providing a rigorous testing ground for 
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theoretical developments. In DFPT, V, E, H, kn , n(r), etc. are subjected to perturbation. The 

external potential V is expanded as 

𝑉𝑒𝑥𝑡 = 𝑉𝑒𝑥𝑡
0 + 𝜆𝑉𝑒𝑥𝑡

(1)
+ 𝜆2𝑉𝑒𝑥𝑡

(2)
+ 𝜆3𝑉𝑒𝑥𝑡

3 +. . . . ..          (2.35)   

Similar expansions are done for E, H, kn , n(r), etc. The second-order energy E(2), is an 

important parameter that is used to calculate the dynamical matrix for phonon calculations and 

Born effective charges. One can write energy as functional of density as: 

𝐸[𝑛] = 𝑚𝑖𝑛
𝜓(1)

∑ ⟨𝜓𝑖|𝑇 + 𝑉𝑒𝑥𝑡|𝜓𝑖⟩𝑖∈𝑜𝑐𝑐 + 𝐸𝐻𝑥𝑐[𝑛]                 (2.36) 

E(2) = min
ψ(1)

∑ [⟨ψi
(1)
|H(0) − εi

(0)
|ψ(1)⟩ + ⟨ψi

(1)
|Vext
(1)
|ψi
(0)
⟩ + ⟨ψi

(0)
|Vext
(1)
|ψ(1)⟩ +i∈occ

⟨ψi
(0)
|υext
(2)
|ψi
(0)
⟩] +

1

2
 δ2𝐸Hxc

δn(r)δn(r′)
|n(0)n(1)(r)n(1)(r′)d3rd3r′ +

∫
d

dλ

δEHxc

δn(r)
|
n(0)

n(1)(r)d3(r)
1

2

d2EHxc

dλ2
|
n(0)

              (2.37)

 

where the second-order term of energy is obtained as variational with respect to first order 

wave function provided first order wavefunctions are orthogonal to the ground state 

wavefunctions 

⟨𝜓𝑖
(0)
|𝜓𝑗
(𝑗)
⟩ = 0

                  (2.38) 

The dynamical matrices are Hermitian and the eigenvalues 𝜔𝑗
2(𝑞) are real with eigenvectors 

𝜉𝑗(𝑞) being orthonormal. Also, the phonon band structure  𝜔𝑗(𝑞) directly corresponds to 

density of states (DoS) which provides the information of phonons in the whole Brillouin Zone 

(BZ). To obtain the information of the whole phonon spectrum, the scanning of BZ is 

important. This scanning consists in matrix diagonalization over the three-dimensional grid of 

wave vector 𝒒  =  (
𝑎∗

𝑛1
,
𝑏∗

𝑛2
,
𝑐∗

𝑛3
), at n1, n2, n3 = -N,., N. In total, this includes Ni = (2N + 1)3 points 
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in BZ. The phonon density of states (PHDOS) is determined by summation over all the phonon 

states and is defined by:  

𝑔(𝜔) = 𝐷′ ∫ ∑ 𝛿 (𝜔 − 𝜔𝑗(𝑞))𝑗𝐵𝑍
𝑑𝑞 = 𝐷′ ∫ ∑ 𝛿 (𝜔 − 𝜔𝑗(𝑞))𝑗𝑝𝐵𝑍

𝑑𝑞𝑝           (2.39) 

Here, D' is a normalization constant such that ( ) 1g ω dω= ; and g(ω)dω is the fraction of 

phonons with energies ranges from ω to ω + dω.  The mesh index ‘p’ is characterized by ‘q’ 

in the discretized irreducible Brillouin zone, where dqp provides the weighting factor 

corresponding to the volume of pth mesh in q-space. The phonon density of states (PHDOS) 

can be described as: 

𝑔(𝜔) = 𝐷′ ∑ 𝛿 (𝜔 − 𝜔𝑗(𝑞))
|𝜉𝑗(𝑞)|

2

∑ |𝜉𝑗(𝑞)|
2

𝑗𝑝
𝑗𝑝                        (2.40) 

2.5 Elastic Properties 

The mechanical properties of crystalline material are defined in terms of elastic 

constants and further characterized by Young’s modulus, shear modulus, bulk modulus, and 

Poisson’s ratio. Elastic properties also govern the thermodynamic properties such as specific 

heat, thermal expansion, and Debye temperature [19]. The total energy of a strained system 

𝐸𝑡𝑜𝑡 having volume V can be expressed as: 

𝐸𝑡𝑜𝑡 = 𝐸𝑡𝑜𝑡
0 + 𝑃(𝑉 − 𝑉0) + 𝛷𝑒𝑙𝑎𝑠𝑡              (2.41) 

where 
0

totE
 
is the total energy of crystal at initial stage with volume V0 without strain. Φelast is 

the elastic energy and P is the pressure defined by:  

𝑃 = −(
𝜕𝐸𝑡𝑜𝑡

0

𝜕𝑉
) (𝑉0)              (2.42) 

 The elastic constants (Cijkl) can be defined using elastic energy Φelast following Hooke’s law 

as:  

𝛷𝑒𝑙𝑎𝑠𝑡 =
𝑉

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙      (i, j, k, l = 1, 2, 3)                 (2.43) 
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or, in the Voigt's suffix notation: 

𝛷𝑒𝑙𝑎𝑠𝑡 =
𝑉

2
𝐶𝑖𝑗𝜀𝑖𝜀𝑗         (i, j = 1, 2, 3, 4, 5, 6)            (2.44) 

Since in Equation (2.41), the (V-V0) term follows linear relationship with strain, it is possible 

to derive elastic constants from the second order derivatives of Etot:  

𝐶𝑖𝑗 =
1

𝑉0

𝜕2𝐸𝑡𝑜𝑡

𝜕𝜀𝑖𝜕𝜀𝑗
               (2.45) 

Elastic tensor of cubic crystal has only three independent elastic constants, C11, C12, and C44:  

























=

44

44

44

111212

121112

121211

C

C

C

CCC

CCC

CCC

C            (2.46) 

All the three elastic constants of a cubic crystal can be determined by solving three equations 

implying that three types of strain must be applied to the crystal. The bulk modulus of crystal 

can be evaluated by fitting Etot(V) with the third order Birch-Murnaghan [20] equation of state 

where the Etot is computed for different values of strain. To evaluate the elastic tensors, volume 

conservative tetragonal strains are applied where one varies the axial ratio 
𝑐

𝑎
= 1 + 𝑒 leading 

to the strain tensor: 

𝜀̄ = (

𝜀1 0 0
0 𝜀1 0

0 0
1

(1+𝜀1)2
− 1

) or in Voigt notation 

(

 
 
 
 

𝜀1
𝜀1

1

(1+𝜀1)2
− 1

0
0
0 )

 
 
 
 

  (2.47) 

where  𝜀1 = (1 + 𝑒)
−1

3⁄ − 1. The elastic energy resulting from tetragonal strain to second 

order in ε1 can be written as:  

 
𝛷𝑡𝑒𝑡𝑟𝑎

𝑉0
= 3(𝐶11 − 𝐶12)𝜀1

2 + 𝑜(𝜀1
3)                        (2.48) 

Etot (εl) is fitted to an N degree polynomial P which is decided by the number of deformed 

structures (N ≤ (Number of data) - 1). The value of (C11-C12) is obtained from computing the 

second derivative of P: 
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𝑃″(𝜀1 = 0) = 6𝑉0(𝐶11 − 𝐶12)                              (2.49) 

The mechanical stability of a system can be studied by evaluating elastic constants from the 

ground state total energy calculations. A given crystal cannot exist in a stable or metastable 

phase if their elastic constants does not follow the stability criteria determined by themselves. 

The mechanical stability criteria [21-22] for cubic crystals at ambient conditions are:  

𝐶11 + 2𝐶12 > 0, 𝐶44 > 0, 𝐶11 − 𝐶12 > 0, 𝐶11 < 𝐵 < 𝐶11,                                                                                                                                                          (2.50) 

and the isotropic bulk modulus (B) is given by: 

𝐵 =
1

3
(𝐶11 + 2𝐶12)                        (2.51) 

The Born criteria for 2D hexagonal structure [23] are: 

C11 > 0, C11-C12 > 0 and C66 > 0                  (2.52) 

The elastic modulus characterized by the Young’s modulus (E), shear modulus (GH), Poisson’s 

ratio (σ) [24] play an important part in determining the strength of the material. They are 

calculated using the following relations: 

𝐸 =
9𝐵𝐺𝐻

3𝐵+𝐺𝐻
              (2.53) 

𝐺𝐻 =
𝐺𝑉+𝐺𝑅

2
                                                 (2.54) 

   𝜎 =
3𝐵−2𝐺

2(3𝐵+𝐺)
                                           (2.55) 

where Voigt shear modulus is: 

𝐺𝑉 =
𝐶11−𝐶12+3𝐶44

5
             (2.56) 

and Reuss shear modulus is:   

𝐺𝑅 =
5𝐶44(𝐶11−𝐶12)

4𝐶44+3(𝐶11−𝐶12)
                         (2.57) 

 

2.6 Optical Properties 

The optical properties such as dielectric constant, absorption coefficient, reflectivity, 

refractive index, and loss function, etc. describe the interaction of light with the system, useful 
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in optoelectronic devices. Optical properties of a system can be measured by the complex 

dielectric function (CDF). The real part (ɛ1(ꞷ)) of the dielectric function can be determined 

by Kramer–Kroning transformation within the random phase approximation (RPA). The CDF 

is used to measure the linear response to an external electromagnetic field with a small wave 

vector 𝑘, the optical properties can be derived from the same [25-26]. Expressions for the 

absorption coefficient, refractive index, coefficient of extinction, optical reflectivity and loss 

spectra are given as follows: 

                                          ɛ (ω) = ɛ1 (ꞷ) +  𝑖 ɛ2(ꞷ)                                                            (2.58) 

The imaginary part (2 ()) of the dielectric function can be determined using electronic band 

structure through the momentum matrix element and the joint density of states (JDOS) between 

the unoccupied and occupied wave functions within the selection rules and is given by:   

                    2 () =
2𝑒2ᴨ

𝛺 ɛ0
∑ ∫ |ψ𝑘

𝑐 < 𝑢̂ × r > ψ𝑘
𝑣 |2 𝛿(E𝑘

𝑐 − E𝑘
𝑣 − 𝐸)𝑘,𝑐,𝑣              (2.59) 

The imaginary part of the dielectric function in the above equation depends on JDOS and 

momentum matrix element. The Kramer–Kronig relation is used to calculate ɛ1 (ꞷ) from 

2() of the dielectric function [27] as: 

 

                                  ɛ1(ꞷ) = 1 +
2

π
𝑃 ∫

′2(
′)

′2−2
𝑑ꞷ

′
                                                          (2.60) 

The absorption coefficient 𝛼(ꞷ) is obtained directly from the dielectric function ɛ (ω),  
 

                    𝛼(ꞷ) =  
√2ꞷ

𝑐
[√(ɛ1

2 + ɛ2
2 − ɛ1]

1

2 = 𝛼 =
2𝜔𝑘

𝑐
=
4𝜋𝑘

𝜆0
                              (2.61) 

where, c is the speed of light. As mentioned above, all the other optical parameters can be 

calculated by the Equations (2.59) and (2.60). 

                                     𝑘(ꞷ) =
1

√2
[(ɛ1

2 + ɛ2
2)
1

2 − ɛ1]
1/2                                                 (2.62) 

                                   𝑛(ꞷ) =
1

√2
[(ɛ1

2 + ɛ2
2)
1

2 + ɛ1]
1/2                                                   (2.63) 
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In these equations 𝑘(ꞷ) and 𝑛(ꞷ) represent the extinction coefficient and refractive index 

respectively. The Equation (2.63) is used to determine the reflectivity(𝑅(ꞷ)), and given by 

                                       R(ꞷ) =
[(n−1)2+k2]

[(n+1)2+k2]
                                                                       (2.63) 

Now, to calculate the energy loss by an electron in the semiconductors, we have calculated the 

loss function 𝐿(ꞷ), which is given by 

                                       𝐿(ꞷ) =
ɛ2(ꞷ)

ɛ1
2(ꞷ)+ɛ2 

2 (ꞷ)
                                                                                  (2.64) 

2.7 Experimental Techniques  

In this section, the details of the solid-state synthesis method and the optimization to 

prepare the samples are described. To analyze the correlation of the samples with their 

structural properties, the characterization methods employed are, X-ray Diffraction (XRD) for 

structural properties, X-ray photoelectron spectroscopy (XPS) for the determination of 

oxidation states and chemical bonding, Vibrating Sample Magnetometer (VSM) for the study 

of magnetic properties and Raman spectra for vibrational properties. 

2.7.1 Sample Preparation 

The polycrystalline powder samples of pristine CuCoO2 and vanadium doped CuCo1-xVxO2 

at different concentrations were synthesized by solid-state synthesis technique (see  Fig. 2.1). 

Stoichiometric amounts of the powders Cu2O (99.99%), Co2O3 (99.9%), and V2O5 (99.9%) 

were mixed and grilled in an agate mortar to ensure homogeneity. A homogenous mixture was 

obtained in powder form. The resulting mixture was calcinated at 1200 ℃ in the air for 15 h. 

The calcined powders were then quenched to room temperature.    
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2.7.2 Characterization Techniques 

A. X-ray Diffraction (XRD)  

To determine the proper phase and complete morphology of any material, it is crucial to 

study its structural properties. The structural properties of a material are closely related to the 

chemical characteristics of the constituent particles of the material and thus form the foundation 

on which detailed physical understanding is built. Powder XRD is the most commonly used X-

ray diffraction technique for characterizing polycrystalline materials by finding their crystal 

structure, atomic spacing, and unit cell dimensions [28-29]. The term 'powder' used in powder 

diffraction itself suggests that the material under study is in the powder form with randomly 

aligned fine grains of the crystalline material. XRD is an important technique for evaluating 

the properties of all kinds of matter ranging from fluids to powders and crystals. This technique 

is based on the principle of X-ray diffraction. The samples are typically in powder form, where 

ideally every possible crystalline orientation is represented equally. Diffraction of X-ray occurs 

when there is a constructive interference between the monochromatic beam of X-rays and the 

crystalline sample [30]. In the present study, all the powder samples were characterized by 

XRD patterns which were recorded by the powder XRD using a 1D PSD detector (LynxEye) 

Mixed in stoichiometric proportion in agate mortar, 

grinded thoroughly and homogeneously 

Cu2O 

 

Co
2
O

3
 

 

V
2
O

5
 

 

 

Crucible Furness for calcination  

Figure 2.1: Schematic representation of the sample preparation methodology.  
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with Cu 𝐾𝛼 radiation at room temperature. The structural studies of the samples and the phase 

identification are done by comparing the diffraction with the JCPDS (card number #) and 

previously reported delafossite oxides 

B. X-ray Photoemission Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a surface characterization technique that can 

analyze a sample to a depth of 2 to 5 nanometers (nm). XPS reveals the presence of chemical 

elements at the surface and the nature of the chemical bond between elements. It delivers info 

about elemental composition, chemical state, thickness measurement of over layers of up to 8 

nm on a substrate, surface chemical imaging, thickness and depth-distribution of chemical 

species and depth profiling the Valence Band photoelectron Spectroscopy (VBS). This also 

provides information on the density of states in the valence band and electron work function. 

C. Vibrating Sample Magnetometer (VSM) 

The measurement of the magnetic properties of any material is an important aspect mainly 

for understanding the mechanism of magnetic materials before fabricating the magnetic 

devices. The magnetic properties of the material are measured by Vibrating Sample 

Magnetometer (VSM) which was invented by Simon Foner at MIT Lincoln Laboratory in 1955 

and reported in 1959 [31]. The study of magnetic properties of materials involves 

understanding the electronic behavior in condensed matter and material science. The electrons 

show highly correlated behavior i.e. the conduction electrons depend on the presence or 

absence of neighboring electrons in varieties of inorganic compounds and alloys of transition 

metals. These electronic correlations result in changes in material properties like magnetism, 

superconductivity, metal-insulator transitions, or heavy-fermion behaviour of conduction 

electrons. These behaviors are highly influenced by the Coulomb and exchange interactions 

among electrons. The working diagram of VSM is shown in Fig. 2.2.  
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The basic working principle of a VSM which provides information about the changing 

magnetic field is based on, Faraday's Law of induction, which tells us that the modification in 

the magnetic field produces a measurable electric field. The sample to be studied is kept in a 

constant uniform magnetic field. Superconducting Quantum Interference Device (SQUID) 

magnetometers are classified within the flux methods of measuring magnetization of a sample. 

This is useful to measure the small magnetic fields in the most sensitive way.  

 

The electromagnet gets activated before the testing starts,hence, if the sample is magnetic, 

it will be magnetized and the stronger magnetic field is produced. This results in a magnetic 

field H⃗⃗  around the sample. The magnetization of the specimen can be analyzed due to vibration 

in the sample as magnetization changes with the periodic movement. The changes in the 

magnetic flux prompt a voltage in the sensing coil proportional to the magnetization of the 

sample. 

D. Raman spectroscopy 

The Raman spectroscopy is the most common vibrational spectroscopic technique 

aimed at assessing the molecular vibrations and the bonding fingerprinting species principally 

based on inelastic scattering. When light scatters from an atom or crystal, most of the photons 

get scattered elastically and these scattered photons have the same energy and wavelength as 

that of the incident photons. However, a little fraction of light (approximately 1 in 107 photons) 

Figure 2.2:  Schematic diagram depicting the working of vibrating sample magnetometer. 
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is scattered at optical frequencies dissimilar from the frequency of the incident photons. This 

phenomenon of inelastic scattering is known as the Raman effect. Raman scattering takes place 

with a change in vibrational, rotational or electronic energy of the molecule. When the light in 

the form of electromagnetic radiation interacts with matter, the photons may get absorbed or 

scattered, or may simply pass through it without any interaction. If the energy of an incident 

photon is proportional to the energy gap between the ground state and an excited state, the 

system is promoted to a higher excited state after the photon is absorbed. It is this change which 

is measured in absorption spectroscopy. However, it is also possible for the photon to interact 

with the molecule and get scattered from it. The scattered beams of photons are observed by 

collecting light at an angle to the incident beam. In the case of Raman, scattering efficiency is 

directly proportional to the fourth power of the frequency of the incident light. In the present 

work, the Raman spectra were recorded by the micro Raman spectroscopy (STR 500, Nd-YAG 

laser source with 532 nm wavelength excitation laser). The recorded Raman spectra were 

analyzed using the Bilbao crystallographic server [32].    
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