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Chapter 2 

Correlation and its implementation in Speckle Metrology 

2.1 Background of Speckle Correlation techniques 
Discovery of speckle phenomenon and the ability to harness its properties for 

quantifying various physical and optical quantities has immensely changed the face 

of metrology sciences. Speckle being a statistical phenomenon, has to be handled 

with some statistical functions or algorithms. A very popular and extensively used 

function is the Correlation (or decorrelation) algorithm [11–16]. Speckle 

correlation technique has emerged as an effective, efficient, fast, sensitive, simple, 

rugged and non-contact method for various metrological applications [17–44]. 

Some of the reported engineering and industrial applications include measurement 

and inspection of strain (in the fields ranging from aviation to micro-electronics) 

[17,18,29,38–41], roughness [42–44], deformation [19–21], vibration [22–25], 

crevice corrosion [26], complex thermo-mechanical properties of thin multilayered 

structures [27], angular displacement [28], depth of layered structure [30], 

temperature [31], fingerprint acquisition etc.[32]. In the area of biophotonics, the 

speckle correlation technique has marked its strong presence as it has been 

reportedly used for evaluation of blood plasma coagulability [33], measurement of 

eye tremor [34], estimation of global and regional Left Ventricular function [35], 

and blood flow in the brain [36]. The speckle correlation technique has also been 

presented as a tool for evaluating the viscosity of dairy products which can be very 

helpful in judging the product quality and its consumption [37]. The simplistic, 

effective, and swift analysis of speckle data using the correlation technique has been 

one of the prime motivating factors for pursuing this work.  

Correlation theory based-technique has been reportedly used for determining phase 

difference [45,46]. The existing methods for estimating phase difference can 

broadly be classified into categories: (1) the frequency-domain methods (2) the 

time-domain methods. The frequency-domain methods work by transforming the 

time-domain signal to the frequency-domain signal, by using Fourier transforms. 

While the time-domain methods work on the cross-correlation between two signals. 
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These methods include the normalized cross-correlation (NCC) method, data 

extension-based correlation (DEC) method and quadrature delay estimator (QDE) 

[45]. One of the approaches to apply the correlation method is the fringe pattern 

correlation where an equi-spaced fringe pattern is employed and two fringe patterns 

with equal spacing are matched (correlated). The fringe patterns with equi-spaced 

fringes associated with two different states; before and after introducing a phase 

change are recorded. The phase difference can be computed by shifting the pattern 

back to match the initial position. A fixed image patch is selected from the first 

fringe pattern which acts as a reference image patch and it is shifted in the second 

fringe pattern back, pixel by pixel. The maximum value of the correlation is 

obtained by the number of pixels required to be shifted for attaining the best 

matching position. This is a very highly sensitive technique but it has a 

disadvantage. A shift of more than one fringe creates an ambiguity in the correlation 

coefficient values as it will repeat cyclically [47–49]. Using the speckle correlation 

technique resolves this problem as the speckle pattern is random and does not repeat 

itself periodically. This makes speckle correlation a preferable technique, 

especially for motion detection and recognition. The following section describes 

the basics of correlation function which will be extensively used in examining 

various optical and physical properties. 

  

2.2 Basics of Correlation  
Correlation is a statistical method that determines the degree of similarity between 

two variables. It is also known as a bivariate statistic, where bi- meaning two and 

variate indicates variables [11]. There can be only three possibilities regarding the 

relationship between two variables; strong, weak and none. Thus, correlation can 

be defined as the relationship between two variables such that a change in one 

variable results in the positive or negative or no change in the other. A greater 

change in one variable may result in a corresponding greater or smaller change in 

the other variable.  

Correlation can broadly be classified depending on how variable changes with 

respect to the other variable: (1) Positive or negative (2) Simple and Multiple (3) 
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Partial and total. If two variables tend to change together in the same direction 

(direction here refers to the way in which the variables change) then the correlation 

is called positive correlation and the correlation is called negative correlation when 

there is an increase in the value of one variable and a decrease in the value of the 

other. When we study only two variables or data series the relationship is said to be 

a simple correlation whereas the correlation involved in the study of more than two 

variables or data series simultaneously, is described as multiple correlations. Partial 

correlation is a measure of the strength and direction of a linear relationship 

between two continuous variables while controlling for the effect of one or more 

other continuous variables (also known as 'covariates' or 'control' variables) [12]. 

To quantify the correlation, the correlation coefficient is computed which acts as 

an indicator of prediction. A correlation coefficient is a numerical measure that 

indicates the strength of the relationship between the variables and has a range of -

1 to +1. Thus, a strong positive (value close to +1) or negative (value close to -1) 

correlation implies that the association between the two variables has a high 

predictive relationship. It is a very common tendency and mistake to think 

correlation as a cause-effect relationship, where a strong positive or strong negative 

correlation between two variables can be considered as a sign of dependence of one 

variable on the other. Correlation does not imply causation and a strong correlation 

never implies a cause-effect relationship between two variables [11].  

 

2.2.1 Types of Correlation based on the class of variables involved 
There are four common types of correlation depending upon the class of variables 

and their relationship with other variables [11,13].  

(1) Pearson’s pr : A measure of the strength of a relationship between two 

continuous variables.  

(2) Spearman’s sr : A measure of the similarity between two ordinal rankings of a 

single set of data.  

(3) Point-biserial pbr :A measure of the strength of a relationship between one 
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continuous variable and one dichotomous variable.  

(4) Phi (Φ ) correlation: A measure of the strength of a relationship between two 

dichotomous variables. 

(1) The Pearson product-moment correlation coefficient ( pr )  

It is the most commonly used method to compute the correlation coefficient, which 

measures the degree of relationship between two continuous variables. A 

continuous variable here is a variable that can be measured along a line scale.  

The formula for calculating pr is [11] 

1

2 2

1 1

( )( )

( ) ( )

n

i i
i

p n n

i i
i i

x x y y
r

x x y y

=

= =

− −
=

− −

∑

∑ ∑
     (2.1) 

where, n is the sample size, x  and y  are two individual sample points while x and 

y are their mean values respectively.     

The above equation is used in this thesis to calculate various optical and physical 

properties by comparing two speckle patterns associated with two different states 

of the measured quantity and computing the correlation coefficient.  

(2) Spearman’s Correlation 

Spearman’s correlation coefficient ( sr )which is also known as Spearman’s rho( ρ

),determines the degree of association for two sets of ranked data. Spearman’s 

correlation is also called the rank-order correlation coefficient. It is not as common 

as the Pearson’s coefficient but can be very handy while dealing with variables that 

are ordered according to ranks or variables that may be subsequently ranked based 

on a continuous variable.   

The Spearman’s correlation coefficient can be calculated using [11]  
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where, N is the number of pairs of scores and D is the difference between the pairs 

of ranks. Spearman’s correlation can be very useful when we have to measure the 

linear correlation between ranks. Pearson’s pr will produce the same value as 



18 
 

Spearman’s sr on the same set of ranked data. If the variables are expressed in their 

original form as continuous measures, Pearson’s pr will not equal Spearman’s sr

after they have been converted to ranks, but they will have similar values [11]. 

(3) Point-Biserial Correlation  

The point-biserial correlation ( pbr ) gives an estimate of the degree of relationship 

between a dichotomous variable and a continuous variable. Before the invention of 

modern computing devices, one had to use the older devices and had to dichotomize 

one of the two continuous variables and then run the point-biserial correlation 

instead of Pearson’s because the formula was simpler. However, Pearson’s 

correlation coefficient yields the same value as the point-biserial correlation 

formula. 

Generally, pbr  is used when a single test item (dichotomous) is correlated with the 

overall test score (continuous). The point-biserial correlation ( pbr ) can show 

whether an individual item is a good predictor of the overall test score. The formula 

for it is as follows [11] 
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where, 1x is the mean score on the continuous variable of just the participants in 

level 1 of the dichotomous variable, 2x is the mean score of the continuous variable 

of just the participants in level 2 of the dichotomous variable, S is the standard 

deviation of all the participants on the continuous variable, p is the proportion of 

persons in Level 1 of the dichotomous variable and 1q p= − . 

(4) Phi (Φ ) Correlation  

The phi correlation gives an estimate of the degree of relationship between two 

dichotomous variables. The value of the phi (Φ ) correlation coefficient has the 

range similar to the Pearson’s r ; that is, it can vary from -1.00 to +1.00. The phi 

correlation can be explained using an example where the occurrence of two 

diseases, Disease 1 and Disease 2, with total of 183 people under study. A person 

affected with Disease 1 may get affected by Disease 2. So, the classification is 
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based on a person having Disease 1, Disease 2, both or neither. The frequencies of 

these diagnostic combinations are presented in the tabular form as below    

 
Table 2. 1: Frequencies of diagnostic combinations (Phi correlation) 

 
Event 2 

No Yes 

Event 1 
No 110a 19b 

Yes 22c 32d 

 

 

The individual cells in this matrix of numbers have been labeled a todto identify 

the cells in the table. The formula for Φ is [11] 
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using which Φ for the aforementioned example can be calculated to be 0.45. 

 

2.2.2 Types of correlation based on how the variables are compared 
(Autocorrelation and Cross-correlation) 
Before moving on to the topics of cross-correlation and autocorrelation which play 

a significant role in the present work, one similar statistical and signal processing 

tool, convolution, needs to be addressed.  

Convolution works on the principle of observing how a given system responds to 

an impulse, for any possible input signal. It is a mathematical way of combining 

two signals to form a third signal. In linear systems, convolution is used to describe 

the relationship between three signals: the input signal, the impulse response, and 

the output signal. In the convolution approach, impulse decomposition is used 

where a system is characterized by knowing how it responds to an impulse. This 

helps in calculating the system’s output for any given input [14]. Mathematically a 

convolution is integral that expresses the amount of overlap of one function when 

it is shifted over another function.   
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The convolution of two functions ( )tφ  and the impulse function ( )tδ is represented 

by an integral [15] as  

0 0( ) ( ) ( )t t t dt tφ δ φ
∞

−∞

− =∫     (2.5) 

The response of a linear time-invariant (LTI) system to an impulse response of the 

system is obtained by the convolution of the input signal and the impulse response 

of the system [15]. 

Convolution is very similar to correlation, with a very slight difference in how both 

these mathematical operations are perceived. Unlike correlation, in convolution one 

of the two functions is reversed and shifted before computing the product of the 

two functions.  Convolution is generally between a signal and a filter, which can be 

thought of as a system with a single input and stored coefficients whereas 

correlation is usually between two signals, where the system has two inputs and no 

stored coefficients [16]. Convolution can work the same way as correlation and 

produce similar results when the filter is symmetric as the symmetric filter nullifies 

the effect of folding or reversing in convolution.  

Cross-correlation provides a measure of similarity between two signals, while the 

autocorrelation is the measure of how similar a signal is to itself. Cross-correlation 

is a comparison between functions ( )x τ and ( )h τ , and is defined as an integral [15] 

as 

( ) ( ) ( ) ( ) ( )xhR x h x t h t dtτ τ τ τ
∞
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where “∗∗ ” is the symbol for correlation and ( )h t τ+ is the time-shifted version of 

the function ( )h τ . Autocorrelation function can be considered as a special case of 

cross-correlation function, where ( )h τ is taken to be ( )x t . The autocorrelation 

provides a comparison between a function ( )x τ  and its time-shifted version ( )x t τ+

and is defined as [04] 

( ) ( ) ( )xxR x t x t dtτ τ
∞

−∞

= +∫    (2.7) 
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Autocorrelation is associated with power spectral density by Wiener-Khintchine 

theorem which suggests that the autocorrelation function and the power spectrum 

are Fourier Transform pair i.e. the autocorrelation of a signal can be obtained by 

the Fourier transform of the power spectral density of the signal. There is a corollary 

to this theorem which shows that the autocorrelation is independent of spectral 

phase which means that two signals with the same power spectral density but 

different spectral phases will have the same autocorrelation function and hence 

numerous signals can have the same autocorrelation. Thus, methods of signal 

analysis that are based on autocorrelation cannot differentiate between such signals, 

no matter how different they may look in the time domain. So a high order statistic 

is required to differentiate between such signals [16]. 

 

2.3 Motivation behind adopting the Speckle Correlation technique 
The technique of speckle correlation works on imaging of the speckle pattern which 

is formed by an object, generally a rough surface or a volume of interest. Generally, 

a speckle pattern is observed in arrangements involving a coherent light source, 

where coherent light is reflected or transmitted through a rough surface [2,50]. The 

individual speckle can be considered as a reference point from which the change in 

the phase of the light that is reflected from or transmitted through a rough surface 

can be tracked [51]. Thus, a change in the physical or optical properties of the 

interacting surface or volume can be converted into a change in the speckle pattern. 

This change in the speckle pattern can be quantified by computing the correlation 

coefficient which involves comparing two speckle patterns associated with two 

different states of the measurand. It is already established that the speckle 

correlation technique is one of the many optical techniques which can work 

remotely and provide accurate measurements with simple arrangements making it 

a very preferable noncontact, inexpensive, sensitive technique [52–55]. 

In this work, the correlation coefficient is measured using the Pearson product-

moment correlation coefficient ( pr ) which is given by Eq. 2.1. The Eq. 2.1 is 

extensively used during this work for measuring optical rotation, refractive index, 
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temperature, and magnetic field. Rearranging Eq. 2.1 for the intensities of the 

speckle pattern to give 
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where ( ),RI k l and ( , )OI k l are the intensities of the recorded speckle patterns 

before and after the change in the level/state of the measurand respectively with RI

and OI being their mean values. The change in correlation coefficient is computed 

from the obtained correlation value using 

1C C∆ = −      (2.9) 

 

Fig. 2.1 shows the flow chart describing the general process involved in the 

measurement of optical rotation, refractive index, temperature, and magnetic field. 

The measurement process requires two sets of data, one set of speckle patterns 

corresponding to the reference level of the measured quantity and the other set of 

speckle patterns corresponding to that level which needs to be measured. 

Any external vibration and physical or electronic noise may lead to a change in 

speckle pattern which acts as background noise for the system which needs to be 

taken into account. This background noise can affect the resolution of the system 

and quantification of which can help in determining the stability of the system. The 

stability of the measurement system is computed by recording speckle patterns 

corresponding to the reference level over a period of time and comparing these 

speckle patterns in sequence to obtain the change in correlation coefficient values. 

The standard deviation in this change in correlation coefficient values over time is 

defined as the stability of the system.  
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Fig 2. 1: Flow chart exhibiting the process of comparing the speckle pattern to obtain correlation 

coefficient values 

 

Chapter 3 and Chapter 4 are dedicated to applications of speckle correlation 

techniques where the former deals with applications wherein speckles that are 

generated after the incident laser beam is allowed to pass through a volume for 

optical rotation and refractive index measurement while the latter is dedicated to 

applications that use speckles that are generated upon reflection of the laser beam 

from a rough surface which is attached to a cantilever for measurement of 

temperature and magnetic field. 

 
 
 
 
 
 
 
 
 
 


