List of Figures

Fig 1. 1: A laser speckle pattern
Fig 1. 2: Geometries for the formation of objective and subjective speckle
Fig 1. 3: Several scattered fields $u_j(P)$, plotted in the complex plane with their
respective random phases , contributing to the total field at point P , $U(P)$
Fig 1. 4: Normalized probability density function and probability that the intensity
exceeds level for a polarized speckle pattern
Fig 1. 5: Schematic showing axial and lateral speckle size

Fig 2. 1: Flow chart exhibiting the process of comparing the speckle pattern to	
obtain correlation coefficient values	. 23

Fig 3. 1: Speckle-based sensor for low field Faraday rotation measurement 29
Fig 3. 2: Change in the speckle correlation coefficient as a function of time for
reference speckle pattern (no applied field). Standard deviation determines the
minimum measurable rotation, which in this case is 0.0025°
Fig 3. 3: Change in the speckle correlation coefficient (ΔC) versus the change in
the strength of the applied magnetic field. Axis on top gives the corresponding
rotation of the plane-polarized light. The straight line represents the linear fit to
the measured values
Fig 3. 4: Change in the speckle correlation coefficient (ΔC) for magnetic field
variation from 0 to 26 G
Fig 3. 5: Rotation measurement with crossed polarizer-analyzer pair. The main
figure shows the photodiode output as a function of the applied magnetic field.
The inset shows the variation in the detector output in the shaded portion (low
magnetic fields)
Fig 3. 6: Change in the speckle correlation coefficient (ΔC) with time for
different strengths of the applied magnetic field for a quartz rod with a 12-cm
length. Note that the lines are equally spaced, which indicates a linear relationship
between the variation in rotation and the strength of the magnetic field

Fig 3. 7: Measured Faraday rotation using change in the speckle correlation coefficient (for a rod of 12 cm length). Straight-line indicates values calculated Fig 3. 8: Measured Faraday rotations for small changes in the magnetic field (rod of 10-cm length). Note that the error in measurement has increased compared to Fig 3. 9: Measured rotation using change in the speckle correlation coefficient for a quartz rod with a length of 15 cm using a cell phone camera as the speckle field Fig 3. 10: Faraday Rotation Case1: Applied Magnetic field parallel to the direction of propagation of light. Case2: Applied Magnetic Field antiparallel to the direction of propagation of light. Optical Activity Case1: light entering the chamber containing optical active material from Side A and leaving from Side B. Case2: The light entering the chamber from Side B and leaving from Side A 40 Fig 3. 11: Experimental setup for the measurement of sugar concentrations. Solutions having different sugar concentrations were obtained by dissolving Fig 3. 12: Recorded speckle patterns for different sugar concentrations. (a) 0g/ml (distilled water only), (b) 0.01g/ml, (c) 0.05g/ml and (d) 0.1g/ml. For each concentration 60 patterns at 30Hz were recorded for comparison with the Fig 3. 13: Change in the correlation coefficient (ΔC) as a function of known sugar concentration. For each concentration, ten data sets were recorded. In the figure \blacklozenge ♦ ♦ represent the mean of the DC obtained from all the data sets and - - - -Fig 3. 14: Results obtained using unknown concentrations and the calibration Fig 3. 15: Change in the curvature of the wavefront striking the diffuser, with a change in the refractive index of the fluid inside the test chamber. $n_2 > n_1$, where

Fig 3. 16:Schematic of the technique used for the determination of change in
refractive index
Fig 3. 17: (a) The 3D printed refractometer (b) the power supply assembly that
provides the necessary voltage and current to the laser diode. (c) Top view of the
device showing all major significant components
Fig 3. 18: A speckle pattern recorded by the smartphone, when attached to the
webcam of the refractometer with the help of a USB OTG
Fig 3. 19: (a) Simulated speckle pattern corresponding to water ($n = 1.333$). (b)
Change in correlation coefficient with a change in refractive index in the case of
simulated speckle patterns
Fig 3. 20: Recorded speckle patterns for sugar solutions of different refractive
indices. (a) $\Delta n = 0$ (distilled and de-ionized water) (b) $\Delta n = 0.0014$, (c) $\Delta n =$
0.0029, (d) $\Delta n = 0.0044$, (e) $\Delta n = 0.0058$ and (f) $\Delta n = 0.0073$
Fig 3. 21: (a) Time variation of the correlation coefficient after averaging over 7
measurements for each refractive index value. (b) Calibration curve: change in the
speckle correlation coefficient (ΔC) with a change in refractive index

Fig 4. 1: Experimental configuration. The heating element was mounted on a
translation stage
Fig 4. 2: Change in speckle correlation coefficient with time for heating element
kept 1 mm away from the sensor head. Four regions are visible
Fig 4. 3: Change in speckle correlation with time for heating element while the
steady temperature was kept at different distances from the sensor head. The inset
in the figure shows the expanded version of the region inside the rectangle 66
Fig 4. 4: Slope of the ΔC versus ΔT during heating (saturation region is not
considered)
Fig 4. 5: Variation in the slope of C as a function of time. This can be used to
determine the time it takes the sensor head to reach saturation
Fig 4. 6: Change in the time it takes the sensor head to yield saturation in the
speckle correlation values as a function of the change in the temperature

Fig 4. 7: Experimental setup for measuring magnetic field without using the	
speckle correlation technique	. 72
Fig 4. 8: Movement of focused image on the photodiode when magnetic field	
varies	. 73
Fig 4. 9: Calibration curve giving the relation between the magnetic field and the	ne
output of the photodiode	. 74
Fig 4. 10: Cantilever action for one fixed and one open end	. 74
Fig 4. 11: Measured magnetic field along with percentage error	. 75
Fig 4. 12: The Schematic of the experimental setup for measuring the magnetic	,
field	. 76
Fig 4. 13: Change in the speckle correlation coefficient (ΔC) for magnetic fie	ld
variation from 15.6 mG to 312 mG in the step of 15.6 mG	. 78
Fig 4. 14: Correlation coefficient (a) Response time (b) Recovery time	. 79
Fig 4. 15: Variation in sensitivity with the applied magnetic field	. 79
Fig 4. 16: Change in correlation coefficient with number of frames for different	t
values of magnetic fields oscillating at 0.5 Hz	. 81
Fig 4. 17: Change in correlation coefficient (ΔC) with number of frames for	
different values of magnetic fields oscillating a 1 Hz	. 83
4. 18: Change in correlation coefficient (ΔC) with number of frames for frequence	ncy
of 2 Hz and 3 Hz	. 84

Fig 5. 1: Coordinate system for the numerical reconstruction process
Fig 5. 2: Single beam lens-less Fourier transform holography setup for
investigation of phase objects
Fig 5. 3: (a) Hologram recorded using the setup in Fig. 1. (b) Area inside region
of interest showing the holographic fringes
Fig 5. 4: Refractive index distribution inside axi-symmetric phase object. In axi-
symmetric case, the refractive index depends only on the distance (r) from the
axis of symmetry (in this case y-axis)
Fig 5. 5: Phase contrast images of the refractive index distribution (a) wrapped
phase distribution and (b) three-dimensional representation of the phase

distribution obtained after unwrapping. Chord integrated phase profiles along the
lines in (a), were Abel inverted to obtain the local refractive index values (which
varies radially)
Fig 5. 6: Chord integrated phase profiles obtained from the reconstructed
holograms at different positions in the flame. Left and right side of the
distribution are color coded in red and blue respectively. They are individually
used in Abel integral to obtain the refractive index distributions
Fig 5. 7: Radial distribution of refractive index inside the flame obtained after
Abel inversion of the chord integrated data shown in Fig. 5.6a–f
Fig 5. 8: Histogram of path length fluctuation across the field of view. Inset shows
the pathlength variation as a function of time 100
Fig 5. 9: (a)–(f) Spatiotemporal evolution of phase difference for a fused silica
glass slab exposed to a heating rod. Each frame is separated in time by 10 s 100
Fig 5. 10: (a) Chord integrated phase values along the line shown in Fig. 8f. (b)
Local values of refractive index change obtained after Abel inversion 101
Fig 5. 11: Thermal stressing of the sample using a heating rod 102
Fig 5. 12: Spatiotemporal evolution of probe beam phase under thermal stressing.
This phase distribution is then used for imaging of defects in translucent materials
Fig 5. 13: Defect characterization by thermal stressing. (a) Unwrapped phase
difference obtained by Goldstein branch cut method for the wrapped phase map at
t=150 s (Fig. 11). (b) Numerical phase obtained by row wise least square fitting of
unwrapped phase shown in (a) (c) Phase distribution due to defect obtained after
subtracting the numerical phase obtained by least square fitting from the
unwrapped phase. (d) Three-dimensional refractive index distribution of the
defect obtained by Abel inversion of object phase shown inside the rectangle in
(c)
Fig 5. 14: (a) Experimental setup of single beam Lens less Fourier transform DH
Microscope, (b) fabrication of wavefront division element. It consists of a ground
glass diffuser co-located with a pinhole107

Fig 5. 15: Results obtained for a phase grating. (a) Reconstructed intensity profile
at the diffuser plane and (b) Phase contrast image of the grating 108
Fig 5. 16: Computed optical thickness distribution of the grating obtained from
the phase information. (a) 3D thickness profile and (b) cross-sectional thickness
profile109
Fig 5. 17: (a) Reconstructed intensity profile of a blood smear at diffuser plane,
and (b) the phase contrast image of the rectangle shown in (a). (c) 3D thickness
profile computed from the phase-contrast image109
Fig 5. 18: Histogram of the path length fluctuation. The computed mean
fluctuation was 1.24 nm
Fig 5. 19: Experimental results obtained for red blood cells using 100 microscopic
objective (a) Intensity profile, (b) phase contrast image (c) 3D thickness profile
and (d) cross-sectional thickness profile along the line shown in (b). (e) Temporal
evolution of cell thickness at points shown in (b), mean and standard deviations of
the thickness fluctuations are also given111

Fig 6. 1: The Schematic of the experimental setup (a) Transmission mode for
transparent object (b) Reflection mode for opaque/reflecting objects 120
Fig 6. 2: Experimental Setup shape measurement (a) Transmission mode for a
positive achromatic lens (b) Reflection mode for a concave mirror 121
Fig 6. 3: Configuration used for simulation of speckle pattern corresponding to
the test object at various axial positions 122
Fig 6. 4: Simulated speckle pattern for the object shown in Fig.6.3 at various
distances from the diffuser (a) 30mm (b) 40mm (c) 50mm 122
Fig 6. 5: Variation in intensity of the simulated speckle pattern (a) In the lateral
direction (b) In the axial direction
Fig 6. 6: Variation of SSE as a function of (a) Number of intensity samples (b)
Number of iterations 123
Fig 6. 7: Simulation of two-wavelength contouring. (a) Object phase distribution
at λ_1 =611nm. (b) Object phase distribution at λ_2 =632nm. (c) Phase difference
(contour phase). (d) Inputted contour phase. (e) Shape quantified using synthetic

wavelength. (f) Line profile of object shape (red dotted line is obtained from
propagation)
Fig 6. 8: Recorded speckle pattern at different axial positions for $\lambda 1=611$ nm. The
positions of the axial planes from the diffuser are (a) 30mm, (b) 39mm, (c) 45mm
Fig 6. 9: Recorded speckle pattern at different axial positions for $\lambda 2=632$ nm. The
positions of the axial planes from the diffuser are (a) 30mm, (b) 39mm, (c) 45mm
Fig 6. 10: Reconstructed intensity patterns at different axial planes. The distance
of the axial planes from the first sampling planes was (a) 5mm, (b) 30mm (best
focus) (c) 45mm
Fig 6. 11: Phase maps obtained for numerical focusing distance over a single
wavelength. Each axial plane is separated from the next plane by a distance of λ
/4 (λ =611nm). The first plane is situated 30mm from the first sampling plane 127
Fig 6. 12: Phase maps at the best focus plane for (a) $\lambda 1=611$ nm and (b) $\lambda 2=632$ nm
Fig 6. 13: (a) Phase difference ($\phi_1 - \phi_2$) (b) Phase difference inside the area of
interest (c) Continuous phase distribution showing the aberrations in the
wavefront
Fig 6. 14: Iterative phase retrieval process for reflection mode (a) Phase maps at
the best focus plane for $\lambda 1=611$ nm, (b) Phase maps at the best focus plane for
$\lambda 2=632$ nm (c) Phase difference ($\phi_1 - \phi_2$),(d)continuous phase distribution 129