
Chapter 2

Heavy Quarkonium Spectroscopy

2.1 Introduction

Quarkonia are the flavorless mesons that have both quark and antiquark of the

same type making them the best tools for understanding the dynamics of strongly

interacting systems. The first quarkonium state J/ψ (cc̄ or charmonia) was dis-

covered experimentally and announced by Stanford Linear Accelerator Center and

Brookhaven National Laboratory on November 11, 1974 [61]. The E760 collabora-

tion at Fermilab measured the masses as well as the total widths of P states namely

χc1 and χc2 [62]. Then, the 13D2 state was discovered in B decays by BESIII col-

laboration [63]. The first ground state singlet charmonium ηc was also discovered

in Mark-II and Crystal ball experiments. Similarly, Υ (bb̄ or bottomonia) was first

discovered by E288 at Fermilab [64,65]. After 30 years, the first singlet state ηb(1S)

was discovered by Belle Collaboration [66] in 2008. Later, ηb(2S) was also discovered

by BABAR [67], CLEO [68] and Belle [69] collaborations. Also in 90’s, the nonrel-

ativistic potential models predicted not only the ground state mass of the tightly

bound state of c and b̄ in the range of 6.2–6.3 GeV [70, 71], but also predicted to

have very rich spectroscopy. In 1998, CDF collaboration [72] reported Bc mesons in

pp̄ collisions at
√
s = 1.8 TeV and was later confirmed by D0 [73] and LHCb [74] col-

laborations. The LHCb collaboration has also made the most precise measurement

of the lifetime of Bc mesons [75]. Its first excited state has also been reported by

ATLAS Collaborations [76] in pp̄ collisions with significance of 5.2σ. Many exper-

imental groups such as CLEO, LEP, CDF, D0 and NA50 have provided data and

BABAR, Belle, CLEO-III, ATLAS, CMS and LHCb are producing and expected

to produce more precise data in upcoming experiments, particularly for the heavy
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quarkonium physics. Comprehensive reviews on the status of experimental heavy

quarkonium physics are found in literature [15, 16, 77–80].

There are many theoretical groups working on the heavy quarkonium spectroscopy

as well as its decay properties. The models based on first principles and fully non-

perturbative ones such as lattice quantum chromodynamics (LQCD) [2–12], QCD

sum rules [45,81] with QCD [82,83], perturbative QCD [84], lattice NRQCD [85,86]

and effective field theories [87] that have attempted to explain the production and de-

cays of these states. The other approaches include phenomenological potential mod-

els such as the relativistic quark model based on quasi-potential approach [88–94],

where the relativistic quasi-potential including one loop radiative corrections re-

produce the mass spectrum of quarkonium states. The quasi-potential has also

been employed along with leading order radiative correction to heavy quark po-

tential [95–98], relativistic potential model [99–101] as well as semirelativistic po-

tential model [102]. In nonrelativistic potential models, there exist several forms

of quark antiquark potentials in the literature. Common element among them is

the coulomb repulsive plus quark confinement interaction potential. The authors

of [46–50, 103, 104] have considered the confinement of power potential Arν with ν

varying from 0.1 to 2.0 and the confinement strength A to vary with potential index

ν. Confinement of the order r2/3 have also been attempted [105]. Linear confine-

ment of quarks has been considered by many groups [35,37,106–116] and they have

been in good agreement with the experimental data for quarkonium spectroscopy

along with decay properties. The Bethe-Salpeter approach was also employed for

the mass spectroscopy of charmonia and bottomonia [110, 111, 117]. The quarko-

nium mass spectrum was also computed in the nonrelativistic quark model [118],

screened potential model (SPM) [115,116] and constituent quark model [119]. There

are also other non-linear potential models that predict the mass spectra of the heavy

quarkonia successfully [36, 43, 44, 120–127].

The interaction potential for mesonic states is difficult to derive for full range of

quark antiquark separation from first principles of QCD. So most forms of QCD

inspired potential would result in uncertainties in the computation of spectroscopic

properties particularly in the intermediate range. Different potential models may

produce similar mass spectra matching with experimental observations but they

may not be in mutual agreement when it comes to decay properties like decay

constants, leptonic decays or radiative transitions. Moreover, the mesonic states are
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identified with masses along with certain decay channels, therefore the test for any

successful theoretical model is to reproduce the mass spectrum along with decay

properties. Relativistic as well as nonrelativistic potential models have successfully

predicted the spectroscopy but they are found to differ in computation of the decay

properties [35, 36, 43–50].

In this chapter, we employ nonrelativistic potential with one gluon exchange (essen-

tially Coulomb like) plus linear confinement (Cornell potential) as this form of the

potential is also supported by LQCD [128–130]. We solve the Schrödinger equation

numerically for the potential to get the spectroscopy of the quarkonia. We first

compute the mass spectra of charmonia and bottomonia states to determine quark

masses and confinement strengths after fitting the spin-averaged ground state masses

with experimental data of respective mesons. Using the potential parameters and

numerical wave functions, we compute the decay properties such as leptonic decay

constants, digamma, dilepton, digluon decay width using the Van-Royen Weiskopf

formula. These parameters are then used to compute the mass spectra and lifetime

of Bc meson. We also compute the electromagnetic (E1 and M1) transition widths

of heavy quarkonia and Bc mesons. This work was published in European Physical

Journal C [131]. We have also computed the decay properties of charmonia and

bottomonia in the extended harmonic confinement model (ERHM) [38, 39] as well

as in nonrelativistic treatment for Coulomb plus power potential (CPPν=1) using

variational trial wave function [46–49, 132, 133]. This work was also published in

Chinese Physics C [134].

2.2 Methodology

The bound state of two body systems in QCD is nonperturbative in nature and only

LQCD can explain its properties. However, other methods are also found to exist in

literature. The mesonic bound state within relativistic quantum field is described

in Bethe-Salpeter formalism but the Bethe-Salpeter equation is solved only in the

ladder approximations. Also, Bethe-Salpeter approach in harmonic confinement is

successful in low flavor sectors [135,136]. The alternative, old and still effective ap-

proach is the nonrelativistic potential model approach. Sufficiently small momenta

of the charm and bottom quark compared to bound state mass of charmonia and

bottomonia constitutes the basis of nonrelativistic treatment for heavy quarkonium
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spectroscopy. Though Lattice QCD calculations in the quenched approximation sug-

gest a linearly increasing potential in the confinement range [2–12], a specific form of

interaction potential in the full range is not yet known. At short distances relativis-

tic effects are more important as they give rise to quark-antiquark pairs from the

vacuum that in turn affect the nonrelativistic Coulomb interaction in the presence

of sea quarks. The mass spectra of quarkonia is not sensitive to these relativistic

effects at short distances. However, the decay properties show significant difference

with inclusion of relativistic corrections. So we choose to compute the charmonium

mass spectra nonrelativistically in present study. The nonrelativistic Hamiltonian

for the study of heavy bound state of mesons such as cc̄, cb̄ and bb̄ given by

H =M +
p2

2Mcm

+ VCornell(r) + VSD(r) (2.1)

with

M = mQ +mQ̄ and Mcm =
mQmQ̄

mQ +mQ̄

(2.2)

where mQ and mQ̄ are the masses of quark and antiquark respectively, ~p is the

relative momentum of the each quark and VCornell(r) is the quark-antiquark potential

of the type coulomb plus linear confinement (Cornell potential) given by

VCornell(r) = −4

3

αs
r

+ Ar. (2.3)

Here, 1/r term is analogous to the Coulomb type interaction corresponding to the

potential induced between quark and antiquark through one gluon exchange that

dominates at small distances. The second term is the confinement part of the poten-

tial with the confinement strength A as the model parameter. The confinement term

becomes dominant at the large distances. αs is a strong running coupling constant

and can be computed as

αs(µ
2) =

4π

(11− 2
3
nf) ln(µ2/Λ2)

(2.4)

where nf is the number of flavors, µ is renormalization scale related to the constituent

quark masses as µ = 2mQmQ̄/(mQ +mQ̄) and Λ is a QCD scale which is taken as

0.15 GeV by fixing αs = 0.1185 [1] at the Z-boson mass.

The confinement strengths with respective quark masses are fine tuned to reproduce

the experimental spin averaged ground state masses of both cc̄ and bb̄ mesons and

they are given in Table 2.1. We compute the masses of radially and orbitally excited

states without any additional parameters. Similar work has been done by [49,50,104]
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and they have considered different values of confinement strengths for different po-

tential indices. The Cornell potential has been shown to be independently successful

in computing the spectroscopy of ψ and Υ families. In this chapter, we compute the

mass spectra of the ψ and Υ families along with Bc meson with minimum number

of parameters.

Using the parameters defined in Table 2.1, we compute the spin averaged masses of

quarkonia and the excited state masses are computed employing the spin dependent

part of one gluon exchange potential (OGEP) VSD(r) perturbatively which includes

spin-spin, spin-orbit and tensor terms given by [45, 83, 109, 118]

VSD(r) = VSS(r)

[

S(S + 1)− 3

2

]

+ VLS(r)(~L · ~S) + VT (r) [S(S + 1)− 3(S · r̂)(S · r̂)](2.5)

The spin-spin interaction term gives the hyper-fine splitting while spin-orbit and

Table 2.1: Parameters for quarkonium spectroscopy

mc mb Acc Abb
1.317 GeV 4.584 GeV 0.18 GeV2 0.25 GeV2

Table 2.2: Mass spectrum of S and P -wave charmonia (in GeV)

Present RQM NRQM BSE SPM RPM PM NRPM NRQM PM LQCD PDG
State [131] [88] [115] [117] [126] [100] [123] [109] [118] [120] [11] [1]

11S0 2.989 2.981 2.984 2.925 2.979 2.980 2.980 2.982 3.088 2.979 2.884 2.984

13S1 3.094 3.096 3.097 3.113 3.097 3.097 3.097 3.090 3.168 3.096 3.056 3.097

21S0 3.602 3.635 3.637 3.684 3.623 3.597 3.633 3.630 3.669 3.600 3.535 3.639

23S1 3.681 3.685 3.679 3.676 3.673 3.685 3.690 3.672 3.707 3.680 3.662 3.686

31S0 4.058 3.989 4.004 – 3.991 4.014 3.992 4.043 4.067 4.011 – –

33S1 4.129 4.039 4.030 3.803 4.022 4.095 4.030 4.072 4.094 4.077 – 4.039

41S0 4.448 4.401 4.264 – 4.250 4.433 4.244 4.384 4.398 4.397 – –

43S1 4.514 4.427 4.281 – 4.273 4.477 4.273 4.406 4.420 4.454 – 4.421

51S0 4.799 4.811 4.459 – 4.446 – 4.440 – – – – –

53S1 4.863 4.837 4.472 – 4.463 – 4.464 – – – – –

61S0 5.124 5.155 – – 4.595 – 4.601 – – – – –

63S1 5.185 5.167 – – 4.608 – 4.621 – – – – –

13P0 3.428 3.413 3.415 3.323 3.433 3.416 3.392 3.424 3.448 3.488 3.412 3.415

13P1 3.468 3.511 3.521 3.489 3.510 3.508 3.491 3.505 3.520 3.514 3.480 3.511

11P1 3.470 3.525 3.526 3.433 3.519 3.527 3.524 3.516 3.536 3.539 3.494 3.525

13P2 3.480 3.555 3.553 3.550 3.556 3.558 3.570 3.556 3.564 3.565 3.536 3.556

23P0 3.897 3.870 3.848 3.833 3.842 3.844 3.845 3.852 3.870 3.947 – 3.918

23P1 3.938 3.906 3.914 3.672 3.901 3.940 3.902 3.925 3.934 3.972 – –

21P1 3.943 3.926 3.916 3.747 3.908 3.960 3.922 3.934 3.950 3.996 – –

23P2 3.955 3.949 3.937 – 3.937 3.994 3.949 3.972 3.976 4.021 4.066 3.927

33P0 4.296 4.301 4.146 – 4.131 – 4.192 4.202 4.214 – – –

33P1 4.338 4.319 4.192 3.912 4.178 – 4.178 4.271 4.275 – – –

31P1 4.344 4.337 4.193 – 4.184 – 4.137 4.279 4.291 – – –

33P2 4.358 4.354 4.211 – 4.208 – 4.212 4.317 4.316 – – –

43P0 4.653 4.698 – – – – – – – – – –

43P1 4.696 4.728 – – – – – – – – – –

41P1 4.704 4.744 – – – – – – – – – –

43P2 4.718 4.763 – – – – – – – – – –

53P0 4.983 – – – – – – – – – – –

53P1 5.026 – – – – – – – – – – –

51P1 5.034 – – – – – – – – – – –

53P2 5.049 – – – – – – – – – – –
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Table 2.3: Mass spectrum of D and F -wave charmonia (in GeV)

Present RQM NRQM BSE SPM RPM PM NRPM NRQM PM
State [131] [88] [115] [117] [126] [100] [123] [109] [118] [120]

13D3 3.755 3.813 3.808 3.869 3.799 3.831 3.844 3.806 3.809 3.798

11D2 3.765 3.807 3.805 3.739 3.796 3.824 3.802 3.799 3.803 3.796

13D2 3.772 3.795 3.807 3.550 3.798 3.824 3.788 3.800 3.804 3.794

13D1 3.775 3.783 3.792 – 3.787 3.804 3.729 3.785 3.789 3.792

23D3 4.176 4.220 4.112 3.806 4.103 4.202 4.132 4.167 4.167 4.425

21D2 4.182 4.196 4.108 – 4.099 4.191 4.105 4.158 4.158 4.224

23D2 4.188 4.190 4.109 – 4.100 4.189 4.095 4.158 4.159 4.223

23D1 4.188 4.105 4.095 – 4.089 4.164 4.057 4.142 4.143 4.222

33D3 4.549 4.574 4.340 – 4.331 – 4.351 – – –

31D2 4.553 3.549 4.336 – 4.326 – 4.330 – – –

33D2 4.557 4.544 4.337 – 4.327 – 4.322 – – –

33D1 4.555 4.507 4.324 – 4.317 – 4.293 – – –

43D3 4.890 4.920 – – – – 4.526 – – –

41D2 4.892 4.898 – – – – 4.509 – – –

43D2 4.896 4.896 – – – – 4.504 – – –

43D1 4.891 4.857 – – – – 4.480 – – –

13F2 3.990 4.041 – – – 4.068 – 4.029 – –

13F3 4.012 4.068 – 3.999 – 4.070 – 4.029 – –

11F3 4.017 4.071 – 4.037 – 4.066 – 4.026 – –

13F4 4.036 4.093 – – – 4.062 – 4.021 – –

23F2 4.378 4.361 – – – – – 4.351 – –

23F3 4.396 4.400 – – – – – 3.352 – –

21F3 4.400 4.406 – – – – – 4.350 – –

23F4 4.415 4.434 – – – – – 4.348 – –

33F2 4.730 – – – – – – – – –

33F3 4.746 – – – – – – – – –

31F3 4.749 – – – – – – – – –

33F4 4.761 – – – – – – – – –

tensor terms gives the fine structure of the quarkonium states. The coefficients of

spin dependent terms of the Eq. (2.5) can be written as [83],

VSS(r) =
1

3mQmQ̄

∇2VV (r) =
16παs
9mQmQ̄

δ3(~r) (2.6)

VLS(r) =
1

2mQmQ̄r

(

3
dVV (r)

dr
− dVS(r)

dr

)

(2.7)

VT (r) =
1

6mQmQ̄

(

3
dV 2

V (r)

dr2
− 1

r

dVV (r)

dr

)

(2.8)

Where VV (r) and VS(r) correspond to the vector and scalar part of the Cornell

potential in Eq. (2.3) respectively. Using all the parameters defined above, the

Schrödinger equation is numerically solved using Mathematica notebook utilizing

the Runge-Kutta method [137]. It is generally believed that the charmonia need

to be treated relativistically due to their lighter masses, but we note here that the

computed wave functions of charmonia using relativistic as well as nonrelativistic

approaches don’t show significant difference [94]. The computed mass spectra of

heavy quarkonia and Bc mesons are listed in Tables 2.2–2.7.

In the ERHM approach, we use the scalar plus vector potential for the quark confine-

ment. This method was successful in predicting the low lying hadronic properties in

the relativistic schemes for quark confinement [139,140] and later it was extended to
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Table 2.4: Mass spectrum of S and P -wave bottomonia (in GeV)

Present RQM RQM NRQM BSE SPM RPM PM NRCQM PDG
State [131] [114] [88] [116] [117] [127] [101] [123] [119] [1]

11S0 9.428 9.402 9.398 9.390 9.414 9.389 9.393 9.392 9.455 9.398

13S1 9.463 9.465 9.460 9.460 9.490 9.460 9.460 9.460 9.502 9.460

21S0 9.955 9.976 9.990 9.990 9.987 9.987 9.987 9.991 9.990 9999

23S1 9.979 10.003 10.023 10.015 10.089 10.016 10.023 10.024 10.015 10.023

31S0 10.338 10.336 10.329 10.326 – 10.330 10.345 10.323 10.330 –

33S1 10.359 10.354 10.355 10.343 10.327 10.351 10.364 10.346 10.349 10.355

41S0 10.663 10.523 10.573 10.584 – 10.595 10.623 10.558 – –

43S1 10.683 10.635 10.586 10.597 – 10.611 10.643 10.575 10.607 10.579

51S0 10.956 10.869 10.851 10.800 – 10.817 – 10.741 – –

53S1 10.975 10.878 10.869 10.811 – 10.831 – 10.755 10.818 10.876

61S0 11.226 11.097 11.061 10.997 – 11.011 – 10.892 – –

63S1 11.243 11.102 11.088 10.988 – 11.023 – 10.904 10.995 11.019

13P0 9.806 9.847 9.859 9.864 9.815 9.865 9.861 9.862 9.855 9.859

13P1 9.819 9.876 9.892 9.903 9.842 9.897 9.891 9.888 9.874 9.893

11P1 9.821 9.882 9.900 9.909 9.806 9.903 9.900 9.896 9.879 9.899

13P2 9.825 9.897 9.912 9.921 9.906 9.918 9.912 9.908 9.886 9.912

23P0 10.205 10.226 10.233 10.220 10.254 10.226 10.230 10.241 10.221 10.232

23P1 10.217 10.246 10.255 10.249 10.120 10.251 10.255 10.256 10.236 10.255

21P1 10.220 10.250 10.260 10.254 10.154 10.256 10.262 10.261 10.240 10.260

23P2 10.224 10.261 10.268 10.264 – 10.269 10.271 10.268 10.246 10.269

33P0 10.540 10.552 10.521 10.490 – 10.502 – 10.511 10.500 –

33P1 10.553 10.538 10.541 10.515 10.303 10.524 – 10.507 10.513 –

31P1 10.556 10.541 10.544 10.519 – 10.529 – 10.497 10.516 –

33P2 10.560 10.550 10.550 10.528 – 10.540 – 10.516 10.521 –

43P0 10.840 10.775 10.781 – – 10.732 – – – –

43P1 10.853 10.788 10.802 – – 10.753 – – – –

41P1 10.855 10.790 10.804 – – 10.757 – – – –

43P2 10.860 10.798 10.812 – – 10.767 – – – –

53P0 11.115 11.004 – – – 10.933 – – – –

53P1 11.127 11.014 – – – 10.951 – – – –

51P1 11.130 11.016 – – – 10.955 – – – –

53P2 11.135 11.022 – – – 10.965 – – – –

Table 2.5: Mass spectrum of D and F -wave bottomonia (in GeV)

Present RQM RQM NRQM BSE SPM RPM PM NRCQM PDG
State [131] [114] [88] [116] [117] [127] [101] [123] [119] [1]

13D3 10.073 10.115 10.166 10.157 10.232 10.156 10.163 10.177 10.127 –

11D2 10.074 10.148 10.163 10.153 10.194 10.152 10.158 10.166 10.123 –

13D2 10.075 10.147 10.161 10.153 10.145 10.151 10.157 10.162 10.122 10.163

13D1 10.074 10.138 10.154 10.146 – 10.145 10.149 10.147 10.117 –

23D3 10.423 10.455 10.449 10.436 – 10.442 10.456 10.447 10.422 –

21D2 10.424 10.450 10.445 10.432 – 10.439 10.452 10.440 10.419 –

23D2 10.424 10.449 10.443 10.432 – 10.438 10.450 10.437 10.418 –

23D1 10.423 10.441 10.435 10.425 – 10.432 10.443 10.428 10.414 –

33D3 10.733 10.711 10.717 – – 10.680 – 10.652 – –

31D2 10.733 10.706 10.713 – – 10.677 – 10.646 – –

33D2 10.733 10.705 10.711 – – 10.676 – 10.645 – –

33D1 10.731 10.698 10.704 – – 10.670 – 10.637 – –

43D3 11.015 10.939 10.963 – – 10.886 – 10.817 – –

41D2 11.015 10.935 10.959 – – 10.883 – 10.813 – –

43D2 11.016 10.934 10.957 – – 10.882 – 10.811 – –

43D1 11.013 10.928 10.949 – – 10.877 – 10.805 – –

13F2 10.283 10.350 10.343 10.338 – – 10.353 – 10.315 –

13F3 10.287 10.355 10.346 10.340 10.302 – 10.356 – 10.321 –

11F3 10.288 10.355 10.347 10.339 10.319 – 10.356 – 10.322 –

13F4 10.291 10.358 10.349 10.340 – – 10.357 – – –

23F2 10.604 10.615 10.610 – – – 10.610 – – –

23F3 10.607 10.619 10.614 – – – 10.613 – – –

21F3 10.607 10.619 10.647 – – – 10.613 – – –

23F4 10.609 10.622 10.617 – – – 10.615 – – –

33F2 10.894 10.850 – – – – – – – –

33F3 10.896 10.853 – – – – – – – –

31F3 10.897 10.853 – – – – – – – –

33F4 10.898 10.856 – – – – – – – –
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Table 2.6: Mass spectrum of S and P -wave Bc meson (in GeV)

Present PM RQM RQM RQM PDG
State [131] [103] [88] [113] [138] [1]
11S0 6.272 6.278 6.272 6.271 6.275 6.275
13S1 6.321 6.331 6.333 6.338 6.314 –
21S0 6.864 6.863 6.842 6.855 6.838 6.842
23S1 6.900 6.873 6.882 6.887 6.850 –
31S0 7.306 7.244 7.226 7.250 – –
33S1 7.338 7.249 7.258 7.272 – –
41S0 7.684 7.564 7.585 – – –
43S1 7.714 7.568 7.609 – – –
51S0 8.025 7.852 7.928 – – –
53S1 8.054 7.855 7.947 – – –
61S0 8.340 8.120 – – – –
63S1 8.368 8.122 – – – –
13P0 6.686 6.748 6.699 6.706 6.672 –
13P1 6.705 6.767 6.750 6.741 6.766 –
11P1 6.706 6.769 6.743 6.750 6.828 –
13P2 6.712 6.775 6.761 6.768 6.776 –
23P0 7.146 7.139 7.094 7.122 6.914 –
23P1 7.165 7.155 7.134 7.145 7.259 –
21P1 7.168 7.156 7.094 7.150 7.322 –
23P2 7.173 7.162 7.157 7.164 7.232 –
33P0 7.536 7.463 7.474 – – –
33P1 7.555 7.479 7.510 – – –
31P1 7.559 7.479 7.500 – – –
33P2 7.565 7.485 7.524 – – –
43P0 7.885 – 7.817 – – –
43P1 7.905 – 7.853 – – –
41P1 7.908 – 7.844 – – –
43P2 7.915 – 7.867 – – –
53P0 8.207 – – – –
53P1 8.226 – – – –
51P1 8.230 – – – –
53P2 8.237 – – – –
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Table 2.7: Mass spectrum of D and F -wave Bc meson (in GeV)

Present PM RQM RQM RQM
State [131] [103] [88] [113] [138]
13D3 6.990 7.026 7.029 7.045 6.980
11D2 6.994 7.035 7.026 7.041 7.009
13D2 6.997 7.025 7.025 7.036 7.154
13D1 6.998 7.030 7.021 7.028 7.078
23D3 7.399 7.363 7.405 – –
21D2 7.401 7.370 7.400 – –
23D2 7.403 7.361 7,399 – –
23D1 7.403 7.365 7.392 – –
33D3 7.761 – 7.750 – –
31D2 7.762 – 7.743 – –
33D2 7.764 – 7.741 – –
33D1 7.762 – 7.732 – –
43D3 8.092 – – – –
41D2 8.093 – – – –
43D2 8.094 – – – –
43D1 8.091 – – – –
13F2 7.234 – 7.273 7.269 –
13F3 7.242 – 7.269 7.276 –
11F3 7.241 – 7.268 7.266 –
13F4 7.244 – 7.277 7.271 –
23F2 7.607 – 7.618 – –
23F3 7.615 – 7.616 – –
21F3 7.614 – 7.615 – –
23F4 7.617 – 7.617 – –
33F2 7.946 – – – –
33F3 7.954 – – – –
31F3 7.953 – – – –
33F4 7.956 – – – –
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accommodate multi-quark states with unequal quark masses [38, 39]. The detailed

computation technique is given in the Chapter 3. The spin average masses of the

charmonia and bottomonia are obtained using the model parameters mc = 1.428

GeV, mb = 4.637 GeV, A = 2166 MeV3/2 [134].

In CPPν approach also the quarks and antiquarks are treated nonrelativistically.

The interacting potential is given by

V (r) = −αc
r

+ Arν (2.9)

with αc = 4/3αs, A is the confinement strength and ν is the general power ranges

from 0.5 to 2 and ν = 1 corresponds to the Cornell potential. The Schrödinger

equation for the potential Eq. (2.9) is solved using the hydrogenic trial wave function

given by,

Rnl(r) =

√

µ3(n− l − 1)!

2n(n+ l)!
(µr)le−µr/2L2l+1

n−l−1(µr) (2.10)

Here, µ is the variational parameter and L2l+1
n−l−1(µr) is the associated Laguerre poly-

nomial. For the given ν, the variational parameter is determined using the virial

theorem

〈KE〉 = 1

2

〈

r
dV

dr

〉

(2.11)

The potential parameters are mc = 1.31 GeV, mb = 4.66 GeV, αc = 0.4 for char-

monia and αc = 0.3 for bottomonia. In this chapter, we present our results for the

ν = 1 only.

It is important to note that Eq. (2.3) and Eq. (2.9) for ν = 1 is same but in

our paper Ref. [131], the Schrödinger equation was solved numerically while in our

paper Ref. [134], the Schrödinger equation was solved using the variational trial

wave function.

2.3 Decay Properties

In PDG [1], the quarkonium states are reported with masses along with their de-

cay channels and in fact the mass spectra are determined from the decay channels

only. Therefore it is important to validate any potential model with not only mass

spectrum but also with the decay channels without using any additional parameter.

In nonrelativistic limit, the decay channels are directly related to the corresponding
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Table 2.8: Leptonic decay constant of charmonia (in MeV)

Present PM BSE NRQM LQCD QCDSR PDG
State [131] [104] [144] [118] [13] [13] [1]
J/ψ 325.876 338 411 393 418(8)(5) 401 ± 46 416 ± 6
ηc(1S) 350.314 363 378 402 387(7)(2) 309 ± 39 335 ± 75
ψ(2S) 257.340 254 155 293 – – 304 ± 4
ηc(2S) 278.447 275 82 240 – – –
ψ(3S) 229.857 220 188 258 – – –
ηc(3S) 249.253 239 206 193 – – –
ψ(4S) 212.959 200 262 – – – –
ηc(4S) 231.211 217 87 – – – –
ψ(5S) 200.848 186 – – – – –
ηc(5S) 218.241 202 – – – –
ψ(6S) 191.459 175 – – – – –
ηc(6S) 208.163 197 – – – – –

wave function. In this section, we test our potential parameters and wave function

to compute the weak decays, particularly decay constants, annihilation widths and

electromagnetic transitions.

2.3.1 Leptonic decay constants

The leptonic decay constants are helpful in understanding the weak decays. The

matrix elements for leptonic decay constants of pseudoscalar and vector mesons are

given by

〈0|Q̄γµγ5Q|Pµ(k)〉 = ifPk
µ (2.12)

〈0|Q̄γµQ|Pµ(k)〉 = ifVMV ǫ
∗µ (2.13)

where k is the momentum of pseudoscalar meson, ǫ∗µ is the polarization vector

of meson. In the nonrelativistic limit, the decay constants of pseudoscalar and

vector mesons are given by Van Royen-Weiskopf formula with QCD correction factor

[141–143]

f 2
P/V =

3|RnsP/V (0)|2
πMnsP/V

[

1− αs
π

(

δP/V − mQ −mQ̄

mQ +mQ̄

ln
mQ

mQ̄

)]

. (2.14)

With δP = 2 and δV = 8/3. Using the above relation, we compute the leptonic

decay constants and the results are listed in Tables 2.8 – 2.11 in comparison with

other models including LQCD.
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Table 2.9: Leptonic decay constant of bottomonia (in MeV)

Present PM BSE NRQM BSE LQCD PDG
State [131] [104] [144] [118] [145] [14] [1]
Υ(1S) 647.250 706 707 665 498±(20) 649(31) 715 ± 5
ηb(1S) 646.025 744 756 599 – – –
Υ(2S) 519.436 547 393 475 366±(27) 481(39) 498 ± 8
ηb(2S) 518.803 577 285 411 – – –
Υ(3S) 475.440 484 9 418 304±(27) – 430 ± 4
ηb(3S) 474.954 511 333 354 – – –
Υ(4S) 450.066 446 20 388 259±(22) – 336 ± 18
ηb(4S) 449.654 471 40 – – – –
Υ(5S) 432.437 419 – 367 228±(16) – –
ηb(5S) 432.072 443 – – – – –
Υ(6S) 418.977 399 – 351 – – –
ηb(6S) 418.645 422 – – – – –

Table 2.10: Pseudoscalar decay constant of Bc meson (in MeV)

fP PM RQM QCDSR PM RQM
State Present [131] [104] [91] [45] [71] [138]
1S 432.955 465 503 460±(60) 500 554.125
2S 355.504 361 – – –
3S 325.659 319 – – –
4S 307.492 293 – – –
5S 294.434 275 – – –
6S 284.237 261 – – –

Table 2.11: Vector decay constant of Bc meson (in MeV)

fV PM RQM QCDSR PM
State Present [131] [104] [91] [45] [71]
1S 434.642 435 433 460±(60) 500
2S 356.435 337 – – –
3S 326.374 297 – – –
4S 308.094 273 – – –
5S 294.962 256 – – –
6S 284.709 243 – – –
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Table 2.12: Digamma decay width of S and P -wave charmonia (in keV)

Present ERHM CPPν SPM RQM NRQM BSE PDG
State [131] [134] [134] [126] [93] [118] [158] [1]
11S0 7.231 6.21 12.99 8.5 5.5 7.18 7.14±0.95 5.1±0.4
21S0 5.507 4.21 5.63 2.4 1.8 1.71 4.44±0.48 2.15±1.58
31S0 4.971 2.17 3.84 0.88 – 1.21 – –
41S0 4.688 1.01 3.01 – – – – –
51S0 4.507 – – – – – – –
61S0 4.377 – – – – – – –
13P0 8.982 71.04 27.91 2.5 2.9 3.28 – 2.34±0.19
13P2 1.069 75.06 5.76 0.31 0.50 – – 0.53±0.4
23P0 9.111 5.87 146.57 1.7 1.9 – – –
23P2 1.084 5.91 30.49 0.23 0.52 – – –
33P0 9.104 – – 1.2 – – – –
33P2 1.0846 – – 0.17 – – – –
43P0 9.076 – – – – – – –
43P2 1.080 – – – – – – –
53P0 9.047 – – – – – – –
53P2 1.077 – – – – – – –

2.3.2 Annihilation widths

In this subsection we compute γγ, γγγ, gg, ggg, γgg and ℓ+ℓ− annihilation decay

widths of heavy quarkonia.

Photon annihilation widths

The measurement of digamma decay widths provides the information regarding the

internal structure of meson. The decays ηc → γγ, χc0,2 → γγ were reported by

CLEO-c [146], BABAR [147] and then BESIII [148] collaboration have reported

high accuracy data. LQCD is found to underestimate the decay widths of ηc → γγ

and χc0 → γγ when compared to experimental data [149, 150]. Other approaches

to attempt computation of annihilation rates of heavy quarkonia include NRQCD

[31, 151–154], relativistic quark model [92, 93], effective Lagrangian [155, 156] and

next-to-next-to leading order QCD correction to χc0,2 → γγ in the framework of

nonrelativistic QCD factorization [157].

The meson decaying into two photons suggests that the spin can never be one

[160,161]. Corresponding digamma decay width of a pseudoscalar meson in nonrel-
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Table 2.13: Digamma decay width of S and P -wave bottomonia (in keV)

Present ERHM CPPν SPM RQM RQM NRQM BSE
State [131] [134] [134] [127] [112] [93] [118] [158]
11S0 0.387 0.35 0.37 0.527 0.214 0.35 0.23 0.384 ± 0.047
21S0 0.263 0.20 0.10 0.263 0.121 0.15 0.07 0.191 ± 0.025
31S0 0.229 0.09 0.06 0.172 0.906 0.10 0.04 –
41S0 0.212 0.07 0.054 0.105 0.755 – – –
51S0 0.201 – – 0.121 – – – –
61S0 0.193 – – 0.050 – – – –
13P0 0.0196 1.39 0.08 0.050 0.0208 0.038 – –
13P2 0.0052 1.40 0.018 0.0066 0.0051 0.008 – –
23P0 0.0195 0.10 0.43 0.037 0.0227 0.029 – –
23P2 0.0052 0.10 0.09 0.0067 0.0062 0.006 – –
33P0 0.0194 – – 0.037 – – – –
33P2 0.0051 – – 0.0064 – – – –
43P0 0.0192 – – – – – – –
43P2 0.0051 – – – – – – –
53P0 0.0191 – – – – – – –
53P2 0.0050 – – – – – – –

Table 2.14: 3γ decay widths of charmonia (in eV) and bottomonia (in 10−6 keV)

PM PDG NRCQM
State Present [159] [1] State Present [119]
J/ψ 1.36 3.95 1.08± 0.032 Υ(1S) 7.05 3.44
ψ(2S) 1.01 1.64 – Υ(2S) 4.79 2.00
ψ(3S) 0.91 1.39 – Υ(3S) 4.16 1.55
ψ(4S) 0.85 1.30 – Υ(4S) 3.85 1.29
ψ(5S) 0.81 1.25 – Υ(5S) 3.64 –
ψ(6S) 0.79 1.22 – Υ(6S) 3.51 –
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ativistic limit is given by Van Royen-Weiskopf formula [141, 162],

Γn1S0→γγ =
3α2

ee
4
Q|RnsP (0)|2
m2
Q

[

1 +
αs
π

(

π2 − 20

3

)]

Γn3P0→γγ =
27α2

ee
4
Q|R′

nP (0)|2
m4
Q

[

1 +
αs
π

(

3π2 − 28

9

)]

(2.15)

Γn3P2→γγ =
36α2

ee
4
Q|R′

nP (0)|2
5m4

Q

[

1− 16

3

αs
π

]

Also the 3γ decay width of the vector quarkonia is given by [163]

Γn3S1→3γ =
4(π2 − 9)e6Qα

3
e |RnS(0)|2

3πm2
Q

[

1− 12.6αs
π

]

(2.16)

where the bracketed quantities are QCD next-to-leading order radiative corrections

[162, 164].

Annihilation widths into gluon

Digluon annihilation of quarkonia is not directly observed in detectors as digluonic

state decays into various hadronic states making it a bit complex to compute digluon

annihilation widths from nonrelativistic approximations derived from first principles.

The digluon decay width of pseudoscalar meson along with the QCD leading order

radiative correction is given by [155, 162, 164, 165],

Γn1S0→gg =
2α2

s|RnsP (0)|2
3m2

Q

[1 + CQ(αs/π)]

Γn3P0→gg =
6α2

s|R′
nP (0)|2
m4
Q

[1 + C0Q(αs/π)] (2.17)

Γn3P2→gg =
4α2

s|R′
nP (0)|2

5m4
Q

[1 + C2Q(αs/π)]

Also the 3g decay width of vector quarkonia is given by

Γn3S1→3g =
10(π2 − 9)α3

s|RnS(0)|2
81πm2

Q

[

1− 3.7αs
π

]

(2.18)

Here, the coefficients in the bracket have values of CQ = 4.8, C0Q = 9.5, C2Q = −2.2

for the charm quark and CQ = 4.4, C0Q = 10.0, C2Q = −0.1 for the bottom

quark [162].

Also the annihilation width into γgg given by [119],

Γn3S1→γgg =
8(π2 − 9)e2Qαeαs|RnS(0)|2

9πm2
Q

[

1− 6.7αs
π

]

(2.19)
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Table 2.15: Digluon decay width of S and P -wave charmonia (in MeV)

Present ERHM CPPν PM BSE PDG
State [131] [134] [134] [120] [158] [1]
11S0 35.909 19.04 124.08 22.37 19.60 26.7±3.0
21S0 27.345 12.91 53.77 16.74 12.1 14.7±0.7
31S0 24.683 6.64 36.64 14.30 – –
41S0 23.281 3.1 28.74 – – –
51S0 22.379 – – – – –
61S0 23.736 – – – – –
13P0 37.919 0.19 0.195 9.45 – 10.4±0.7
13P2 3.974 0.2 6.93 2.81 – 2.03±0.12
23P0 38.462 5.31 1.02 10.09 – –
23P2 4.034 5.43 36.69 7.34 – –
33P0 38.433 – – – – –
33P2 4.028 – – – – –
43P0 38.315 – – – – –
43P2 4.016 – – – – –
53P0 39.191 – – – – –
53P2 4.003 – – – – –

Table 2.16: Digluon decay width of S and P -wave bottomonia (in MeV)

Present ERHM CPPν PM BSE RPM
State [131] [134] [134] [50] [158] [166]
11S0 5.448 9.95 23.72 17.945 6.98 12.46
21S0 3.710 5.64 6.61 – 3.47 –
31S0 3.229 2.61 3.86 – – –
41S0 2.985 2.07 3.45 – – –
51S0 2.832 – – – – –
61S0 2.274 – – – – –
13P0 0.276 38.17 4.90 5.250 – 2.15
13P2 0.073 38.57 0.66 0.822 – 0.22
23P0 0.275 1.92 25.04 – – –
23P2 0.073 1.92 3.39 – – –
33P0 0.273 – – – – –
33P2 0.072 – – – – –
43P0 0.271 – – – – –
43P2 0.072 – – – – –
53P0 0.269 – – – – –
53P2 0.071 – – – – –
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Table 2.17: 3g decay widths of charmonia (in keV) and bottomonia (in keV)

PM PDG NRCQM PDG
State Present [159] [1] State Present [119] [1]
J/ψ 264.25 269.06 59.55 Υ(1S) 39.15 41.63 –
ψ(2S) 196.05 112.03 31.16 Υ(2S) 26.59 24.25 18.80
ψ(3S) 175.43 94.57 – Υ(3S) 23.13 18.76 7.25
ψ(4S) 164.66 88.44 – Υ(4S) 21.37 15.58 –
ψ(5S) 157.77 85.30 – Υ(5S) 20.27 – –
ψ(6S) 152.86 83.19 – Υ(6S) 19.49 – –

Table 2.18: γgg decay widths of charmonia (in keV) and bottomonia (in keV)

PM PDG NRCQM PDG
State Present [159] [1] State Present [119] [1]
J/ψ 7.51 8.90 8.17 Υ(1S) 0.85 0.79 –
ψ(2S) 5.57 3.75 3.03 Υ(2S) 0.58 0.46 0.60
ψ(3S) 4.99 3.16 – Υ(3S) 0.50 0.36 1.97
ψ(4S) 4.68 2.96 – Υ(4S) 0.46 0.30 –
ψ(5S) 4.48 2.85 – Υ(5S) 0.44 – –
ψ(6S) 4.35 2.78 – Υ(6S) 0.42 – –

Annihilation widths into electron

The vector mesons have quantum numbers 1−− and can annihilate into dilepton.

The dileptonic decay of vector meson along with one loop QCD radiative correction

is given by [141, 162]

Γn3S1→ℓ+ℓ− =
4α2

ee
2
Q|RnsV (0)|2
M2

nsV

[

1− 16αs
3π

]

(2.20)

Here, αe is the electromagnetic coupling constant, αs is the strong running coupling

constant in Eq. (2.4) and eQ is the charge of heavy quark in terms of electron charge.

In above relations, |RnsP/V (0)| corresponds to the wave function of S-wave at origin

for pseudoscalar and vector mesons while |R′
nP (0)| is the derivative of P -wave radial

Table 2.19: Dilepton decay width of charmonia (in keV)

Present RPM PM RPM RQM PDG
State [131] [123] [104] [100] [92] [1]
1S 2.925 4.95 6.99 1.89 5.4 5.547 ± 0.14
2S 1.533 1.69 3.38 1.04 2.4 2.359 ± 0.04
3S 1.091 0.96 2.31 0.77 – 0.86 ± 0.07
4S 0.856 0.65 1.78 0.65 – 0.58 ± 0.07
5S 0.707 0.49 1.46 – – –
6S 0.602 0.39 1.24 – – –
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Table 2.20: Dilepton decay width of bottomonia (in keV)

Present RPM RPM PM RQM SPM PDG
State [131] [123] [101] [104] [92] [167] [1]
1S 1.098 1.20 1.33 1.61 1.3 0.98 1.340 ± 0.018
2S 0.670 0.52 0.62 0.87 0.5 0.41 0.612 ± 0.011
3S 0.541 0.33 0.48 0.66 – 0.27 0.443 ± 0.008
4S 0.470 0.24 0.40 0.53 – 0.20 0.272 ± 0.029
5S 0.422 0.19 – 0.44 – 0.16 –
6S 0.387 0.16 – 0.39 – 0.12 –

wave function at origin. The annihilation rates of heavy quarkonia are listed in

Tables 2.12 - 2.20.

2.3.3 Electromagnetic transition widths

The electromagnetic transitions can be determined broadly in terms of electric and

magnetic multipole expansions and their study can help in understanding the non-

perturbative regime of QCD. We consider the leading order terms i.e. electric (E1)

and magnetic (M1) dipoles with selection rules ∆L = ±1 and ∆S = 0 for the

E1 transitions while ∆L = 0 and ∆S = ±1 for M1 transitions. We now employ

the numerical wave function for computing the electromagnetic transition widths

among quarkonia and Bc meson states in order to test parameters used in present

work. For M1 transition, we restrict our calculations for transitions among S-

waves only. In the nonrelativistic limit, the radiative E1 and M1 widths are given

by [16, 35, 106, 168, 169]

Γ(n2S+1LiJi → n′2S+1
LfJf + γ) =

4αe〈eQ〉2ω3

3
(2Jf + 1)SE1

if |ME1
if |2 (2.21)

Γ(n3S1 → n′1S0 + γ) =
αeµ

2ω3

3
(2Jf + 1)|MM1

if |2 (2.22)

where, mean charge content 〈eQ〉 of the QQ̄ system, magnetic dipole moment µ and

photon energy ω are given by

〈eQ〉 =

∣

∣

∣

∣

mQ̄eQ − eQ̄mQ

mQ +mQ̄

∣

∣

∣

∣

(2.23)

µ =
eQ
mQ

− eQ̄
mQ̄

(2.24)

ω =
M2

i −M2
f

2Mi
(2.25)
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Table 2.21: E1 transition width of charmonia (in keV)

Present ERHM CPPν RPM RQM SPM NRQM PDG
Transition [131] [134] [134] [100] [91] [126] [115] [1]

23S1 → 13P0 21.863 9.92 38.2 45.0 51.7 74 22 29.8 ± 1.5
23S1 → 13P1 43.292 18.6 73.6 40.9 44.9 62 42 27.9 ± 1.5
23S1 → 13P2 62.312 11.3 37.2 26.5 30.9 43 38 26± 1.5
21S0 → 11P1 36.197 – – 8.3 8.6 146 49 –

33S1 → 23P0 31.839 16.4 51.4 87.3 – – – –
33S1 → 23P1 64.234 43.3 65.2 65.7 – – – –
33S1 → 23P2 86.472 54.2 4 31.6 – – – –
33S1 → 13P0 46.872 129.4 583.9 1.2 – – – –
33S1 → 13P1 107.088 336.4 1531 2.5 – – – –
33S1 → 13P2 163.485 410.1 4379 3.3 – – – –
31S0 → 21P1 51.917 – – – – – – –
31S0 → 11P1 178.312 – – – – – – –

13P0 → 13S1 112.030 325.9 209 142.2 161 167 284 119.5 ± 8
13P1 → 13S1 146.317 426.2 269 287.0 333 354 306 295 ± 13
13P2 → 13S1 157.225 680.7 421 390.6 448 473 172 384.2 ± 16
11P1 → 11S0 247.971 1076 1015 610.0 723 764 361 357 ± 280

23P0 → 23S1 70.400 231.0 190 53.6 – 61 – –
23P1 → 23S1 102.672 258.9 316 208.3 – 103 – –
23P2 → 23S1 116.325 325.3 701 358.6 – 225 – –
21P1 → 21S0 163.646 611.7 843 – – 309 – –

23P0 → 13S1 173.324 643.5 822 20.8 – 74 – –
23P1 → 13S1 210.958 661.3 962 28.4 – 83 – –
23P2 → 13S1 227.915 700.1 1279 33.2 – 101 – –
21P1 → 11S0 329.384 951.6 549 – – 134 – –

13D1 → 13P0 161.504 – – – 423 486 272 172 ± 30
13D1 → 13P1 93.775 – – – 142 150 138 70± 17
13D1 → 13P2 5.722 – – – 5.8 5.8 7.1 ≤ 21
13D2 → 13P1 165.176 – – 317.3 297 342 285 –
13D2 → 13P2 50.317 – – 65.7 62 70 91 –
13D3 → 13P2 175.212 – – 62.7 252 284 350 –
11D2 → 11P1 205.93 – – – 335 575 362 –

respectively. Also the symmetric statistical factor is given by

SE1
if = max(Li, Lf )

{

Ji 1 Jf
Lf S Li

}2

. (2.26)

The matrix element |Mif | for E1 and M1 transition can be written as

∣

∣ME1
if

∣

∣ =
3

ω

〈

f
∣

∣

∣

ωr

2
j0

(ωr

2

)

− j1

(ωr

2

)
∣

∣

∣
i
〉

(2.27)
∣

∣MM1
if

∣

∣ =
〈

f
∣

∣

∣
j0

(ωr

2

)
∣

∣

∣
i
〉

(2.28)

The electromagnetic transition widths are listed in Tables 2.21 - 2.26 and also

compared with experimental results as well as theoretical predictions.
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Table 2.22: E1 transition width of bottomonia (in keV)

Present ERHM CPPν RPM RQM SPM NRQM PDG
Transition [131] [134] [134] [100] [91] [127] [116] [1]

23S1 → 13P0 2.377 0.24 0.4 1.15 1.65 1.67 1.09 1.22 ± 0.11
23S1 → 13P1 5.689 0.40 0.74 1.87 2.57 2.54 2.17 2.21 ± 0.19
23S1 → 13P2 8.486 0.12 0.38 1.88 2.53 2.62 2.62 2.29 ± 0.20
21S0 → 11P1 10.181 – – 4.17 3.25 6.10 3.41 –

33S1 → 23P0 3.330 0.35 0.32 1.67 1.65 1.83 1.21 1.20 ± 0.12
33S1 → 23P1 7.936 0.82 0.62 2.74 2.65 2.96 2.61 2.56 ± 0.26
33S1 → 23P2 11.447 0.80 0.30 2.80 2.89 3.23 3.16 2.66 ± 0.27
33S1 → 13P0 0.594 3.91 15.4 0.03 0.124 0.07 0.097 0.055 ± 0.010
33S1 → 13P1 1.518 9.50 41.4 0.09 0.307 0.17 0.0005 0.018 ± 0.010
33S1 → 13P2 2.354 9.86 54.7 0.13 0.445 0.15 0.14 0.20 ± 0.03
31S0 → 11P1 3.385 – – 0.03 0.770 1.24 0.67 –
31S0 → 21P1 13.981 – – – 3.07 11.0 4.25 –

13P2 → 13S1 57.530 61.96 26.7 31.2 29.5 38.2 31.8 –
13P1 → 13S1 54.927 39.58 21.3 27.3 37.1 33.6 31.9 –
13P0 → 13S1 49.530 30.72 18.7 22.1 42.7 26.6 27.5 –
11P1 → 11S0 72.094 62.70 37.7 37.9 54.4 55.8 35.8 –

23P2 → 23S1 28.848 14.57 23.4 16.8 18.8 18.8 15.5 15.1 ± 5.6
23P1 → 23S1 26.672 10.65 18.2 13.7 15.9 15.9 15.3 19.4 ± 5.0
23P0 → 23S1 23.162 8.98 15.9 9.90 11.7 11.7 14.4 –
21P1 → 21S0 35.578 15.67 25.4 – 23.6 24.7 16.2 –

23P2 → 13S1 29.635 45.03 33.0 7.74 8.41 13.0 12.5 9.8 ± 2.3
23P1 → 13S1 28.552 41.71 30.2 7.31 8.01 12.4 10.8 8.9 ± 2.2
23P0 → 13S1 26.769 40.12 28.8 6.69 7.36 11.4 5.4 –
21P1 → 11S0 34.815 49.57 1.07 – 9.9 15.9 16.1 –

13D1 → 13P0 9.670 – – – 24.2 23.6 19.8 –
13D1 → 13P1 6.313 – – – 12.9 12.3 13.3 –
13D1 → 13P2 0.394 – – – 0.67 0.65 1.02 –
13D2 → 13P1 11.489 – – 19.3 24.8 23.8 21.8 –
13D2 → 13P2 3.583 – – 5.07 6.45 6.29 7.23 –
13D3 → 13P2 14.013 – – 21.7 26.7 26.4 32.1 –
11D2 → 11P1 14.821 – – – 30.2 42.3 30.3 –
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Table 2.23: E1 transition width of Bc meson (in keV)

Present RQM RQM PM
Transition [131] [91] [113] [103]
23S1 → 13P0 4.782 5.53 2.9 0.94
23S1 → 13P1 11.156 7.65 4.7 1.45
23S1 → 13P2 16.823 7.59 5.7 2.28
21S0 → 11P1 18.663 4.40 6.1 3.03
33S1 → 23P0 7.406 – – –
33S1 → 23P1 17.049 – – –
33S1 → 23P2 25.112 – – –
33S1 → 13P0 6.910 – – –
33S1 → 13P1 17.563 – – –
33S1 → 13P2 27.487 – – –
31S0 → 11P1 38.755 – – –
31S0 → 21P1 27.988 – – –
13P2 → 13S1 55.761 122 83 64.24
13P1 → 13S1 53.294 87.1 11 51.14
13P0 → 13S1 46.862 75.5 55 58.55
11P1 → 11S0 71.923 18.4 80 72.28
23P2 → 23S1 41.259 75.3 55 64.92
23P1 → 23S1 38.533 45.3 45 50.40
23P0 → 23S1 38.308 34.0 42 55.05
21P1 → 21S0 52.205 13.8 52 56.28
23P2 → 13S1 60.195 – 14 –
23P1 → 13S1 57.839 – 5.4 –
23P0 → 13S1 52.508 – 1.0 –
21P1 → 11S0 74.211 – 19 –
13D1 → 13P0 44.783 133 55 –
13D1 → 13P1 28.731 65.3 28 –
13D1 → 13P2 1.786 3.82 1.8 –
13D2 → 13P1 51.272 139 64 –
13D2 → 13P2 16.073 23.6 15 –
13D3 → 13P2 60.336 149 78 –
11D2 → 11P1 66.020 143 63 –

Table 2.24: M1 transition width of charmonia (in keV)

Present ERHM CPPν RPM RQM NRQM PM PDG
Transition [131] [134] [134] [100] [91] [115] [125] [1]

13S1 → 11S0 2.722 0.703 9.68 2.7 1.05 2.39 3.28 1.58 ± 0.37
23S1 → 21S0 1.172 0.151 0.55 1.2 0.99 0.19 1.45 0.21 ± 0.15
23S1 → 11S0 7.506 20.51 58.13 0.0 0.95 7.80 – 1.24 ± 0.29
33S1 → 31S0 9.927 20.521 58.13 – – 0.088 – –
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Table 2.25: M1 transition width of bottomonia (in eV)

Present ERHM CPPν RPM RQM NRQM PM PDG
Transition [131] [134] [134] [100] [91] [116] [125] [1]
13S1 → 11S0 37.668 2.33 9.13 4.0 5.8 10 15.36 –
23S1 → 21S0 5.619 0.169 0.17 0.05 1.40 0.59 1.82 –
23S1 → 11S0 77.173 1395 799 0.0 6.4 66 – 12.5 ± 4.9
33S1 → 31S0 2.849 0.050 0.036 – 0.8 3.9 – –
33S1 → 21S0 36.177 – – – 1.5 11 – ≤ 14
33S1 → 11S0 76.990 – – – 10.5 71 – 10 ± 2

Table 2.26: M1 transition width of Bc meson (in eV)

Present RQM RQM PM
Transition [131] [91] [113] [103]
13S1 → 11S0 53.109 33 80 2.2
23S1 → 21S0 21.119 17 10 0.014
23S1 → 11S0 481.572 428 600 495
21S0 → 13S1 568.346 488 300 1092

2.3.4 Weak decays of Bc mesons

The decay modes of Bc mesons are different from charmonia and bottomonia because

of the inclusion of different flavor quarks. Their decay properties are very important

probes for the weak interaction as Bc meson decays only through weak decays,

therefore have relatively quite long lifetime. The pseudoscalar state can not decay

via strong or electromagnetic decays because of this flavor asymmetry.

In the spectator model [170], the total decay width of Bc meson can be broadly

classified into three ways: (i) Decay of b quark considering c quark as a spectator,

(ii) Decay of c quark considering b quark as a spectator and (iii) Annihilation channel

Bc → ℓ+νℓ. The total width is given by

Γ(Bc → X) = Γ(b→ X) + Γ(c→ X) + Γ(Anni) (2.29)

In the calculations of total width, we have not considered the interference among

them as all these decays lead to different channel. In the spectator approximation,

the inclusive decay width of b and c quark is given by

Γ(b→ X) =
9G2

F |Vcb|2m5
b

192π3
(2.30)

Γ(c→ X) =
9G2

F |Vcs|2m5
c

192π3
(2.31)
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Γ(Anni) =
G2
F

8π
|Vcb|2f 2

BcMBcm
2
q

(

1−
m2
q

MB2
c

)2

Cq (2.32)

Where Cq = 3|Vcs| for Ds mesons and mq is the mass of heaviest fermions. Vcs

and Vcb are the CKM matrices and we have taken the value of CKM matrices from

the PDG. Gf is the Fermi coupling constant. Here we have used the model quark

masses, Bc meson mass and decay constants for the computation of total width.

Here we compute the decay width of Bc meson using Eq. (2.29) and corresponding

lifetime. The computed lifetime comes out to be 0.539 × 10−12 s which is in very

good agreement with the world averaged mean life time (0.507±0.009)×10−12 s [1].

2.4 Results and Discussion

Having determined the model parameters namely confinement strength and quark

masses in Tab. 2.1, we present our numerical results. We first compute the mass

spectra of the heavy quarkonia and Bc mesons. In almost all the papers based on

potential models, the model parameters are independently fixed for experimental

ground state masses of cc̄, bb̄ and cb̄ mesons. But it is observed that the confine-

ment strength of cb̄ meson is the arithmetic mean of those for cc̄ and bb̄ mesons

which discards the requirement of additional independent parameter for the Bc me-

son. Similar approach was used long back within QCD potential model [171]. We

also compute various decay properties of heavy quarkonia and Bc mesons without

additional parameter.

In Tables 2.2 - 2.5, we present our result for charmonium and bottomonium mass

spectra. We compare our findings with PDG data [1], lattice QCD [11] data, rela-

tivistic quark model [88], nonrelativistic quark model [115,116,118], QCD relativistic

functional approach [117], relativistic potential model [100], nonrelativistic potential

models [109,120,123,126,127] and covariant constituent quark model [119]. Our re-

sults are in very good agreement with the PDG data [1]. For charmonia, our results

show very good agreement with the LQCD data [11] with less than 2% deviation.

Our results for charmonia and bottomonia also close to the relativistic quark model

(RQM) [91] with less than 1% deviation. Our results are also consistent with other

theoretical approaches. In Tables 2.6 and 2.7, we also predict the Bc meson mass

spectra. Experimentally only pseudoscalar state for n = 1 and 2 is available and

our results match well with very few % error. It is worth noting that the masses
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of orbitally excited states (to be specific for n = 1) of charmonia is systematically

lower than the other models and experimental data. This tendency decreases as one

moves to higher excited states. But this trend is not there in Bc and bottomonia

systems suggesting that the relativistic treatment may improve the results in lower

energy regime of charmonia.

Using the mass spectra of heavy quarkonia and Bc meson, we plot the Regge tra-

jectories in (J,M2) and (nr,M
2) planes where nr = n− 1. The following relations

are utilised [88]

J = αM2 + α0 (2.33)

nr = βM2 + β0 (2.34)

where α, β are slopes and α0, β0 are the intercepts that can be computed using the

methods given in Ref. [88]. In Figs. 2.1, 2.2 and 2.3, we plot the Regge trajectories.

Regge trajectories from present approach and relativistic quark model [88] show

similar trend i.e. for charmonium spectra, the computed mass squared fits very well

to a linear trajectory and is found to be almost parallel and equidistant in both

the planes. Also, for bottomonia and Bc mesons, we observe the nonlinearity in

the parent trajectories. The nonlinearity increases as we go from cb̄ to bb̄ mesons

indicating increasing contribution from the inter-quark interaction over confinement.

Figure 2.1: Parent and daughter Regge trajectories (J,M2) for charmonia (left),
bottomonia (middle) and Bc (right) mesons with natural parity (P = (−1)J).

Using the potential parameters and numerical wave function, we compute the various

decay properties of heavy quarkonia. We first compute the leptonic decay constants

of pseudoscalar and vector mesons and our numerical results are tabulated in Tables

2.8 – 2.11. For the case of charmonia, our results are higher than those using LQCD

and QCDSR [13] and discrepancy removed when we include the QCD correction

factors [142]. After introducing the correction factors, our results match with PDG,

34



Figure 2.2: Parent and daughter Regge trajectories (J,M2) for charmonia (left),
bottomonia (middle) and Bc (right) mesons with unnatural parity (P = (−1)J+1).

Figure 2.3: Parent and daughter Regge trajectories (nr →M2) for charmonia (left),
bottomonia (middle) and Bc (right) mesons

LQCD and QCDSR [13] along with other theoretical models. We also compute

the decay constants of bottomonia and Bc mesons. In this case, our results match

with other theoretical predictions without incorporating the relativistic corrections.

In the case of vector decay constants of bottomonia, our results are very close to

experimental results as well as those obtained in LQCD Ref. [14]. For the decay

constants of Bc mesons, we compare our results with nonrelativistic potential models

[104, 138].

Then we compute the various annihilation widths of pseudoscalar and vector heavy

quarkonia using the relations Eqs.(2.15)–(2.20). Where the bracketed quantities

are the first order radiative corrections to the decay widths. We also compare

our outcomes with the available experimental data and other theoretical results

such as screened potential model (SPM) [126,127,167], Martin-like potential model

[123], relativistic quark model (RQM) [92, 93], heavy quark spin symmetry [156],

relativistic Salpeter model [158] and other theoretical models.

In Tables 2.12 and 2.13 we present our results for digamma decay widths for charmo-

nia and bottomonia respectively. Our results for Γ(ηc → γγ) and Γ(ηc(2S) → γγ)

are higher than the experimental data and the first order radiative correction (brack-

eted terms in Eq. (2.15)) was utilized to incorporate the difference and it is observed

that our results along with the correction match with the data [1]. Our results for

P -wave charmonia are higher than that of screened potential model [126] and rel-
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ativistic quark model [93]. Our results for Γ(ηb → γγ) match quite well with the

experimental data while computed Γ(ηb(2S) → γγ) value is overestimated when

compared with the PDG data. For the excited state of S-wave bottomonia, our re-

sults fall in between those obtained in screened potential model [127] and relativistic

quark model with linear confinement [114]. The scenario is similar with P -wave bot-

tomonia and charmonia. In Tab. 2.14, we present our results for 3γ decay widths

of vector quarkonia and also compared with the nonrelativistic constituent quark

model [119] and potential mdoel results [159]. Our results are matching well the

experimental data for the channel J/ψ → 3γ and other states are also inline with

the others.

Digluon decay has substantial contribution to hadronic decay of quarkonia below cc̄

and bb̄ threshold. In Tables 2.15 and 2.16 we represent our results for digluon decay

width of charmonia and bottomonia respectively. Our results for Γ(ηc → gg) match

perfectly with the PDG data [1] but in the case of Γ(ηc(2S) → gg) our result is

higher than the PDG data. We also compare the results obtained with that of the

relativistic Salpeter method [158] and an approximate potential model [120]. It is

seen from Table 2.15 that the relativistic corrections provide better results in case

of P -wave charmonia where as that for bottomonia are underestimated in present

calculations when compared to relativistic QCD potential model [166] and power

potential model [50]. In Tab. 2.17 and 2.18 we present our results of three gluon

decay and γgg decays with the comparing PDG data as well as other nonrelativistic

approaches [119, 159]. It is observed that our results also in good accordance with

the PDG data and theoretical models except for the channel ψ(nS) → 3g.

We present the result of dilepton decay widths in the Table 2.19 and 2.20 and it is

observed that our results matches with the PDG data [1] upto n = 3 for both char-

monia and bottomonia. The contribution of the correction factor is more significant

in the excited states with compared to that in the ground states of the quarkonia,

indicating different dynamics in the intermediate quark-antiquark distance. Our

results are also in good accordance with the other theoretical models.

Next, we present our results of E1 transitions in Tables 2.21 - 2.23 in comparison

with theoretical attempts such as relativistic potential model [100], quark model [91],

nonrelativistic screened potential model [116,126,127]. We also compare our results

of charmonia transitions with available experimental results. We also compare our
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results of ERHM and CPPν results [134]. Our result for Γ(ψ(2S) → χcJ(1P ) + γ)

is in good agreement with the experimental result for J = 0 but our results for

J = 1, 2 are higher than the PDG data. Our results also agree well for the tran-

sition Γ(χc2(1P ) → J/ψ + γ). We also satisfy the experimental constraints for

the transition Γ(13D1 → χcJ + γ) for J = 0, 1, 2. Our results share the same

range with the results computed in other theoretical models. The E1 transitions

of bottomonia agree fairly well except for the channel Γ(Υ(3S) → χbJ (3P )), where

our results are higher than the experimental results. The comparison of our re-

sults of E1 transitions in Bc mesons with relativistic quark model [91, 113] and

power potential model [103] are found to be in good agreement. In Tables 2.24 -

2.26, we present our results of M1 transitions and also compared with relativis-

tic potential model [100], quark model [91, 114], nonrelativistic screened potential

model [115, 116], power potential [103] as well as with available experimental re-

sults. Our results of Γ(nψ → n′ηc + γ) are in very good agreement with the PDG

data as well with the other theoretical predictions. Computed M1 transitions in

Bc mesons are also within the results obtained from theoretical predictions. The

computed M1 transition of bottomonia are found to be higher than the PDG data

and also theoretical predictions. It is important to note that the experimental data

of many channels are not yet available, the validity of either of the approaches can

be validated only after observations in forthcoming experiments.
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