
Chapter 4

Study of Exotic States as Dimesonic

Molecules

4.1 Introduction

Z±
c (3900) is the charged charmonium-like state observed first time by BESIII [216]

and then Belle [217] collaboration in the channel e+e− → π+π−J/ψ. This state was

also confirmed by CLEO collaboration [218]. BESIII have also determined parity to

be JP = 1+ using the partial wave analysis [219]. Also the charged bottomonium-

like states Zb(10610) and Zb(10650) observed in Belle Collaboration [220] and later

also confirmed by them [221, 222]. These states are also identified with the parity

to be JP = 1+. These states (Zc and Zb) don’t fit into the conventional quark

model and their minimal quark content to be cc̄dū or bb̄dū/bb̄ud̄ which are beyond

the conventional qq̄ or qqq model. These states have masses nearer to threshold

of two heavy flavor mesons and gained lot of attentions for both experimentalists

and theoreticians world wide. There are different ways in which these states are

studied theoretically based on tetraquark states [223–231], hadro-quarkonium state

[232–234] in which the exotic states are considered as coupling to the light and heavy

quarkonium state to intermediate open-flavor mesons. These states are also studied

on the basis of hadronic composite molecular pictures [235–247]. These states are

studied in the different approaches such as chiral quark model [248], relativistic

quark model [249], effective field theory [250,251], holographic QCD [252] and QCD

sum rules [253]. The comprehensive reviews on the status of these exotic states are

given in the literature [246, 254, 255].

In this chapter, we restrict our study to the exotic states namely Z+
c , Z+

b and
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Z ′
b considering them as a hadronic composite molecule of D+D̄∗, BB̄∗ and B∗B̄∗

respectively as their masses are below these threshold. The bound state masses are

computed by sloving the Schrödinger equation nemerically for the generalized Woods

- Saxon potantial. We also compute the two body strong decays of these states using

the phenomenological Lagrangian mechanism. We compare our findings with the

available experimental data and other theoretical predictions. We have presented

this work in the XXII DAE High energy Physics Symposium held at University of

Delhi during December 12-16, 2016 and published in a conference proceeding [256].

4.2 Methodology

There are various approaches available in the literature for studying these exotic

states but since their masses are nearer to the D∗D̄, B∗B̄ and B∗B̄∗ threshold,

these states are considered as a hadronic composite molecules of these mesons. We

consider here the potential of the form modified Woods Saxon potential for the con-

finement of the exotic state along with the Coulomb replusive term. The potential

equation is given by [257, 258],

V (r) =
V0

1 + e
r−R0
a

+
Ce

r−R0
a

(

1 + e
r−R0
a

)2 − b

r
(4.1)

where, V0 is the potential strength, b is the strength of Coulomb interaction. R0 is

the radius of the molecule. a is the diffuseness of the surface [257], C is the depth

of the potential which range from 0 < C < 150 MeV [258], where C = 0 MeV

corresponds to the standard Woods-Saxon Potential. The plot of the potential is

also shown in the Fig. 4.1 with the variation in the depth of the potential C.

Table 4.1: Fitted parameters for computing the masses

Potential Strength V0 15 MeV
Radius of the molecule R0 1.75 fm
Strength of coulomb interaction b 0.08
Diffuseness of the potential -0.51 fm
Potential Depth Range 0 < C < 150 MeV [258]
Size Parameter Λ: 500 MeV

For computing the bound state masses of the exotic states the Schrödinger equation

is sloved nemerically for the potential Eq. (4.1) using the Mathematica notebook

utilizing the Runge–Kutta method [137] and the binding energy is obtained. The
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Figure 4.1: Wood-Saxon potential with variation in potential depth

masses of the dimesonic states are obtained using constituent mesons and binding

energy

M12 =M1 +M2 − BE. (4.2)

The model parameters are fitted to obtain the masses of the respective exotic states.

Table 4.2: Masses of Z+
c (D

+D̄∗), Z+
b (BB̄

∗) and Z ′

b(B
∗B̄∗) molecular states (in MeV)

with the variation in potential depth C (in MeV)

C D+D̄∗ BB̄∗ B∗B̄∗

Binding Energy Mass Binding Energy Mass Binding Energy Mass
0 11.82 3864.74 5.58 10598.9 5.54 10644.9
50 11.96 3864.61 7.05 10597.4 7.01 10643.4
100 12.07 3864.5 8.04 10596.4 8.02 10642.4
150 12.15 3864.42 8.72 10595.7 8.70 10641.7

PDG [1] 3883.9±4.5 10607.2±2.0 10652.2 ± 1.5

4.3 Strong decay width

The strong two body decay widths are computed using the phenomenological La-

grangian mechanism given in Ref. [235, 236]. The the Lagrangian corresponding to

the coupling of Zc and Zb states to its constituent can be written as [235, 236],

LZc(x) =
gZc√
2
MZcZ

µ
c (x)

∫

d4yΦZc(y
2)
{

D
(

x+
y

2

)
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µ

(
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2

)

+D∗
µ

(
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y

2

)
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(
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2
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2
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∫
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(4.3)

LZb(x) =
gZb√
2
MZbZ

µ
b (x)

∫

d4yΦZb(y
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where y is the relative Jacobi coordinate, gZc, gZb and gZ′
b

are the dimensional

coupling constants of Zc, Zb and Z ′
b to the molecular D+D̄∗, BB̄∗ and B∗B̄∗ com-
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ponents, respectively. ΦZc(y
2), ΦZ′

b
(y2) and ΦZ′

b
(y2) are the correlation functions,

which describes the distributions of the constituent mesons in the bound states.

The strong two body decay widths are given by [235, 236]

ΓZ+
c →Ψ(ns)π+ ≃

g2ZcΨ(ns)π

96πM3
Zc

λ3/2(M2
Zc ,M

2
ψ(ns),M

2
π)

(

1 +
M2
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2M2
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)
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Γ
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16πMZ
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,M2
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2
π)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the Källen function, gZcΨ(ns)π,

gZbΥ(ns)π and gZ′
b
Υ(ns)π are the decay coupling constants, expressed as [235, 236]

gZcΨ(ns)π = 8gZc
gFgH
FπMJ

JZcMZc

gZbΥ(ns)π = gZbgBB∗Υ(ns)πJZb (4.5)
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′

b
JZ′

b

with g′s and J ′s are the coupling constants and loop integrals respectively given by
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with ∆1 = 2 + α12, ∆2 = 1 + α12, α12 = α1 + α2 and Λ is the size parameter which

characterizes the effective size of the hadrons. For computation we take Λ = 0.5

GeV [235,236].

The strong two body decay widths are computed using Eq. (4.4) and the results are

tabulated in Tab. 4.3.

Table 4.3: Hadronic decay widths of Z+
c , Z+

b and Z ′
b molecular states (in MeV)

Decay Mode Decay width
C = 0 C = 50 C = 100 C = 50 Exp [259] [235, 236] [260] [261] [262]

Zc → ψ(1s) + π 11.72 11.76 11.78 11.81 – 10.43 − 23.89 12.00 3.67
Zc → ψ(2s) + π 2.12 2.11 2.11 2.11 – 1.28 − 2.94 0.9749 8.24
Zb → Υ(1s) + π 22.84 22.93 23.00 23.06 22.9±7.3 13.3 − 30.8 19.34 – 5.9 ± 0.4
Zb → Υ(2s) + π 26.93 26.99 27.04 27.09 21.1±4.0 15.4 − 35.7 23.54 – –

Z
′

b → Υ(1s) + π 23.43 23.51 23.58 23.64 12±10±3 14.0 − 31.7 19.49 – 9.5+0.7
−0.6

Z
′

b → Υ(2s) + π 28.77 28.84 28.90 28.95 16.4±3.6 16.9 − 39.3 25.07 – –

4.4 Results and Discussion

In this chapter we compute the masses of exotic states considering the dimeson

molecules considering interaction of type modified Woods - Saxon potential. We

have also analysed the nature of potential with the depth of the potential. From the

potential plot Fig. 4.1, it is clear that as the depth of the potential increases, the

binding energy increases. Solving Schrödinger equation numerically, we obtain the

binding energy of the exotic states and the bound state masses are obtained. The

bound state masses of the exotic states are in good agreement with PDG data [1]. We

have also computed the two body strong decay widths of these states in interaction

Lagrangian mechanism from Ref. [235,236] and compare with the experiments. Our

predictions of decay widths are in good agreement with the experimental data [1].

We also compare our findings with the other theoretical approaches such as covariant

quark model [262], light front model [261] and potential model [260]. It is observed

that our results are also matching well with the theoretical approaches.
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