
Chapter 5

Weak Decays of Open Flavor Mesons

5.1 Introduction

Charm sector is a good platform to test the absolute scale of computed decay am-

plitudes in terms of form factors because the Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements can be determined independently for D decays by exploiting the

CKM unitarity and numerical values of the matrix elements for B decays. Study

of charm decays is also important for understanding of new physics (NP) affecting

the up-type quark dynamics as it is the only up-type quark displaying flavor oscil-

lations [263, 264]. Some hints about the dynamics of TeV scale QCD are expected

from charm flavour oscillations in the same line of charm mass and dynamics predic-

tions from experimentally observed low energy kaon oscillations [265]. These flavour

oscillations are very sensitive probes for the underlying new physics interactions

involving charged particles.

Semileptonic decays have reasonably large amplitudes making them more accessible

in recently upgraded experimental facilities and hence are considered to be primary

source to get information about CKM matrix elements. Charmed meson semilep-

tonic decays are the easiest direct way to determine the magnitude of quark-mixing

parameters i.e. direct access to |Vcs| and |Vcd|. The study of charm semileptonic

decays provides insight to |Vcq|2 via matrix elements that describe strong interaction

effects and may contribute to a precise determination of the CKM matrix element

|Vub| via constraints provided by charm decays to reduce the model dependence

in extracting |Vub| from exclusive charmless B semileptonic decays. For example,

flavour symmetry relates the form factors of the semileptonic decays of D and B
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systems. Recently, the matrix elements |Vcd(s)| was extracted (PDG [1]) from the ex-

perimental results from the BABAR [266,267], Belle [268], BESIII [269], CLEO [270]

in the channel D → π(K)ℓ+νℓ.

Many lattice quantum chromodynamics (LQCD) papers are available in literature

regarding the semileptonic form factors for the channel D → (K, π)ℓνℓ. However, in

the light sector of daughter meson, the first successful computation of form factors

for Ds → φℓ+νℓ from full LQCD was reported by HPQCD collaboration [21]. Later,

Ds → η(′)ℓ+νℓ semileptonic form factors were also reported for the first time using

LQCD [22]. The heavy (D(s)) to light (π, ρ, ω, φ, η(′), K ) form factors have also

been computed within the QCD sum rules [271,272] and light cone QCD sum rules

(LCSR) [273–276]. The LCSR along with heavy quark effective theory (HQET)

has also been employed for computing the transition form factors and branching

fractions [277]. Recently, computation of form factors and semileptonic branching

fractions of D → ρ decays have been reported using LCSR with chiral correlator

[278]. The heavy to light form factors are also computed in the heavy quark limit of

the large energy effective theory [279], constituent quark model [280], chiral quark

model (χQM) [281] and chiral perturbation theory [282]. The form factors and

semileptonic branching fractions of D(s) mesons are also computed in the frame

work of heavy meson chiral theory (HMχT) [283, 284] and the light front quark

model (LFQM) [285–287]. The authors of Ref. [288] have computed the semileptonic

branching fractions of D(s) mesons in the chiral unitary (χUA) approach.

In this chapter, we compute the semileptonic branching fractions of the charmed

(D) and charmed-strange (D+
s ) meson to light mesons (ρ, ω, φ, η(′) and K(∗)0).

The required transition form factors are computed in the frame work of Covariant

Confined Quark Model (CCQM) [57,58,289]. The CCQM is the effective field theory

approach with the infrared confinement for the hadronic interactions with their

constituents. This allows us to compute the form factors in the complete physical

range of momentum transfer. We also compute the semileptonic branching fractions

for D+
(s) → D0e+νe. These are the rare class of semileptonic decays where the

light quark decays weakly leaving behind the heavy quark as a spectator. Recently,

BESIII collaboration has reported the upper bound on the branching fraction for

the channel D+ → D0e+νe at 90% confidence level to be 1.0 × 10−4 [290]. These

channels were studied within the SU(3) symmetry [291] as well as heavy flavour

conserving decays [292].
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The next section gives detailed formulation of the model CCQM. Next, we provide

the branching fractions in terms of helicity structure functions followed by the results

in comparison with the experimental data and theoretical predictions. This study

comprising computation of leptonic and semileptonic decays of D and D(s) mesons

is published in Physical Review D [293,294]. In these papers, we have considered the

channelsD0 → (K−, π−, ρ−, K∗(892)−)ℓ+νℓ,D+ → (K̄0, π0, η, η′, ρ0, ω, K̄∗(892)0)ℓ+νℓ

and D+
s → (K0, η, η′, φ,K∗(892)−)ℓ+νℓ for ℓ = e and µ.

5.2 Methodology

The CCQM is an effective quantum field approach [57, 58, 289] for hadronic in-

teractions that utilizes an effective Lagrangian for hadrons interacting with the

constituent quarks. In this model it is assumed that hadrons interact with the con-

stituent quarks only. The Lagrangian describing the coupling of meson M(q1q̄2) to

its constituent quarks q1 and q̄2 is given by

Lint = gMM(x)

∫

dx1

∫

dx2FM(x; x1, x2)q̄2(x2)ΓMq1(x1) +H.c. (5.1)

where ΓM is the Dirac matrix and projects onto the spin quantum number of relevant

mesonic field M(x). FM is the vertex factor which characterizes the finite size of the

meson and is invariant under translation FM(x+ a, x1 + a, x2 + a) = FM(x, x1, x2).

This ensures the Lorentz invariance of the Lagrangian Eq. (5.1) for any value of

four-vector a. We choose the following form of the vertex function

FM (x, x1, x2) = δ(4)

(

x−
2
∑

i=1

wixi

)

ΦM
(

(x1 − x2)
2
)

(5.2)

with ΦM is the correlation function of two constituent quarks with masses mq1 and

mq2 and wqi = mqi/(mq1 +mq2) such that w1 + w2 = 1.

We choose Gaussian function for vertex function as

Φ̃M (−p2) = exp (p2/Λ2
M) (5.3)

with the parameter ΛM characterized by the finite size of the meson. Note that any

form of ΦM is appropriate as long as it falls off sufficiently fast in the ultraviolet

region of Euclidian space in order to overcome the ultraviolet divergence of the loop

integral. The local fermion propagator for the constituent quarks is given by

Sq(k) =
1

mq− 6k (5.4)
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with an effective constituent quark mass mq. The compositeness condition [59, 60]

Figure 5.1: Diagram describing meson mass operator.

is used to determine the coupling constant gM in Eq. (5.1)

ZM = 1− 3g2M
4π2

Π̃′
M (m2

M) = 0, (5.5)

where Π̃′
M(p2) is the derivative of the mass operator taken on the mass-shell p2 =

m2
M . By using the Fourier transformation of the vertex function in Eq. (5.3) and

quark propagator in Eq. (5.4), one can write the meson mass function defined in

Fig. 5.1. For pseudoscalar meson

Π̃P (p
2) = Ncg

2
P

∫

d4k

(2π)4i
Φ̃2
P (−k2)tr

(

γ5S1(k + w1p)γ
5S2(k − w2p)

)

, (5.6)

and for vector meson

Π̃µν
V (p2) = Ncg

2
V

∫

d4k

(2π)4i
Φ̃2
V (−k2)tr

(

γµS1(k + w1p)γ
νS2(k − w2p)

)

(5.7)

where Nc = 3 is the number of colors. Since the vector meson is on its mass-shell,

one has ǫV ·p = 0 and needs only the part of the vector meson function proportional

to gµν , given by

Π̃V (p
2) =

1

3

(

gµν −
pµpν
p2

)

Π̃µν
V (p). (5.8)

The loop integrations in Eqs. (5.6) and (5.7) are performed with Fock-Schwinger

representation of quark propagators

Sq(k + p) =
1

mq− 6k− 6p =
mq+ 6k+ 6p

m2
q − (k + p)2

= (mq+ 6k+ 6p)
∞
∫

0

dα e−α[m
2
q−(k+p)2], (5.9)
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allowing tensor loop integral by conversion of the loop momentum to the derivative

of the exponential function. All the loop integrations are performed in Euclidean

space transformed from Minkowski space using the Wick rotation

k0 = ei
π
2 k4 = ik4 (5.10)

so that k2 = k20 − ~k2 = −k24 − ~k2 = −k2E ≤ 0. Simultaneously one has to rotate all

external momenta, i.e. p0 → ip4 so that p2 = −p2E ≤ 0. Then the quadratic form in

Eq. (5.9) becomes positive-definite,

m2
q − (k + p)2 = m2

q + (kE + pE)
2 > 0 (5.11)

where the integral over α is convergent.

Collecting the representation of the vertex function Eq. (5.3) and quark propagator

Eq. (5.4), we perform the Gaussian integration in the derivatives of the mass func-

tions in Eqs. (5.6) and (5.7). The exponential function has the form ak2+2kr+ z0,

where r = bp. Using the following properties

kµ exp(ak2 + 2kr + z0) =
1

2

∂

∂rµ
exp(ak2 + 2kr + z0),

kµkν exp(ak2 + 2kr + z0) =
1

2

∂

∂rµ

1

2

∂

∂rν
exp(ak2 + 2kr + z0), etc.

one can replace 6 k by 6∂r = γµ ∂
∂rµ

in order to perform the exchange of tensor in-

tegrations for differentiation of the Gaussian exponent. The r-dependent Gaussian

exponent e−r2/a can be moved to the left through the differential operator 6∂r using

∂

∂rµ
e−r

2/a = e−r
2/a

[

−2rµ

a
+

∂

∂rµ

]

,

∂

∂rµ

∂

∂rν
e−r

2/a = e−r
2/a

[

−2rµ

a
+

∂

∂rµ

]

·
[

−2rν

a
+

∂

∂rν

]

, etc. (5.12)

Finally, we move the derivatives to the right by using the commutation relation
[

∂

∂rµ
, rν
]

= gµν . (5.13)

The last step has been done by using a form code [295] which works for any num-

bers of loops and propagators. In the remaining integrals over the Fock-Schwinger

parameters 0 ≤ αi <∞, we introduce an additional integration which converts the

set of Fock-Schwinger parameters into a simplex. Using the transformation [296]

n
∏

i=1

∞
∫

0

dαif(α1, . . . , αn) =

∞
∫

0

dttn−1
n
∏

i=1

∫

dαiδ

(

1−
n
∑

i=1

αi

)

f(tα1, . . . , tαn) (5.14)
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Finally, we have

Π̃M(p2) =
3g2M
4π2

∞
∫

0

dt t

a2M

1
∫

0

dα e−t z0+zM fM(t, α), (5.15)

z0 = αm2
q1
+ (1− α)m2

q2
− α(1− α)p2,

zM =
2sM t

2sM + t
(α− w2)

2p2,

aM = 2sM + t, b = (α− w2)t.

where SM = 1/Λ2
M and the function fM(t, α) coming from the trace evaluation in

Eqs. (5.6) and (5.7).

It can be seen that the integral over t in Eq. (5.15) is well defined and convergent

below the threshold p2 < (mq1 + mq2)
2. The convergence of the integral above

threshold p2 ≥ (mq1 + mq2)
2 is ensured by incrementing the quark mass by an

imaginary part, i.e. mq → mq − iǫ, ǫ > 0, in the quark propagator Eq. (5.4).

This allows transformation of the integration variable t to imaginary axis t → it.

As a result, the integral Eq. (5.15) becomes convergent, however it does obtain an

imaginary part that accounts for quark pair production.

However, by truncating the scale of integration to the upper limit by introducing

the infrared cutoff
∞
∫

0

dt(. . .) →
1/λ2
∫

0

dt(. . .), (5.16)

all possible thresholds present in the initial quark diagram can be removed [289].

Thus the infrared cutoff parameter λ ensures the confinement. This method is

quite general and can be used for diagrams with an arbitrary number of loops and

propagators. In CCQM, the infrared cutoff parameter λ is taken to be universal for

all physical processes.

Since the model CCQM is not based on the first principle, we need to fix the param-

eters such as quark masses (mq) and meson size parameters (ΛM) as in Tab. 5.1 and

Tab. 5.2 respectively. The model parameters are determined by fitting computed

leptonic and radiative decay constants to available experimental data or LQCD for

pseudoscalar and vector mesons. The matrix elements of the leptonic decays are

described by the Feynman diagram shown in Fig. 5.2. The leptonic decay constants
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Table 5.1: Quark masses and infrared cutoff parameter in GeV

mu/d ms mc mb λ
0.241 0.428 1.672 5.05 0.181

Table 5.2: Meson size parameters in GeV

ΛD ΛDs ΛK ΛK∗ Λφ Λρ Λω Λπ Λqq̄η Λss̄η Λqq̄η′ Λss̄η′

1.600 1.784 1.014 0.805 0.883 0.624 0.488 0.870 0.881 1.973 0.257 2.797

of the pseudoscalar and vector mesons are defined by

NcgP

∫

d4k

(2π)4i
φ̃P (−k2)tr[OµS1(k + w1p)γ

5S2(k − w2p)] = fpp
µ

NcgV

∫

d4k

(2π)4i
φ̃V (−k2)tr[OµS1(k + w1p) 6ǫvS2(k − w2p)] = mV fV ǫ

µ
V (5.17)

where Nc is the number of colors and Oµ = γµ(1−γ5) is the weak Dirac matrix with

left chirality. Our results for the leptonic decay constants are given in the Table 5.3.

D

p

k + p

q
1

q
2

k

v

l

Figure 5.2: Quark model diagrams for the D-meson leptonic decay

The decay constants we use in our calculations match quite well with PDG, LQCD

and QCD sum rules (QCDSR) parameters.

In the SM, pure leptonic decays D+
(s) → ℓνℓ proceed by exchange of virtual W boson.

The leptonic branching fraction is given by

B(D+
(s) → ℓνℓ) =

G2
F

8π
mD(s)

m2
ℓ

(

1− m2
ℓ

m2
D(s)

)2

f 2
D(s)

|Vcd|2τD(s)
(5.18)

where, GF is the fermi coupling constant, mD and mℓ are the D-meson and lepton

masses respectively and τD(s)
is the D(s)-meson lifetime. fD(s)

is the leptonic decay

constant of D-meson from Table 5.3. The resultant branching fractions for ℓ = τ, µ
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Table 5.3: Leptonic decay constants fH (in MeV)

fH Present Data Reference
fD 206.08 202.2 (2.2) (2.6) LQCD [297]

210± 11 QCDSR [298]
211.9(1.1) PDG [1]

fDs 257.70 258.7 (1.1) (2.9) LQCD [297]
259± 10 QCDSR [298]
249.0(1.2) PDG [1]

fDs/fD 1.25 1.173(3) PDG [1]
fK 156.96 155.37(34) LQCD [299]

157.9± 1.5 LQCD [300]
155.6(0.4) PDG [1]

fπ 130.30 130.39 (20) LQCD [299]
132.3± 1.6 LQCD [300]
130.2(1.7) PDG [1]

fK/fπ 1.20 1.1928(26) PDG [1]
fD∗ 244.27 278± 13± 10 LQCD [301]

263± 21 QCDSR [298]
fD∗

s
272.08 311± 9 LQCD [301]

308± 21 QCDSR [298]
fK∗ 226.81 222± 8 QCDSR [302]
fρ 218.28 208.5± 55± 0.9 LQCD [303]
fφ 226.56 238± 3 LQCD [304]

215± 5 QCDSR [302]
fω 198.38 194.60 ± 3.24 LFQM [286]

and e are given in Table 5.4. I is important to note here that the branching fractions

are affected by different lepton masses through the helicity flip factor (1−m2
ℓ/m

2
D(s)

)2.

Table 5.4: Leptonic D+
(s) branching fractions

Channel Present PDG Data [1]
D+ → e+νe 8.42× 10−9 < 8.8× 10−6

D+ → µ+νµ 3.57× 10−4 (3.74± 0.17)× 10−4

D+ → τ+ντ 0.95× 10−3 < 1.2× 10−3

D+
s → e+νe 1.40× 10−7 < 8.3× 10−5

D+
s → µ+νµ 5.97× 10−3 (5.50± 0.23)× 10−3

D+
s → τ+ντ 5.82 % (5.48± 0.23)%
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5.3 Form factors and differential decay distribution

After fixing all the model parameters, we employ CCQM to compute the semilep-

tonic branching fractions of D(s) → P/V transition where P and V corresponds to

pseudoscalar and vector daughter mesons. We start with the definitions of the form

factors. The invariant matrix element for this decay can be written as

M(D(s) → (P, V )ℓ+νℓ) =
GF√
2
Vcx〈(P, V )|x̄γµ(1− γ5)c|D(s)〉ℓ+Oµνℓ (5.19)

where Oµ = γµ(1−γ5) and x = d, s. The matrix elements for the above semileptonic

transitions in the covariant quark model are defined by the diagram in Fig 5.3. The

D p( )
1 K * p( )( )

2

O
m

q
1

q
3

q
3

q
2

k+p
1

k+p
2

k

(*)

2

23 2( ( ) )
K

k w pF - +2

13 1( ( ) )D k w pF - +

Figure 5.3: Quark model diagrams for the D-meson semileptonic decay

matrix element for the semileptonic transition can be written as

〈P (p2)|x̄Oµc|D(s)(p1)〉 = NcgD(s)
gP

∫

d4k

(2π)4i
Φ̃D(s)

(−(k + w13p1)
2)Φ̃P (−(k + w23p2)

2)

×tr[OµS1(k + p1)γ
5S3(k)γ

5S2(k + p2)]

= F+(q
2)P µ + F−(q

2)qµ (5.20)

〈V (p2, ǫν)|x̄Oµc|D(s)(p1)〉 = NcgD(s)
gV

∫

d4k

(2π)4i
Φ̃D(s)

(−(k + w13p1)
2)Φ̃V (−(k + w23p2)

2)

×tr[OµS1(k + p1)γ
5S3(k) 6ǫ†νS2(k + p2)]

=
ǫ†ν

m1 +m2

[

−gµνP · qA0(q
2) + P µP νA+(q

2)

+qµP νA−(q
2) + iεµναβPαqβV (q

2)
]

(5.21)

with P = p1+p2, q = p1−p2 and ǫν to be the polarization vector such that ǫ†ν ·p2 = 0

and on-shell conditions of particles require p21 = m2
1 = m2

D(s)
and p22 = m2

2 = m2
P,V .

Since there are three quarks involved in this transition, we use wij = mqj/(mqi+mqj)
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(i, j = 1, 2, 3) such that wij + wji = 1. Performing the loop integration in Eqs

(5.20) and (5.21), we obtain the semileptonic form factors within the entire range

of momentum transfer 0 ≤ q2 ≤ q2max with q2max = (mD(s)
− mP,V )

2. The required

multi-dimensional integration appeared in Eqs. (5.20) and (5.21) are computed

numerically using Mathematica as well as FORTRAN codes with NAG library. We

also represent our form factors using double pole parametrization as

F (q2) =
F (0)

1− as+ bs2
, s =

q2

m2
1

(5.22)

In Tab. 5.5, we list the quark channel and the CKM matrix for the semileptonic

decays of D(s) mesons and in Tab. 5.6, we give the numerical results of the form

factors and associated double pole parameters. For the comparison of our form

Table 5.5: Quark channel and associated CKM matrix element for semileptonic
decays (φ = 39.3 deg)

Channel qq1 qq2 Vckm Channel qq1 qq2 Vckm
D0 → K− cū sū Vcs D+ → K0 cd̄ sd̄ Vcs
D0 → K∗(892)− cū sū Vcs D+ → K∗(892)0 cd̄ sd̄ Vcs
D+
s → K0 cs̄ ds̄ Vcd D+

s → K∗(892)0 cs̄ ds̄ Vcd
D0 → π− cū dū Vcd D+ → π0 cd̄ dd̄ Vcd/

√
2

D0 → ρ− cū dū Vcd D+ → ρ0 cd̄ dd̄ −Vcd/
√
2

D+ → ω cd̄ dd̄ Vcd/
√
2 D+

s → φ cs̄ ss̄ Vcs
D+ → η cd̄ dd̄ Vcd cosφ/

√
2 D+

s → η cs̄ ss̄ Vcs sin φ

D+ → η′ cd̄ dd̄ Vcd sin φ/
√
2 D+

s → η′ cs̄ ss̄ Vcs cosφ
D+ → D0 cd̄ cū Vud D+

s → D0 cs̄ cū Vus

factors with the other studies, we need to transform our form factors to the Bauer-

Stech-Wirbel (BSW) form factors. The relation reads [305]

A′
2 = A+, V ′ = V

A′
1 =

M1 −M2

M1 +M2
A0 (5.23)

A′
0 =

M1 −M2

2M2

(

A0 −A+ − q2

M2
1 −M2

2

A−

)

and

F ′
0 = F+ +

q2

M2
1 −M2

2

F−, F ′
+ = F+ (5.24)

Once the form factors are known, it is straight forward to calculate the semileptonic

decay rates. The differential decay widths are written in terms of helicity amplitudes
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Table 5.6: Form factors and associated double pole parameters

F F (0) a b F F (0) a b

AD→K∗

+ 0.68 0.86 0.09 AD→K∗0

− −0.90 0.96 0.14
AD→K∗

0 2.08 0.40 −0.10 V D→K∗0 0.90 0.97 0.13
AD→ρ

+ 0.57 0.96 0.15 AD→ρ
− −0.74 1.11 0.22

AD→ρ
0 1.47 0.47 −0.10 V D→ρ 0.76 1.13 0.23

AD→ω
+ 0.55 1.01 0.17 AD→ω

− −0.69 1.17 0.26
AD→ω

0 1.41 0.53 −0.10 V D→ω 0.72 1.19 0.27
ADs→φ

+ 0.67 1.06 0.17 ADs→φ
− −0.95 1.20 0.26

ADs→φ
0 2.13 0.59 −0.12 V Ds→φ 0.91 1.20 0.25

ADs→K∗

+ 0.57 1.13 0.21 ADs→K∗

− −0.82 1.32 0.34
ADs→K∗

0 1.53 0.61 −0.11 V Ds→K∗ 0.80 1.32 0.33
FD→K
+ 0.77 0.73 0.05 FD→K

− −0.39 0.78 0.07
FD→π
+ 0.63 0.86 0.09 FD→π

− −0.41 0.93 0.13
FD→η
+ 0.36 0.93 0.12 FD→η

− −0.20 1.02 0.18
FD→η′

+ 0.36 1.23 0.23 FD→η′

− −0.03 2.29 1.71
FD→D0

+ 0.91 5.88 4.40 FD→D0

− −0.026 6.32 8.37
FDs→η
+ 0.49 0.69 0.002 FDs→η

− −0.26 0.74 0.008
FDs→η′

+ 0.59 0.88 0.018 FDs→η′

s −0.23 0.92 0.009
FDs→K
+ 0.60 1.05 0.18 FDs→K

− −0.38 1.14 0.24
FDs→D0

+ 0.92 5.08 2.25 FDs→D0

− −0.34 6.79 8.91

as

dΓ(D(s) → (P, V )ℓ+νℓ)

dq2
=

G2
F |Vcq|2|p2|q2
96π3M2

1

(

1− m2
ℓ

q2

)2

×
[(

1 +
m2
ℓ

2q2

)

∑

|Hn|2 +
3m2

ℓ

2q2
|Ht|2

]

, (5.25)

with |p2| = λ1/2(M2
1 ,M

2
2 , q

2)/2M1 is the momentum of the daughter meson in the

rest frame of the D(s) meson and the index n runs through (+,−, 0). The helicity

amplitudes are related to the form factors in the following manner:

For D(s) → P channel:

Ht =
1
√

q2
(PqF+ + q2F−),

H± = 0 and H0 =
2m1|p2|
√

q2
F+ (5.26)
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For D(s) → V channel:

Ht =
1

m1 +m2

m1|p2|
m2

√

q2

(

(m2
1 −m2

2)(A+ − A−) + q2A−
)

H± =
1

m1 +m2
(−(m2

1 −m2
2)A0 ± 2m1|p2|V )

H0 =
1

m1 +m2

1

2m2

√

q2
(−(m2

1 −m2
2)(m

2
1 −m2

2 − q2)A0 + 4m2
1|p2|2A+).(5.27)

For studying the lepton-mass effect, we define the physical observables such as

forward-backward asymmetry Aℓ
FB(q

2), the longitudinal P ℓ
L(q

2) and transverse P ℓ
T (q

2)

polarization of the charged lepton in the final state. They are also related to the

helicity amplitude via the relations

Aℓ
FB(q

2) = −3

4

|H+|2 − |H−|2 + 4δℓH0Ht

(1 + δℓ)
∑

|Hn|2 + 3δℓ|Ht|2
, (5.28)

P ℓ
L(q

2) = −(1 − δℓ)
∑

|Hn|2 − 3δℓ|Ht|2
(1 + δℓ)

∑ |Hn|2 + 3δℓ|Ht|2
, (5.29)

P ℓ
T (q

2) = − 3π

4
√
2

√
δℓ(|H+|2 − |H−|2 − 2H0Ht)

(1 + δℓ)
∑

|Hn|2 + 3δℓ|Ht|2
, (5.30)

where δℓ = m2
ℓ/2q

2 is the helicity-flip factor. The detailed analytical calculations of

the helicity amplitudes and differential distributions are given in our recent papers

[293,294,306,307]. The averages of these observables in the q2 range is better suited

for experimental measurements with low statistics. In order to compute the averages

of these observables Eqns. 5.28 – 5.30, one has to multiply and divide the numerator

and denominator with the phase factor |p2|(q2 −m2
ℓ)

2/q2 and integrate seperately.

These observables are sensitive to contributions of physics beyond the SM and can

be used to test LFU violations [308–313].

5.4 Results and Discussion

Having determined all the model parameters we are now in a position to represent

our results. First we compute the leptonic branching fractions using the Eq. (5.18)

and tabulated in Tab. 5.4. We compare our results with the latest PDG data [1]

and it is observed that our results satisfies the experimental constraint for electron

channel and for muon and tau channel also our results are in very good agreement

with the PDG data.

Then we compute the form factors for the semileptonic decays of D(s) mesons in the

entire physical range of momentum transfer. We also compare our findings with the
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other theoretical approaches. For comparing our form factors with other studies, we

need to transform to BSW form factors Eq. (5.24 and 5.24). We note that based on

the method we used in the model-parameter fitting, as well as comparisons of our

predictions with experimental data in previous studies, the estimation of the errors

for the form factors in our model are of order 20% for small q2 and 30% for large q2

.

Table 5.7: Comparison of F+(0) for D(s) → P transitions at maximum recoil.

D → π D → K D → η D → η′ Ds → η Ds → η′ Ds → K0

Present 0.63 0.77 0.36 0.36 0.49 0.59 0.60
CQM [280] 0.69 0.78 – – 0.50 0.60 0.72
LFQM [286] 0.66 0.79 0.39 0.32 0.48 0.59 0.66
LQCD [22] – – – – 0.564(11) 0.437(18) –
LQCD [22] – – – – 0.542(13) 0.404(25) –
LQCD [17] 0.612(35) 0.765(31) – – – – –
LCSR [274] – – 0.552 ± 0.051 0.458 ± 0.105 0.432 ± 0.033 0.520 ± 0.080 –

LCSR [276] – – 0.429+0.165
−0.141

0.292+0.113
−0.104

0.495+0.030
−0.029

0.558+0.047
−0.045

–

Table 5.8: Ratios of the D(s) → V transition form factors at maximum recoil.

Channel Ratio Present PDG [1] LQCD [21] CQM [280] LFQM [286] HMχT [284]
D → ρ r2 0.93 0.83 ± 0.12 – 0.83 0.78 0.51

rV 1.26 1.48 ± 0.16 – 1.53 1.47 1.72

D+
→ ω r2 0.95 1.06 ± 0.16 – – 0.84 0.51

rV 1.24 1.24 ± 0.11 – – 1.47 1.72
D → K∗ r2 0.92 0.80 ± 0.021 – 0.74 0.92 0.5

rV 1.22 1.49 ± 0.05 – 1.56 1.26 1.60

D+
s → φ r2 0.99 0.84 ± 0.11 0.74(12) 0.73 0.86 0.52

rV 1.34 1.80 ± 0.08 1.72(21) 1.72 1.42 1.80

D+
s → K∗0 r2 0.99 0.77 ± 0.28 ± 0.07 [314] – 0.74 0.82 0.55

rV 1.40 1.67 ± 0.34 ± 0.16 [314] – 1.82 1.55 1.93

In Tab. 5.7, we compare our results of the form factor F+ at the maximum recoil for

the channelD(s) → P transition with the other theoretical approaches. It is observed

that our results are in very good agreement with the Quark model predictions such

as CQM [280] and LFQM [286]. For D → π(K) channels, our results are in excellent

agreement with the LQCD calculations [17,18]. For D(s) → η(′) channels, our results

are LCSR [274,276] and LQCD [22] but is is to be noted that the authors of Ref. [22]

have considered the LQCD calculations as a pilot study.

For vector form factors, we compare the ratios at the maximum recoil as

r2 =
A2(0)

A1(0)
and rV =

V (0)

A1(0)
(5.31)

In Tab. 5.8, we compare our ratios with the PDG averages data [1] and other

theoretical approaches. It is observed that our results for the ratios of the form

factors agree well with the PDG data within the uncertanity except for the channel

Ds → φ. It is also important to note that our result rV (Ds → φ) = 1.34 is very

close to the value 1.42 from LFQM [286].
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Figure 5.4: The form factors for semileptonic D → K, π, D+
(s) → η(′) and D+

s → K0

transitions with comparison to LCSR, LFQM and CQM.
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Figure 5.5: The form factors for semileptonic D+
s → φ (left) and D+

s → K∗(892)−

(right) transitions with comparison to LFQM, HMχT and CQM.
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Figure 5.6: The form factors for semileptonic D+ → K∗ (left), D → ρ (middle) and
D → ω (right) transitions with comparison to LFQM, HMχT, CQM and CLEO
data.

In Figs. 5.4 – 5.6 we plot the form factors in the entire q2 range of momentum

transfer i.e. 0 ≤ q2 ≤ q2max = (mD(s)
− mP/V )

2. It is interesting to note that our

results are in excellent agreement with the LFQM [286] for all the channels. It is

also observed that the HMχT [284] predictions for the A0(q
2) is much higher than

the other theoretical calculations.

It is important to note that the form factor computation to the η and η′ channel

is different since they are the mixture of s-quark and light quarks component. The

quark content in the approximation of mu = md ≡ mq can be written as [315]
(

η
η′

)

= −
(

sin δ cos δ
− cos δ sin δ

)(

qq̄
ss̄

)

, qq̄ ≡ uū+ dd̄√
2

. (5.32)

The angle δ is defined by δ = θP − θI , where θI = arctan(1/
√
2) is the ideal mixing
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angle. We adopt the value θP = −15.4◦ from Ref. [315]. Also, in computing the form

factors for the channel D → η(′), we take the contribution from the qq̄ component

while for the Ds → η(′) channel, we take the contribution from the ss̄ component

only [285].

Figure 5.7: D → π(K) form factors obtained in our model (solid lines) and in LQCD
calculations (dots with error bar) by ETM collaboration.

Table 5.9: D → π(K)ℓν form factors and their ratios at q2 = 0.

fDπ+ fDK+ fDπT fDKT fDπT /fDπ+ fDKT /fDK+

Present 0.63 0.78 0.53 0.70 0.84 0.90
ETM [17,18] 0.612(35) 0.765(31) 0.506(79) 0.687(54) 0.827(114) 0.898(50)

Recently, ETM collaboration has provided the LQCD calculations [17, 18] for the

full set of form factors for the channel D → π(K)ℓνℓ and D → π(K)ℓℓ including

tensor and scalar form factors. The tensor form factor is defined as

〈P (p2)|q̄σµν(1− γ5)c|D(p1)〉 =
iF T (q2)

M1 +M2

(

P µqν − P νqµ + iεµνPq
)

. (5.33)

and the scalar form factor F0(q
2) can be computed using F+(q

2) and F−(q
2) defined

in Eq. (5.20)

F0(q
2) = F+(q

2) +
q2

M2
1 −M2

2

F−(q
2). (5.34)

In Fig. 5.7, we compare our form factors for the channel D → π(K) with the LQCD

data by ETM Collaboration. It is observed that our plot for F0(q
2) agrees well

with ETM in low q2 region. However, our plot for F+(q
2) is very close to ETM

and the tensor form factors are in excellent agreement with ETM. In Tab. 5.9, we
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also present our results of the form factors at the maximum recoil along with the

comparison with ETM. It is worth noting that our results agree well with ETM

calculations within the uncertainties.

Next we compute the semileptonic branching fractions. In Tab. 5.10 – 5.12, we

summarize our outcomes with the other theoretical approaches and the recent data

given by CLEO and BESIII collaborations.

Table 5.10: Semileptonic decays of D0 mesons (in %)

Channel Present Other Reference Data Reference

D0
→ K−e+νe 3.63 3.4 HMχT [283] 3.505 ± 0.014 ± 0.033 BESIII [316]

3.50 ± 0.03 ± 0.04 CLEO [270]
3.45 ± 0.07 ± 0.20 Belle [268]

D0
→ K−µ+νµ 3.53 3.413 ± 0.019 ± 0.035 BESIII [317]

D0
→ π−e+νe 0.22 0.27 HMχT [283] 0.295 ± 0.004 ± 0.003 BESIII [316]

0.2770 ± 0.0068 ± 0.0092 BABAR [266]
0.288 ± 0.008 ± 0.003 CLEO [270]
0.255 ± 0.019 ± 0.016 Belle [268]

D0
→ π−µ+νµ 0.22 0.272 ± 0.008 ± 0.006 BESIII [318]

D0
→ K∗(892)−e+νe 2.96 2.15 χUA [288] 2.033 ± 0.046 ± 0.047 BESIII [319]

2.2 HMχT [284] 2.16 ± 0.15 ± 0.08 CLEO [320]

D0
→ K∗(892)−µ+νµ 2.80 1.98 χUA [288]

D0
→ ρ−e+νe 0.16 0.197 χUA [288] 0.1445 ± 0.0058 ± 0.0039 BESIII [321]

0.1749
+0.0421
−0.0297

LCSR 0.177 ± 0.012 ± 0.010 CLEO [322] [278]

0.20 HMχT [284]
0.1 ISGW2 [323]

D0
→ ρ−µ+νµ 0.15 0.184 χUA [288] – –

In Tab. 5.10, we summarize our results for D0 → (P, V )ℓ+νℓ channel. The following

are our comments:

• For D0 → K−ℓ+νℓ channel, our results are in very good agreement with the

recent BESIII data also with the CLEO and Belle data.

• For D0 → K∗(892)− channel, our results are higher than the CLEO data for

the electrono channel and for still experimental results are still not available.

• For D0 → π− channel, our results are higher than the recent BESIII data but

it is nearer to the data from Belle results.

• For D0 → ρ−e+νe channel, our results are matching very well with the central

values of the CLEO data [322].

In Tab. 5.11 we summarize our results on D+ → (P, V )ℓ+νℓ channels. Our results

are in good agreement with the experimental data. The following are our comments:

• For D+ → K̄0ℓ+νℓ channel, our results are nearly 8 % higher than the BESIII

data.
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Table 5.11: Semileptonic decays of D+ mesons

Channel Unit Present Other Reference Data Reference

D+
→ K̄0e+νe 10−2 9.28 8.4 HMχT [283] 8.60 ± 0.06 ± 0.15 BESIII [324]

10.32 ± 0.93 LFQM [287] 8.83 ± 0.10 ± 0.20 CLEO [270]

D+
→ K̄0µ+νµ 10−2 9.02 10.07 ± 0.91 LFQM [287] 8.72 ± 0.07 ± 0.18 BESIII [325]

D+
→ π0e+νe 10−2 0.29 0.33 HMχT [283] 0.350 ± 0.011 ± 0.010 BESIII [318]

0.41 ± 0.03 LFQM [287]

D+
→ π0µ+νµ 10−2 0.28 0.41 ± 0.03 LFQM [287]

D+
→ K̄∗(892)0e+νe 10−2 7.61 5.56 χUA [288]

5.6 HMχT [284]

D+
→ K̄∗(892)0µ+νµ 10−2 7.21 5.12 χUA [288]

D+
→ ρ0e+νe 10−3 2.09 2.54 χUA [288] 1.860 ± 0.070 ± 0.061 BESIII [321]

2.217+0.534
−0.376

± 0.015 LCSR [278] 2.17 ± 0.12+0.12
−0.22

CLEO [322]

2.5 HMχT [284]

D+
→ ρ0µ+νµ 10−3 2.01 2.37 χUA [288] 2.4 ± 0.4 PDG [1]

D+
→ ωe+νe 10−3 1.85 2.46 χUA [288] 1.63 ± 0.11 ± 0.08 BESIII [316]

2.5 HMχT [284] 1.82 ± 0.18 ± 0.07 CLEO [322]
2.1 ± 0.2 LFQM [287]

D+
→ ωµ+νµ 10−3 1.78 2.29 χUA [288] – –

2.0 ± 0.2 LFQM [287]

D+
→ ηe+νe 10−4 9.38 12 ± 1 LFQM [287] 10.74 ± 0.81 ± 0.51 BESIII [326]

24.5 ± 5.26 LCSR [274] 11.4 ± 0.9 ± 0.4 CLEO [327]
14.24 ± 10.98 LCSR [276]

D+
→ ηµ+νµ 10−4 9.12 12 ± 1 LFQM [287] – –

D+
→ η′e+νe 10−4 2.00 1.8 ± 0.2 LFQM [287] 1.91 ± 0.51 ± 0.13 BESIII [326]

3.86 ± 1.77 LCSR [274] 2.16 ± 0.53 ± 0.07 CLEO [327]
1.52 ± 1.17 LCSR [276]

D+
→ η′µ+νµ 10−4 1.90 1.7 ± 0.2 LFQM [287] – –

• For D+ → K̄∗(892)0ℓ+νℓ channel, still the experimental results are not avail-

able. Also our results are nearer to the other theoretical approaches.

• D+ → π0ℓ+νℓ channel, our results are very well within the range predicted by

the BESIII data.

• For D+ → ωe+νe channel, our result is a bit higher than the BESIII data [316],

but it is well within the range predicted by CLEO data [322].

• For D+ → η(′) channel, the branching fractions are very small and also wide

range of uncertainties have been reported in the experiments. Our results

remain within the range predicted by recent BESIII data [326] and also with

the results on CLEO data [328]. We also compare our results with the results

from LCSR data [274] and [276].

• We have compared our results with the other theoretical approaches such as

LCSR [274,276,278], χUA [288], LFQM [287], HMχT [283] and ISGW2 [323].

Our results for D → ρe+νe give very good agreement with the LCSR [278] and

χUA [288] results. For muon channel also, our results are very nearer to those

obtained in χUA [288]. For D+ → ωℓ+νℓ channel, our results are matching

with the LFQM [287]. For D+ → η(′)ℓ+νℓ channel, our results are deviating

from the results obtained in LCSR [274,276], but are very close to the LFQM

data [287].

In Tab 5.12, we summarize the results on Ds → (P, V )ℓνℓ channels. The short
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Table 5.12: Semileptonic branching fractions of Ds mesons (in %).

Channel Present Other Reference Experimental Data Reference

D+
s → φe+νe 3.01 2.12 χUA [288] 2.26 ± 0.45 ± 0.09 BESIII [329]

3.1 ± 0.3 LFQM [287] 2.61 ± 0.03 ± 0.08 ± 0.15 BABAR [267]
2.4 HMχT [284] 2.14 ± 0.17 ± 0.08 CLEO [328]

D+
s → φµ+νµ 2.85 1.94 χUA [288] 1.94 ± 0.53 ± 0.09 BESIII [329]

2.9 ± 0.3 LFQM [287]

D+
s → K0e+νe 0.20 0.27 ± 0.02 LFQM [287] 0.39 ± 0.08 ± 0.03 CLEO [328]

D+
s → K0µ+νµ 0.19 0.26 ± 0.02 LFQM [287] –

D+
s → K∗(892)0e+νe 0.18 0.202 χUA [288] 0.18 ± 0.04 ± 0.01 CLEO [328]

0.19 ± 0.02 LFQM [287]
0.22 HMχT [284]

D+
s → K∗(892)0µ+νµ 0.17 0.189 χUA [288] – –

0.19 ± 0.02 LFQM [287]

D+
s → ηe+νe 2.24 2.26 ± 0.21 LFQM [287] 2.30 ± 0.31 ± 0.08 BESIII [330]

2.0 ± 0.32 LCSR [274] 2.28 ± 0.14 ± 0.19 CLEO [328]
2.40 ± 0.28 LCSR [276]

D+
s → ηµ+νµ 2.18 2.22 ± 0.20 LFQM [287] 2.42 ± 0.46 ± 0.11 BESIII [329]

D+
s → η′e+νe 0.83 0.89 ± 0.09 LFQM [287] 0.93 ± 0.30 ± 0.05 BESIII [330]

0.75 ± 0.23 LCSR [274] 0.68 ± 0.15 ± 0.06 CLEO [328]
0.79 ± 0.14 LCSR [276]

D+
s → η′µ+νµ 0.79 0.85 ± 0.08 LFQM [287] 1.06 ± 0.54 ± 0.07 BESIII [329]

comments are:

• For D+
s → φℓ+νℓ channel, our result is quite high compared to recent BESIII

[329] and the results based on CLEO [328] data but it is observed to be within

the range predicted by BABAR data [267].

• For D+
s → K0ℓ+νℓ channel, our result for branching fraction is almost double

with compared to CLEO data [328]. For electron and muon channels, ex-

perimental results are yet to be reported. Our result for the channel D+
s →

K∗(892)0e+νe is matching perfectly with the central value of the CLEO data

[328]. The discrepancy of our results with the experimental results seems ob-

vious as there are large deviations of the form factors, particularly A0 and A2

in the Figs. 5.5 and f+ in the last plot in Fig. 5.4.

• For D+
s → η(′)ℓ+νℓ, there is wide range of uncertainties reported in the exper-

imental data and LCSR results. Our results are in excellent agreement with

the BESIII [330] and CLEO [328] results for the electron channel. For muonic

channel, our results give excellent agreement with the BESIII data [326] which

is a first time ever experimental observation.

• Here also we compare our findings with the theoretical models such as χUA

[288], LCSR [274, 276], HMχT [284] and LFQM [287]. For D+
s → φℓ+νℓ

channel, though our result is higher than BESIII and BABAR data, it is

in good agreement with the LFQM [287] data. But for the D+
s → K0ℓ+νℓ

channel, our result is lower than the LFQM predictions. For the rest of the D+
s

semileptonic decays, our results are in good accordance with the LFQM [287]

and LCSR [274,276] predictions.
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Overall, our results are in very good agreement with the experimental results along

with theoretical models such as LFQM and LCSR predictions. In Tab. 5.13, we

Table 5.13: Ratios of the semileptonic decays

Ratio SM Value Data Reference

Γ(D0 → K−e+νe)/Γ(D
+ → K̄0e+νe) 1.0 0.99 1.08 ± 0.22 ± 0.07 BESIII [331]

1.06 ± 0.02 ± 0.03 CLEO [332]
Γ(D0 → K−µ+νµ)/Γ(D

+ → K̄0µ+νµ) 1.0 0.99
Γ(D+ → K̄0µ+νµ)/Γ(D

+ → K̄0e+νe) 1.0 0.97
Γ(D0 → K−µ+νµ)/Γ(D

0 → K−e+νe) 1.0 0.97 0.974 ± 0.007 ± 0.012 BESIII [317]
B(D0 → π−µ+νµ)/B(D0 → π−e+νe) 1.0 0.98 0.922 ± 0.030 ± 0.022 BESIII [318]
B(D+ → π0µ+νµ)/B(D+ → π0e+νe) 1.0 0.98 0.964 ± 0.037 ± 0.026 BESIII [318]
Γ(D0 → π−e+νe)/Γ(D

+ → π0e+νe) 2.0 1.97 2.03 ± 0.14 ± 0.08 CLEO [332]

Γ(D0 → ρ−e+νe)/2Γ(D
+ → ρ0e+νe) 1.0 0.98 1.03 ± 0.09+0.08

−0.02 CLEO [322]
B(D+ → η′e+νe)/B(D+ → ηe+νe) – 0.21 0.19 ± 0.05 CLEO [327]

0.18 ± 0.05 BESIII [326]
B(D+

s → φµ+νµ)/B(D+
s → φe+νe) 1.0 0.95 0.86 ± 0.29 BESIII [329]

B(D+
s → η′e+νe)/B(D+

s → ηe+νe) – 0.37 0.36 ± 0.14 CLEO [333]
0.40 ± 0.14 BESIII [330]

B(D+
s → η′µ+νµ)/B(D+

s → ηµ+νµ) – 0.36 0.44 ± 0.23 BESIII [329]

present the ratios of different semileptonic decay widths. It is observed that our re-

sults are very well within the isospin conservation rules [334]. It is worth mentioning

here that very recently, the BESIII collaboration has reported their measurement of

B(D0 → K−µ+νµ) [317] with significantly improved presicion and they also approved

our prediction of the model for the channel B(D0 → K−µ+νµ)/B(D0 → K−e+νe)

provided in our paper Ref. [293].

Table 5.14: Semileptonic branching fractions for D+
(s) → D0ℓ+νℓ

Channel Present Theory Data Reference Experimental Data Reference

D+
→ D0e+νe 2.23 × 10−13 2.78 × 10−13 [291] < 1.0 × 10−4 BESIII [290]

2.71 × 10−13 [292]

D+
s → D0e+νe 2.52 × 10−8 (2.97 ± 0.03) × 10−8 [291] – –

3.34 × 10−8 [292]

In Tab. 5.14, we present our results on the rare semileptonic branching fractions of

D+
(s) → D0e+νe. Our results for branching fraction for the channel D+ → D0e+νe

satisfies the experimental constraints predicted by the recent BESIII [290] collabora-

tion. Our results also satisfies the theoretical predictions using SU(3) symmetry [291]

and also heavy flavour conserving decays [292].

Finally, in Table 5.15 we list our predictions for the forward-backward asymmetry

〈Aℓ
FB〉, the longitudinal polarization 〈P ℓ

L〉, and the transverse polarization 〈P ℓ
T 〉 of

the charged lepton in the final state. It is seen that for the P → V transitions, the
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Table 5.15: Forward-backward asymmetry and longitudinal polarization.

Channel 〈Ae
FB〉 〈Aµ

FB〉 〈P e
L〉 〈P µ

L 〉
D0 → K−ℓ+νℓ −6.14× 10−6 −0.06 −1.00 −0.87
D0 → K∗(892)−ℓ+νℓ 0.18 0.14 −1.00 −0.92
D0 → π−ℓ+νℓ −3.84× 10−6 −0.04 −1.00 −0.90
D0 → ρ−ℓ+νℓ 0.21 0.18 −1.00 −0.92
D+ → K̄0ℓ+νℓ −6.11× 10−6 −0.06 −1.00 −0.87
D+ → K̄∗(892)−ℓ+νℓ 0.18 0.14 −1.00 −0.92
D+ → π0ℓ+νℓ −3.80× 10−6 −0.04 −1.00 −0.91
D+ → ρ0ℓ+νℓ 0.22 0.19 −1.00 −0.93
D+ → ωℓ+νℓ 0.21 0.18 −1.00 −0.93
D+ → ηℓ+νℓ −6.18× 10−6 −0.06 −1.00 −0.87
D+ → η′ℓ+νℓ −13.23 ×10−6 −0.10 −1.00 −0.82
D+ → D0ℓ+νℓ −0.094 – −0.73 –
D+
s → φℓ+νℓ 0.18 0.14 −1.00 −0.92

D+
s → K∗0ℓ+νℓ 0.22 0.19 −1.00 −0.93

D+
s → K0ℓ+νℓ −4.75 ×10−6 −0.05 −1.00 −0.89

D+
s → ηℓ+νℓ −5.75 ×10−6 −0.06 −1.00 −0.87

D+
s → η′ℓ+νℓ 11.20 ×10−6 −0.09 −1.00 −0.83

D+
s → D0ℓ+νℓ −5.33 ×10−4 – −1.00 –

lepton-mass effect in 〈Aℓ
FB〉 is small, resulting in a difference of only 10% − 15%

between the corresponding electron and muon modes. For the P → P ′ transi-

tions, 〈Aµ
FB〉 are about 104 times larger than 〈Ae

FB〉. This is readily seen from

Eq. (5.28): for P → P ′ transitions the two helicity amplitudes H± vanish and the

forward-backward asymmetry is proportional to the lepton mass squared. Regarding

the longitudinal polarization, the difference between 〈P µ
L〉 and 〈P e

L〉 is 10% − 30%.

One sees that the lepton-mass effect in the transverse polarization is much more

significant than that in the longitudinal one. This is true for both P → P ′ and

P → V transitions. Note that the values of 〈Ae
FB〉 and 〈P e

L(T )〉 for the rare decays

D+
(s) → D0e+νe are quite different in comparison with other P → P ′ transitions due

to their extremely small kinematical regions.

We expect BESIII and other experiments such as LHC-b, Belle, CLEO and PANDA

collaborations to throw more light in search of these transitions.
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