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Abstract: The electromagnetic radiative transition widths for heavy quarkonia, as well as digamma and digluon

decay widths, are computed in the framework of the extended harmonic confinement model (ERHM) and Coulomb

plus power potential (CPPν ) with varying potential index ν. The outcome is compared with the values obtained

from other theoretical models and experimental results. While the mass spectra, digamma and digluon widths from

ERHM as well as CPPν=1 are in good agreement with experimental data, the electromagnetic transition widths span

over a wide range for the potential models considered here making it difficult to prefer a particular model over the

others because of the lack of experimental data for most transition widths.
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1 Introduction

Decay properties of mesons are of special experimen-
tal and theoretical interest because they provide us with
further insights into the dynamics of these systems in ad-
dition to the knowledge we have gained from the spectra
of these families. A large number of experimental facil-
ities worldwide have provided and continue to provide
enormous amounts of data which need to be interpreted
using the available theoretical approaches [1]. Many phe-
nomenological studies on numerous observables of the
cc̄ and bb̄ bound states have established that the non-
relativistic nature appears to be an essential ingredient to
understand the dynamics of heavy quarkonia [2]. Thus,
the heavy quarkonium spectroscopy is mostly dependent
on the quark mass m, the momentum mv and the binding
energy mv2 in the non-relativistic limit. Two effective
field theories, non-relativistic QCD (NRQCD) [3, 4] and
potential NRQCD (pNRQCD) [5, 6], have been devel-
oped leading to a large number of new results for several
observables in quarkonium physics [7].

Radiative transitions in heavy quarkonia have been a
subject of interest as the CLEO-c experiment has mea-
sured the magnetic dipole (M1) transitions J/ψ(1S)→
γηc(1S) and J/ψ(2S)→γηc(1S) using a combination of
inclusive and exclusive techniques and reconciling with

theoretical calculations of lattice QCD and effective field
theory techniques [8, 9]. M1 transition rates are normally
weaker than E1 rates, but they are of more interest be-
cause they may allow access to spin-singlet states that
are very difficult to produce otherwise. It is also interest-
ing that the known M1 rates show serious disagreement
between theory and experiment when it comes to po-
tential models. This is in part due to the fact that M1
transitions between different spatial multiplets, such as
J/ψ(1S)→γηc(2S→1S) are nonzero only due to small
relativistic corrections to a vanishing lowest-order M1
matrix element [10].

We use the spectroscopic parameters of the extended
harmonic confinement model (ERHM), which has been
successful in predictions of masses of open flavour mesons
from light to heavy flavour sectors [11–13]. The mass
spectra of charmonia and bottomonia predicted by this
model, and a Coulomb plus power potential (CPPν) with
varying potential index ν (from 0.5 to 2.0), employing a
non-relativistic treatment for heavy quarks [14–17], have
been utilized for the present computations along with
other theoretical and experimental results.

2 Theoretical framework

One of the tests for the success of any theoretical
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model for mesons is the correct prediction of their
decay rates. Many phenomenological models predict
the masses correctly but overestimate the decay rates
[14, 15, 18]. We have successfully employed a phe-
nomenological harmonic potential scheme and CPPν po-
tential with varying potential index for different confine-
ment strengths to compute masses of bound states of
heavy quarkonia, and the resulting parameters and wave
functions have been used to study various decay proper-
ties [13].

The choice of scalar plus vector potential for quark
confinement has been successful in predictions of the low
lying hadronic properties in the relativistic schemes for
quark confinement [19–21], which have been extended to
accommodate multiquark states from lighter to heavier
flavour sectors with unequal quark masses [11, 12]. The
coloured quarks are assumed to be confined through a
Lorentz scalar plus a vector potential of the form

V (r)=
1

2
(1+γ0)A

2r2+B, (1)

where A and B are the model parameters and γ0 is the
Dirac matrix.

The wave functions for quarkonia are constructed
here by retaining the nature of the single particle wave
function but with a two particle size parameter ΩN (qiqj),
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The Coulombic part of the energy is computed using
the residual Coulomb potential using the colour dielec-
tric “coefficient”, which is found to be state dependent
[11], so as to get a consistent Coulombic contribution to
the excited states of the hadrons. This is a measure of

the confinement strength through the non-perturbative
contributions to the confinement scale at the respective
threshold energies of the quark-antiquark excitations.

The spin average (center of weight) masses of the
cc̄ and bb̄ ground states are obtained by choosing the
model parameters mc=1.428 GeV, mb=4.637 GeV, k =
0.1925 and the confinement parameter A=0.0685 GeV3/2

[11, 12].
In the other approach using the CPPν scheme for

the heavy-heavy bound state systems such as cc̄ and bb̄,
we treat the motion of both the quarks and antiquarks
nonrelativistically [13]. The CPPν potential is given by

V (r)=
−αc

r
+Arν , (3)

Here, for the study of heavy flavoured mesons, αc =
4αs/3, αs being the strong running coupling constant,
A is the potential parameter and ν is a general power,
such that the choice ν =1 corresponds to the Coulomb
plus linear potential.

We have employed the hydrogenic trial wave function
here for the present calculations. For excited states we
consider the wave function multiplied by an appropriate
orthogonal polynomial function such that the generalized
variational wave function gets orthonormalized. Thus,
the trial wave function for the (n,l) state is assumed to
be the form given by

Rnl(r)=

(

µ3(n−l−1)!

2n(n+l)!

) 1
2

(µ r)le−µr/2L2l+1
n−l−1(µr). (4)

Here, µ is the variational parameter and L2l+1
n−l−1(µr) is a

Laguerre polynomial.
For a chosen value of ν, the variational parameter µ

is determined for each state using the virial theorem

〈KE〉=
1

2

〈

rdV

dr

〉

. (5)

The potential index ν is chosen to vary from 0.5 to 2.

Table 1. Digamma decay width of charmonia (keV).

11S0 21S0 31S0 41S0 13P0 13P2 23P0 23P2

ERHM 8.76 5.94 3.05 1.43 69.97 73.93 6.93 6.98

ERHM(corr) 6.21 4.21 2.17 1.01 71.04 75.06 5.87 5.91

CPPν=0.5 12.85 3.47 1.83 1.24 5.74 1.54 21.11 5.69

CPPν=0.5(corr) 7.32 1.98 1.04 0.71 5.84 1.19 21.59 4.40

CPPν=1.0 22.79 9.88 6.73 5.28 27.29 7.45 143.30 39.41

CPPν=1.0(corr) 12.99 5.63 3.84 3.01 27.91 5.76 146.57 30.49

CPPν=1.5 30.84 17.55 14.16 12.65 63.35 17.52 511.88 144.33

CPPν=1.5(corr) 17.58 10.00 8.07 7.21 64.79 13.56 523.53 111.66

CPPν=2.0 37.43 25.11 22.88 22.43 108.06 30.26 1058.7 305.98

CPPν=2.0(corr) 21.34 14.31 13.04 12.79 110.52 23.41 1082.8 236.72

[29] 10.38 3.378 1.9 1.288 – – – –

[30] 8.5 2.4 0.88 – 2.5 0.31 1.7 0.23

[31] 7.8 3.5 – – – – – –

[32] 11.8 – – – – – – –
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Table 2. Digluon decay width of charmonia (MeV).

11S0 21S0 31S0 41S0 13P0 13P2 23P0 23P2

ERHM 13.48 9.14 4.7 2.19 0.11 0.11 9.07 9.13

ERHM(corr) 19.04 12.91 6.64 3.1 0.19 0.2 5.31 5.43

CPPν=0.5 43.41 11.73 6.17 4.19 0.019 3.71 0.07 13.74

CPPν=0.5(corr) 69.94 18.89 9.94 6.76 0.040 1.43 0.15 5.29

CPPν=1.0 77.01 33.37 22.74 17.84 0.092 17.99 0.48 95.21

CPPν=1.0(corr) 124.08 53.77 36.64 28.74 0.195 6.93 1.02 36.69

CPPν=1.5 104.18 59.28 47.85 42.73 0.214 42.33 1.73 348.66

CPPν=1.5(corr) 167.85 95.51 77.09 68.85 0.453 16.31 3.66 134.38

CPPν=2 126.46 84.83 77.29 75.79 0.365 73.11 3.58 739.15

CPPν=2.0(corr) 203.75 136.67 124.53 122.12 0.773 28.18 7.57 284.88

[22] 26.7±3.0 – – – 10.2±0.7 2.034±0.12 – –

[23] 48.927 – – – 38.574 4.396 – –

[33]pert. 15.70 – – – 4.68 1.72 – –

[33]nonpert. 10.57 – – – 4.88 0.69 – –

Table 3. Digamma decay width of bottomonia (keV).

11S0 21S0 31S0 41S0 13P0 13P2 23P0 23P2

ERHM 0.47 0.26 0.12 0.01 1.37 1.39 0.12 0.12

ERHM(corr) 0.35 0.20 0.09 0.07 1.39 1.40 0.10 0.10

CPPν=0.5 0.36 0.06 0.03 0.038 0.02 0.005 0.057 0.015

CPPν=0.5(corr) 0.24 0.04 0.02 0.026 0.02 0.004 0.058 0.013

CPPν=1.0 0.55 0.15 0.09 0.080 0.08 0.022 0.42 0.11

CPPν=1.0(corr) 0.37 0.10 0.06 0.054 0.08 0.018 0.43 0.09

CPPν=1.5 0.71 0.27 0.18 0.123 0.20 0.055 1.34 0.36

CPPν=1.5(corr) 0.48 0.18 0.12 0.084 0.21 0.045 1.36 0.30

CPPν=2.0 0.84 0.38 0.29 0.165 0.35 0.095 2.83 0.76

CPPν=2.0(corr) 0.57 0.26 0.20 0.112 0.36 0.078 2.88 0.63

[29] 0.496 0.212 0.135 0.099 – – – –

[30] 0.527 0.263 0.172 – 0.037 0.0066 0.037 0.0067

[31] 0.460 0.20 – – – – – –

[32] 0.580 – – – – – – –

Table 4. Digluon decay width of bottomonia (MeV).

11S0 21S0 31S0 41S0 13P0 13P2 23P0 23P2

ERHM 7.61 4.31 1.99 1.58 22.45 22.68 1.93 1.94

ERHM(corr) 9.95 5.64 2.61 2.07 38.17 38.57 1.92 1.92

CPPν=0.5 10.92 1.77 0.78 1.17 0.61 0.16 1.74 0.46

CPPν=0.5(corr) 15.51 2.51 1.11 1.66 1.20 0.16 3.40 0.46

CPPν=1.0 16.71 4.65 2.72 2.43 2.51 0.67 12.81 3.42

CPPν=1.0(corr) 23.72 6.61 3.86 3.45 4.90 0.66 25.04 3.39

CPPν=1.5 21.53 8.14 5.60 3.76 6.22 1.67 40.70 10.91

CPPν=1.5(corr) 30.58 11.55 7.95 5.34 12.16 1.65 79.57 10.81

CPPν=2.0 25.55 11.66 8.95 5.03 10.74 2.88 86.12 23.15

CPPν=2.0(corr) 36.29 16.56 12.72 7.14 21.00 2.85 168.36 22.93

[23] 14.64 – – – 2.745 0.429 – –

[33]pert. 11.49 – – – 0.96 0.33 – –

[33]nonpert. 12.39 – – – 2.74 0.25 – –

[39] 12.46 – – – 2.15 0.22 – –

Quark mass parameters are fitted to get the experimen-
tal ground state masses of mc=1.31 GeV, mb=4.66 GeV,
αc=0.4 (for cc̄) and αc=0.3 (for bb̄). The potential pa-
rameter A also varies with ν [16].

We have done a completely parameter-free computa-

tion of digamma and digluon decay widths and radiative
electric and magnetic dipole transition widths using the
parameters of these phenomenological models that were
fixed to obtain the ground state masses of the quarkonia
systems.
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Table 5. E1 transition partial widths of cc̄ (keV).

transitions ERHM CPPν [34] [35] [23] [36] [30] [22]

ν=0.5 ν=1.0 ν=1.5 ν=2.0

23S1→13P0 9.2 6.7 38.2 89.2 145.8 51.7 45 – 47 74 29.8±1.29

23S1→13P1 18.6 13.8 73.6 164.6 259.7 44.9 40.9 – 42.8 62 28.2±1.47

23S1→13P2 11.3 8.4 37.2 72.4 100.3 30.9 26.5 – 30.1 43 26.5±1.3

33S1→23P0 16.4 5.9 51.4 164.3 349.2 – 87.3 – – –

33S1→23P1 43.3 8.4 65.2 192.7 382.9 65.7 – – – –

33S1→23P2 54.2 1.6 4 4.1 3.1 – 31.6 – – –

33S1→13P0 129.4 105.1 583.9 1389 2274 – 1.2 – – –

33S1→13P1 336.4 281.5 1531 3607 5863 – 2.5 – – –

33S1→13P2 410.1 1897 4379 6998 – – 3.3 – – –

13P2→13S1 680.7 168 421 652 828 448 390.6 250 315 424 390±26

13P1→13S1 426.2 127 269 363 409 333 287 229 41 314 299±22

13P0→13S1 325.9 110 209 256 264 161 142 173 120 152 133±9

11P1→11S0 1076.2 401 1015 1569 2000 723 610 451 482 498

23P2→23S1 325.3 151 701 1707 2883 – 358.6 83 – 225

23P1→23S1 258.9 92 316 596 824 – 208.3 73.8 – 103

23P0→23S1 231.0 68 190 291 322 – 53.6 49.4 – 61

21P1→21S0 611.7 184 843 1961 3219 – – 146.9 – 309

23P2→13S1 700.1 187 1279 3510 5896 – 33 140 – 101

23P1→13S1 661.3 160 962 2352 3590 – 28 133 – 83

23P0→13S1 643.5 146 822 1880 2683 – 21 114 – 74

23P1→11S0 951.6 93 549 1321 2013 – – 227 – 134

Table 6. E1 transition partial widths of bb̄ (keV).

CPPν
transitions ERHM

ν=0.5 ν=1.0 ν=1.5 ν=2.0
[34] [35] [23] [36] [30] [22]

23S1→13P0 0.24 0.06 0.4 1.08 1.63 1.65 1.15 – 1.29 1.67 1.21±0.16

23S1→13P1 0.40 0.12 0.74 1.75 2.71 2.57 1.87 – 2.0 2054 2.21±0.22

23S1→13P2 0.12 0.04 0.38 1.39 3.03 2.53 1.88 – 2.04 2.62 2.29±0.22

33S1→23P0 0.35 0.04 0.32 1.03 2.16 1.65 1.67 – 1.35 1.83 1.2±0.16

33S1→23P1 0.82 0.08 0.62 1.78 3.60 2.65 2.74 – 2.20 2.96 2.56±0.34

33S1→23P2 0.80 0.06 0.30 0.62 0.98 2.89 2.80 – 2.40 3.23 2.66±0.41

33S1→13P0 3.91 2.38 15.4 40.4 72.0 0.124 0.03 – 0.001 0.07 0.055±0.08

33S1→13P1 9.50 6.38 41.1 106.8 188.8 0.307 0.09 – 0.008 0.17 <0.018±0.001

33S1→13P2 9.86 8.22 54.7 153.7 290.8 0.445 0.13 – 0.015 0.25 <0.2±0.32

13P2→13S1 61.96 11.3 26.7 40.1 48.8 42.7 31 44.0 31.6 38

13P1→13S1 39.58 09.4 21.3 33.3 43.5 37.1 27 42.0 27.8 34

13P0→13S1 30.72 08.6 18.7 27.8 35.0 29.5 22 37.0 22.0 27

11P1→13S0 62.70 15.7 37.7 60.4 81.6 – 38 60.0 – 56.8

23P2→23S1 14.57 04.9 23.4 55.5 96.1 18.8 17 20.4 14.5 18.8

23P1→23S1 10.65 04.3 18.2 39.5 63.7 15.9 14 12.5 12.4 15.9

23P0→23S1 8.98 03.9 15.9 32.8 51.1 11.7 10 4.4 9.2 11.7

21P1→21S0 15.67 05.4 25.4 60.0 102.1 23.6 – 25.8 – 24.7

23P2→13S1 45.03 09.0 33.0 67.2 104.0 8.41 7.74 20.8 12.7 13

23P1→13S1 41.71 08.6 30.2 58.9 88.0 8.01 7.31 19.9 12.7 12.4

23P0→13S1 40.12 08.4 28.8 55.0 80.8 7.36 6.69 14.1 10.9 11.4

21P1→11S1 49.57 0.3 01.7 04.5 08.2 9.9 – 14.1 10.9 15.9

3 Digamma and digluon decay widths

Using the model parameters and the radial wave func-
tions, we compute the digamma (Γγγ(ηQ)) and digluon
(Γgg(χQ)) decay widths. The digamma decay width of

the P -wave QQ̄ state χQ1 is forbidden according to the
Landau-Yang theorem. Most of the quark model predic-
tions for the S-wave ηQ→γγ width are comparable with
the experimental result, while the theoretical predictions
for the P -wave (χQ0,2→γγ) widths differ significantly
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Table 7. Radiative M1 transition widths of cc̄ in (keV).

transition 13S1→11S0 23S1→21S0 33S1→31S0 23S1→11S0

ERHM 0.703 (110) 0.151 (62) 0.023 (17) 20.521 (654)

CPPν=0.5 1.86 0.03 0.004 16.52

CPPν=1.0 9.68 0.55 0.135 58.13

CPPν=1.5 20.45 2.60 0.942 108.44

CPPν=2.0 38.35 6.92 3.241 157.23

[9] 1.5±1.0 – – –

[10]NR 2.90 (116) 0.21 (48) 0.046 (29) –

[23] 1.29 0.12 0.04 –

[35] 2.7 1.2 – –

[22] 1.21±0.37 < 0.67 – 3000±500

Table 8. Radiative M1 transition widths of bb̄ in (eV).

transition13S1→11S0 23S1→21S0 33S1→31S0 23S1→11S0

ERHM 2.33 (36) 0.169 (15) 0.050 (10) 1395.9 (580)

CPPν=0.5 2.51 0.01 0.001 223.23

CPPν=1.0 9.13 0.17 0.036 799.45

CPPν=1.5 19.12 0.98 0.244 1629.06

CPPν=2.0 31.20 2.51 1.088 2514.04

[23] 7.28 0.67 0.19 –

[34] 5.8 (60) 1.40 (33) 0.80 (27) –

[35] 4.0 0.5 – –

[36] 8.95 1.51 0.826 –

[37] 9.2 0.6 0.6 –

[38] 7.7 (59) 0.53 (25) 0.13 (16) –

from the experimental observations [22]. The contribu-
tion from QCD corrections takes care of this discrepancy.
The one-loop QCD radiative corrections in the digamma
decay widths of 1S0(ηQ), 3P0(χQ0) and 3P2(χQ2) are com-
puted using the non relativistic expressions given by
[23, 24]:

Γγγ(ηQ) =
3e4

Qα2
emMηQ

|R0(0)|2

2m3
Q

[

1−
αs

π

(20−π2)

3

]

, (6)

Γγγ(χQ0) =
27e4

Qα2
emMχQ0

|R
′

1(0)|2

2m5
Q

[

1+B0

αs

π

]

, (7)

Γγγ(χQ2) =
4

15

27e4
Qα2

emMχQ2
|R

′

1(0)|2

2m5
Q

[

1+B2

αs

π

]

, (8)

where B0 =π2/3−28/9 and B2 =−16/3 are the next-to-
leading-order (NLO) QCD radiative corrections [25–27].

Similarly, the digluon decay widths of the ηQ, χQ0

and χQ2 states are given by [28]:

Γgg(ηQ)=
α2

sMηQ
|R0(0)|2

3m3
Q

[1+CQ(αs/π)], (9)

Γgg(χQ0)=
3α2

sMχQ0
|R

′

1(0)|2

m5
Q

[1+C0Q(αs/π)]. (10)

Γgg(χQ2)=

(

4

15

)

3α2
sMχQ2

|R
′

1(0)|2

m5
Q

[1+C2Q(αs/π)]. (11)

Here, the quantities in the brackets are the NLO QCD
radiative corrections [27] and the coefficients have values
of CQ = 4.4, C0Q = 10.0 and C2Q =−0.1 for the bottom
quark.

4 Radiative E1 and M1 transitions

In the non-relativistic limit, the M1 transition width
between two S-wave states is given by [9]

Γn3S1→n′1S0γ

=
4

3
αe2

Q

k3
γ

m2

∣

∣

∣

∣

∫
∞

0

r2drRn′0(r)Rn0(r)j0

(

kγr

2

)∣

∣

∣

∣

2

, (12)

where eQ is the fraction of electrical charge of the heavy
quark (eb =−1/3, ec =2/3), α is the fine structure con-
stant and Rnl(r) are the radial Schrödinger wave func-
tions. The photon energy kγ is nearly equal to the mass
difference of the two quarkonia, so it is of order mv2

or smaller. This is unlike radiative transitions from a
heavy quarkonium to a light meson, such as J/ψ→ηγ,
where a hard photon is emitted. Since r ∼ 1/(mv),
the spherical Bessel function is expanded as j0(kγr/2)=
1−(kγr)

2/24+ ··· [9]. While the overlap integral in (12) is
unity at leading order for n=n′ (allowed transitions), it
vanishes for n 6=n′ (hindered transitions). The widths of
hindered transitions are determined by higher-order and
relativistic corrections only.

In the non-relativistic limit, radiative E1 and M1
transition partial widths are given by [9]

Γn2S+1LiJi
→n′2S+1LfJf

γ

=
4αe2

Qk3
γ

3
(2J ′+1)max(Li,Lf)

×

{

Ji 1 Jf

Lf S Li

}

×|〈f |r|i〉|2, (13)

Γn3S1→n′1S0γ =
4

3

2J ′+1

2L+1
δLL′δS,S′±1αe2

Q

k3
γ

m2

×

∣

∣

∣

∣

∫
∞

0

r2drRn′0(r)Rn0(r)j0

(

kγr

2

)∣

∣

∣

∣

2

.

(14)

The CLEO-c experiment has measured the magnetic
dipole (M1) transitions J/ψ(1S)→γηc(1S) and ψ(2S)→
γηc(1S) using a combination of inclusive and exclusive
techniques reconciling with the theoretical calculations of
lattice QCD and effective field theory techniques [8, 9].
M1 transition rates are normally weaker than E1 rates,
but they are of more interest because they may allow ac-
cess to spin-singlet states that are very difficult to pro-
duce otherwise. The spectroscopic parameters of ERHM
and CPPν are utilized for the present computations.
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5 Results and conclusions

In this paper, we have employed the masses of the
pseudoscalar and vector mesons, their wave functions,
and other input parameters from our earlier work [13] for
the calculations of the digamma, digluon decay widths
as well as E1 & M1 transitions. E1 and M1 radiative
transitions of the cc̄ and bb̄ mesons in the ERHM and
Coulomb plus power potential CPPν models and com-
puted numerical results are tabulated in Tables 1–8. The
digamma and digluon decay widths of the cc̄ and bb̄
mesons are computed with and without QCD correc-
tions. The ERHM predictions of digamma decay widths
of charmonia for the ground state are found to be com-
parable to the other theoretical results. In case of the
CPPν model these values are fairly close around ν<1. A
similar trend is found in the case of digluon decay rates
of charmonia. The digamma and digluon decay widths
predicted by the ERHM and CPPν models are very close
to the other theoretical predictions.

The computations of E1 transition widths are done
without any relativistic correction terms. This indicates
the possible inclusion of the same in the wave function
with a single center size parameter. The E1 and M1

transitions of the cc̄ and bb̄ mesons have been calculated
by several groups (See Tables 5–8) but their predictions
are not in mutual agreement. The predictions from Ref-
erences [34, 35] and the CPPν model (at ν ' 1 for cc̄
and at ν'1.5 for bb̄ mesons) are in fair agreement with
experimental values. One of the limitations of the CPPν

model is the inability to obtain the mass spectra of the cc̄
and bb̄ mesons at the same potential index ν. The com-
puted magnetic radiative transition rates are tabulated
along with other theoretical predictions and available ex-
perimental values in Tables 7 and 8. The values in the
parentheses are the energy of the photon in MeV. The
transition widths obtained by the potential models show
a large deviation from the experimental data; however,
the values computed using effective mean field theories
(ΓJ/ψ→ηcγ = 1.5±1.0 keV and ΓΥ(1S)→ηbγ = 3.6±2.9 eV
[9]), are found to be nearly the same as the potential
model results. The photon energies in all the models are
found to be nearly the same as the mass splitting. The
wide variation in predicted hyperfine splitting leads to
considerable uncertainty in the predicted rates for these
transitions. Differences in the theoretical assumptions of
the potential models make it difficult to draw sharp con-
clusion about the validity of a particular model because
of the lack of experimental data.
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Decay D → Kð�Þl+ νl in covariant quark model
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We study the leptonic and semileptonic D-meson decays (D → lþνl and D → Kð�Þlþνl) in the
framework of covariant quark model with built-in infrared confinement. We compute the required
form factors in the entire kinematical momentum transfer region. The calculated form factors are
used to evaluate the branching fractions of these transitions. We determine the following ratios of the partial
widths: ΓðD0 → K−eþνeÞ=ΓðDþ → K̄0eþνeÞ ¼ 1.02, ΓðD0 → K−μþνμÞ=ΓðDþ → K̄0μþνμÞ ¼ 0.99 and

ΓðDþ → K̄0μþνμÞ=ΓðDþ → K̄0eþνeÞ ¼ 0.97 which are in close resemblance with the isospin invariance
and experimental results.

DOI: 10.1103/PhysRevD.96.016017

I. INTRODUCTION

The semileptonic decays involve strong as well as
weak interactions. The extraction of Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements from these exclusive
decays can be parametrized by form factor calculations. As
jVcdj and jVcsj are constrained by CKM unitarity, the
calculation of semileptonic decays ofD-mesons can also be
an important test to look for new physics. The decay D →
Kð�Þlþνl provides accurate determination of jVcsj. Thus,
the theoretical prediction for the form factors and their q2-
dependence need to be tested. A comprehensive review of
experimental and theoretical challenges in study of had-
ronic decays of D and Ds mesons along with required
experimental and theoretical tools [1] provide motivation to
look into semileptonic decays in this paper.
Recently, BESIII [2–5] and BABAR [6] collaborations

have reported precise and improved measurements on
semileptonic form factors and branching fractions on
decays of D → Klþνl and D → πlþνl. A brief review
of the earlier work and present experimental status of
D-meson decays are given in [7]. Also there are variety of
theoretical models available in the literature for the com-
putation of hadronic form factors. One of the oldest models
is based on the quark model known as ISGW model for
CP violation in semileptonic B meson decays based on the
nonrelativistic constituent quark picture [8]. The advanced
version (ISGW2 model [9]) includes the heavy quark
symmetry and has been used for semileptonic decays of
BðsÞ, DðsÞ and Bc mesons. The form factors are also
calculated in lattice quantum chromodynamics (LQCD)
[10–15], light-cone sum rules (LCSR) [16–18] and LCSR
with heavy quark effective theory [19]. The form factor
calculations from LCSR provide good results at low

(q2 ≃ 0) and high (q2 ≃ q2max) momentum transfers. The
form factors have also been calculated for the process D →
Klνl in the entire momentum transfer range [15] using the
LQCD. Also recently the Flavour Lattice Averaging Group
(FLAG) have reported the latest lattice results for deter-
mination of CKM matrices within the standard model [20].
The form factors ofD;B → P; V; S transitions with P, V

and S corresponding to pseudoscalar, vector and scalar
meson respectively have been evaluated in the light front
quark model (LFQM) [21]. The form factors for D → P;V
are also computed in the framework of chiral quark model
(χQM) [22] as well in the phenomenological model based
on heavy meson chiral theory (HMχT) [23,24]. The form
factors of BðsÞ; DðsÞ → π; K; η have been evaluated in three
flavor hard pion chiral perturbation theory [25]. The form
factors for D → πeþνe have been computed in the frame-
work of “charm-changing current” [26]. The authors of

[27,28] have determined the form factors fKðπÞþ by globally
analyzing the available measurements of branching frac-
tions for D → KðπÞeþνe. The vector form factors for D →
Klνl were also parameterized in [29]. The evaluation of
transition form factors and decays of BðsÞ; DðsÞ →
f0ð980Þ; K�

0ð1430Þlνl has been done in [30,31] from
QCD sum rules. The computation of differential branching
fractions forDðsÞ → ðP;V; SÞlνl was also performed using
chiral unitary approach [32,33], generalized linear sigma
model [34,35] and sum rules [36]. Various decay properties
of DðsÞ and BðsÞ are also studied in the formalism of
semirelativistic [37–40] and relativistic [41–43] potential
models.
In this paper, we employ the covariant constituent quark

model (CQM) with built-in infrared confinement [44–49]
to compute the leptonic and semileptonic decays. The form
factors of these transitions are expressed through only few
universal functions. One of the key features of CQM is
access to the entire physical range of momentum transfer.
Our aim is to perform independent calculations of these
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decays including q2 behavior of the transition form factors,
leptonic decay constants of D and K mesons and ratios
of branching fractions for the decay D → Kð�Þlþνl and
D → πlþνl.
This paper is organized as follows. After a brief

introduction of the semileptonic D-meson decays in
Sec. I, in Sec. II we introduce the theoretical framework
of CQM and also discuss the method of extracting the
model parameters. In Sec. III, we give the definition of the
form factors for the decays D → Kð�Þlþνl. In Sec. IV for
numerical results, we first compute the leptonic branching
fractions of Dþ-meson. Next we give numerical results
of the form factors. We also parametrize the form factors
using double pole approximation. From the form factors,
we compute the differential branching fraction for the
D → Kð�Þlþνl, with l ¼ e and μ and the branching
fractions. We also calculate the forward-backward asym-
metry and convexity parameters. We compare our results
with available experimental, lattice and other theoretical
results. Finally, we summarize the present work in Sec. V.

II. MODEL

The CQM is an effective quantum field approach
[44–49] for hadronic interactions based on an effective
Lagrangian of hadrons interacting with their constituent
quarks. In this paper, we restrict ourselves to weak decays
of D-mesons only. The interaction Lagrangian describing
the coupling of mesonMðq1q̄2Þ to the constituent quarks q1
and q̄2 in the framework of CQM is given by

Lint ¼ gMMðxÞ
Z

dx1dx2FMðx; x1; x2Þq̄2ðx2ÞΓMq1ðx1Þ

þ H:c: ð1Þ
where ΓM is the Dirac matrix and projects onto the spin
quantum number of relevant mesonic field MðxÞ. gM is the
coupling constant and FM is the vertex function that is
related to the scalar part of the Bethe-Salpeter amplitude.
FM also characterizes the finite size of the mesons. We
choose the vertex function that satisfies the Lorentz
invariance of the Lagrangian Eq. (1),

FMðx; x1; x2Þ ¼ δ

�
x −

X2
i¼1

wixi

�
ΦMððx1 − x2Þ2Þ ð2Þ

with ΦM is the correlation function of two constituent
quarks with masses mq1 and mq2 and wqi ¼ mqi=ðmq1 þ
mq2Þ such that w1 þ w2 ¼ 1. We choose Gaussian function
for vertex function as

~ΦMð−p2Þ ¼ expðp2=Λ2
MÞ ð3Þ

with the parameterΛM characterized by the finite size of the
meson. In the Euclidian space, we can write p2 ¼ −p2

E, so
that the vertex function has the appropriate falloff behavior

so as to remove the ultraviolet divergence in the loop
integral.
We use the compositeness conditions [50,51] to deter-

mine the coupling strength gM in Eq. (5) that requires the
renormalization constant ZM for the bare state to composite
mesonic state MðxÞ set to zero, i.e.,

ZM ¼ 1 − ~Π0
Mðm2

MÞ ¼ 0; ð4Þ

where ~Π0
M is the derivative of meson mass operator and ZM

is the wave function renormalization constant of the meson
M. Here, Z1=2

M is the matrix element between the physical
state and the corresponding bare state. The above condition
guarantees that the physical state does not contain any bare
quark state i.e. bound state. The constituents are virtual and
are introduced to realize the interaction and as a result the
physical state turns dressed and its mass and wave function
are renormalized.
The meson mass operator Fig. 1 for any meson is defined

as

~ΠMðp2Þ ¼ Ncg2M

Z
d4k

ð2πÞ4i
~Φ2
Mð−k2Þ

× trðΓ1S1ðkþ w1pÞΓ2S2ðk − w2pÞÞ ð5Þ
where Nc ¼ 3 is the number of colors. Γ1, Γ2 are the Dirac
matrices and for scalar, vector and pseudoscalar mesons,
we choose the gamma matrices accordingly. S0s are the
quark propagator and we use the free fermion propagator
for the constituent quark. For the computation of loop
integral in Eq. (5), we write the quark propagator in terms
of Fock-Schwinger representation as

Sqðkþ pÞ ¼ 1

mq − k − p
¼ mq þ kþ p

m2
q − ðkþ pÞ2

¼ ðmq þ kþ pÞ
Z

∞

0

dαe−α½m2
q−ðkþpÞ2�; ð6Þ

where k is the loop momentum and p is the external
momentum. The use of Fock-Schwinger representation
allows to do the tensor integral in an efficient way since

FIG. 1. Diagram describing meson mass operator.
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the loop momenta can be converted into the derivative of
exponential function [49]. All the necessary trace evalu-
ation and loop integrals are done in FORM [52]. For the
remaining integral over the Fock-Schwinger parameters
0 ≤ αi ≤ ∞, we use an additional integration converting
the Fock-Schwinger parameters into a simplex. The trans-
formation reads [53]

Yn
i¼1

Z
∞

0

dαifðα1;…;αnÞ

¼
Z

∞

0

dttn−1
Yn
i¼1

Z
dαiδ

�
1 −

Xn
i¼1

αi

�
fðtα1;…; tαnÞ

ð7Þ
For meson case n ¼ 2.
While the integral over t in Eq. (7) is convergent below

the threshold p2 < ðmq1 þmq2Þ2, its convergence above
threshold p2 ≥ ðmq1 þmq2Þ2 is guaranteed by augmenting
the quark mass by an imaginary part, i.e. mq → mq−
iϵ; ϵ > 0, in the quark propagator Eq. (6). This makes it
possible to rotate the integration variable t to the imaginary
axis t → it. The integral Eq. (7) in turn becomes convergent
but obtains an imaginary part corresponding to quark pair
production. However, by reducing the scale of integration
at the upper limit corresponding to the introduction of an
infrared cutoff

Z
∞

0

dtð…Þ →
Z

1=λ2

0

dtð…Þ; ð8Þ

one can remove all possible thresholds present in the initial
quark diagram [49]. Thus the infrared cutoff parameter λ
effectively guarantees the confinement of quarks within
hadrons.
Before going for the semileptonic decays, we need to

specify the independent model parameters namely size
parameter of meson Λ and constituent quark masses mqi .
These model parameters are determined by fitting calcu-
lated decay constants of basic processes such as leptonic
(Fig. 2) and radiative decays to available experimental data

or LQCD for vector and pseudoscalar mesons. We use the
updated least square fit performed in the recent papers of
the model parameters [54–56] (all in GeV). We take the
infrared cutoff parameter λ to be the same throughout this
study.

mu=d ms mc mb λ

0.241 0.428 1.67 5.05 0.181 GeV

and the size parameters

ΛD ΛD� ΛK ΛK� Λπ

1.6 1.53 1.01 0.80 0.87 GeV

We have listed our results for the leptonic decay

constants of Dð�Þ
ðsÞ , K

ð�Þ and π mesons in the Table I. The

decay constants we use in our calculations match quite well
with Particle Data Group (PDG), LQCD and QCD sum
rules (QCDSR) results.

III. FORM FACTORS

In the standard model of particle physics, semileptonic
decays of any meson is caused by weak force in which one
lepton and corresponding neutrino is produced in addition
to one or more hadrons (Fig. 3).
The invariant matrix element for the semileptonic

D → Kð�Þlþνl decay can be written asFIG. 2. Quark model diagrams for the D-meson leptonic decay.

TABLE I. Leptonic decay constants fH (in MeV).

fH Present Data Reference

fD 206.1 204.6� 5.0 PDG [57]
207.4 (3.8) LQCD [58]
210� 11 QCDSR [59]

fD� 244.3 263� 21 QCDSR [59]
278� 13� 10 LQCD [60]

fDs
257.5 257.5� 4.6 PDG [57]

254 (2) (4) LQCD [61]
250.2� 3.6 LQCD [12]
247.2 (4.1) LQCD [58]
259� 10 QCDSR [59]

fD�
s

272.0 308� 21 QCDSR [59]
311� 9 LQCD [60]

fDs
=fD 1.249 1.258� 0.038 PDG [57]

1.192 (0.22) LQCD [58]
1.23� 0.07 QCDSR [59]

fK 156.0 155.0 (1.9) LQCD [58]
155.37 (34) LQCD [62]
157.9� 1.5 LQCD [12]

fK� 226.8 217� 7 PDG [57]
fπ 130.3 132.3� 1.6 LQCD [12]

130.39 (20) LQCD [62]
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MðD → Kð�ÞlþνlÞ ¼
GFffiffiffi
2

p VcshKð�Þjs̄OμcjDilþOμνl ð9Þ

where Oμ ¼ γμð1 − γ5Þ is the weak Dirac matrix with left chirality. The matrix elements for the above semileptonic
transitions in the covariant quark model are written as

hK½d̄s�ðp2Þjs̄OμcjD½d̄c�ðp1Þi¼NcgDgK

Z
d4k

ð2πÞ4i
~ϕDð−ðkþw13p1Þ2Þ ~ϕKð−ðkþw23p2Þ2Þ

×tr½OμS1ðkþp1Þγ5S3ðkÞγ5S2ðkþp2Þ�
¼Fþðq2ÞPμþF−ðq2Þqμ ð10Þ

hK�
½d̄s�ðp2; ϵνÞjs̄OμcjD½d̄c�ðp1Þi ¼ NcgDgK�

Z
d4k

ð2πÞ4i
~ϕDð−ðkþ w13p1Þ2Þ ~ϕK� ð−ðkþ w23p2Þ2Þ

× tr½OμS1ðkþ p1Þγ5S3ðkÞϵ†νS2ðkþ p2Þ�

¼ ϵ†ν
m1 þm2

½−gμνP · qA0ðq2Þ þ PμPνAþðq2Þ þ qμPνA−ðq2ÞþiεμναβPαqβVðq2Þ� ð11Þ

with P ¼ p1 þ p2, q ¼ p1 − p2 and ϵν to be the polari-
zation vector such that ϵ†ν · p2 ¼ 0 and on-shell conditions
of particles require p2

1 ¼ m2
1 ¼ m2

D and p2
2 ¼ m2

2 ¼ m2
Kð�Þ .

Since there are three quarks involved in this transition, we
use the notation wij ¼ mqj=ðmqi þmqjÞ (i, j ¼ 1, 2, 3)
such that wij þ wji ¼ 1.

IV. NUMERICAL RESULTS

Having determined the necessary model parameters and
form factors, we are now in position to present our
numerical results. We first compute pure leptonic decays
of Dþ-meson and then using the form factors obtained in
Sec. III, we compute branching fractions for semileptonic
D-meson decays.

We compute the pure leptonic decays of Dþ → lþνl
within the standard model. The branching fraction for
leptonic decay is given by

BðDþ → lþνlÞ ¼
G2

F

8π
mDm2

l

�
1−

m2
l

m2
D

�
2

f2DjVcdj2τD ð12Þ

where GF is the fermi coupling constant, mD and ml are
the D-meson and lepton masses respectively and τD is the
D-meson lifetime. fD is the leptonic decay constant of
D-meson from Table I. The resultant branching fractions
for l ¼ τ, μ and e are given in Table II. It is important to
note that the helicity flip factor ð1 −m2

l=m
2
DÞ affects the

leptonic branching fractions because of the different lepton
masses. We also compare our results with the experimental
data. The branching fraction for Dþ → μþνμ shows very
good agreement with BESIII [63] and CLEO-c [64] data.
The branching fractions for Dþ → eþνe and Dþ → τþντ
also fulfill the experimental constraints.
In Figs. 4 and 5, we plot our calculated form factors as

a function of momentum transfer squared in the entire
range 0 ≤ q2 ≤ q2max ¼ ðmD −mKð�Þ Þ2. The multidimen-
sional integral (three-fold for semileptonic case) appear-
ing in Eqs. (10) and (11) are computed numerically using

FIG. 3. Quark model diagrams for the D-meson semileptonic
decay.

TABLE II. Leptonic Dþ-decay branching fraction (τDþ ¼
1.040 × 10−12 s [57]).

Channel Present Data Reference

Dþ → eþνe 8.953 × 10−9 <8.8 × 10−6 PDG [57]
Dþ → μþνμ 3.803 × 10−4 ð3.71� 0.19Þ × 10−4 BESIII [63]

ð3.82� 0.32Þ × 10−4 CLEO-c [64]
Dþ → τþντ 1.013 × 10−3 <1.2 × 10−3 PDG [57]
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Mathematica. Our form factor results are also well
represented by the double-pole parametrization

Fðq2Þ ¼ Fð0Þ
1 − asþ bs2

; s ¼ q2

m2
1

: ð13Þ

The numerical results of form factors and associated
double-pole parameters are listed in Table III. In Fig. 4, we
plot the form factor Fþ for D → KðπÞlþνl decays in the
entire kinematical range of momentum transfer. We com-
pare our plot with the results from LCSR Ref. [18], LFQM

FIG. 4. The results for the form factors appearing in Eq. (10) for semileptonic D → π and D → K transitions. We compare our plot
with the results from LCSR Ref. [18], LFQM Ref. [21], LQCD Ref. [10] as well with the BESIII data Ref. [4].

FIG. 5. The form factors appearing in Eq. (11) for semileptonic D → K� transitions. We compare our results with LFQM Ref. [21],
chiral quark model (χQM) Ref. [22] and heavy meson chiral theory (HMχT) [24].
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Ref. [21], LQCD Ref. [10] as well with the BESIII data
Ref. [4]. Our results at maximum recoil point q2 → 0 are in
very good agreement with the other approaches as well as
with the experimental result. A similar plot can be obtained
for form factor F−. We also plot the vector form factors and
for the comparison of the form factors for D → K�lþνl
transition with other approaches, we need to write our form
factors Eq. (11) in terms of those used in Ref. [17]. The
relations read

A0 ¼
m1 þm2

m1 −m2

A1; Aþ ¼ A2;

A− ¼ 2m2ðm1 þm2Þ
q2

ðA3 − A0Þ; V ¼ V: ð14Þ

The form factors in Eq. (14) also satisfy the constraints

A0ð0Þ ¼ A3ð0Þ
2m2A3ðq2Þ ¼ ðm1þm2ÞA1ðq2Þ− ðm1 −m2ÞA2ðq2Þ: ð15Þ

Figure 5 shows form factors from the present calculation
along with the results from LFQM [21], chiral quark model
(χQM) [22] and with heavy meson chiral theory (HMχT)
[24]. The plot shows that our results of the form factors A0,
A1 and A2 match with LFQM [21] and the vector form
factors match with the χQM [22] where the authors have
used energy scaling parameters extracted from modified
low energy effective theory in H → V transitions. Our
results show little deviation from those obtained using
HMχT [24]. In computation of form factors for q2 ¼ 0

using LCSR, the authors of [18] have used the MS scheme
for c-quark mass and the computation of form factors for
q ≥ 0 is performed in the form of conformal mapping and
series parametrization. In the LFQM [21], the authors have
used the method of double pole approximation, where as in
BESIII [4] and BABAR [6] experiment, the form factors are
parametrized in terms of two and three parameters series
expansion respectively.
The differential branching fractions for semileptonic

D → Klþνl decay are computed using [65,66]

dΓðD → KlþνlÞ
dq2

¼ G2
FjVcsj2jp2jq2v2
12ð2πÞ3m2

1

× ðð1þ δlÞHL þ 3δlHSLÞ ð16Þ

where the helicity flip factor δl ¼ m2
l=2q

2, jp2j ¼
λ2ðm2

1; m
2
2; q

2Þ=2m1 is momentum of K meson in the
rest frame of D-meson and velocity-type parameter
v ¼ 1 −m2

l=q
2.

The bilinear combinations of the helicity amplitudes H
are defined as [48],

HL ¼ jH0j2; HS ¼ jHtj2; HSL ¼ ReðH0H
†
t Þ
ð17Þ

and the helicity amplitudes are expressed via the form
factor in the matrix element as,

Ht ¼
1ffiffiffiffiffi
q2

p ðPqFþ þ q2F−Þ ð18Þ

H0 ¼
2m1jp2jffiffiffiffiffi

q2
p Fþ: ð19Þ

Similarly the differential branching fractions for semi-
leptonic D → K�lþνl decay is computed by [65,66]

dΓðD → K�lþνlÞ
dq2

¼ G2
FjVcsj2jp2jq2v2
12ð2πÞ3m2

1

× ðð1þ δlÞðHU þHLÞ þ 3δlHSÞ:
ð20Þ

The bilinear combinations of the helicity amplitudes H
are defined as [48]

HU ¼ jHþ1þ1j2 þ jH−1−1j2;
HP ¼ jHþ1þ1j2 − jH−1−1j2;
HL ¼ jH00j2; HS ¼ jHt0j2;
HSL ¼ ReðH00H

†
t0Þ ð21Þ

here also the helicity amplitudes are expressed via the form
factor in the matrix element as

Ht0 ¼
1

m1 þm2

m1jp2j
m2

ffiffiffiffiffi
q2

p ðPqð−A0 þ AþÞ þ q2A−Þ ð22Þ

H�1�1 ¼
1

m1 þm2

ð−PqA0 � 2m1jp2jVÞ ð23Þ

H00 ¼
1

m1 þm2

1

2m2

ffiffiffiffiffi
q2

p
× ð−Pqðm2

1 −m2
2 − q2ÞA0 þ 4m2

1jp2j2AþÞ: ð24Þ

In Fig. 6, we present our results for differential branching
fractions of D → Kð�Þlþνl in the entire kinematical range
of momentum transfer. The semileptonic branching

TABLE III. Double pole parameters for the computation of
form factors in Eq. (13).

Fþ F− A0 Aþ A− V

Fð0Þ 0.76 −0.39 2.07 0.67 −0.90 0.89
a 0.72 0.75 0.39 0.84 0.95 0.96
b 0.046 0.032 −0.10 0.087 0.13 0.13
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FIG. 6. Differential branching fractions of the decays D → Kð�Þlþνl.

TABLE IV. Branching fractions of D → Kð�Þlþνl and D → πlþνl (in %).

Channel Present Data Reference

Dþ → K̄0eþνe 8.84 8.60� 0.06� 0.15 BESIII [2]
8.83� 0.10� 0.20 CLEO-c [72]

Dþ → K̄0μþνμ 8.60 8.72� 0.07� 0.18 BESIII [3]
Dþ → π0eþνe 0.619 0.363� 0.08� 0.05 BESIII [2]

0.405� 0.016� 0.009 CLEO-c [72]
Dþ → π0μþνμ 0.607 – –
Dþ → K̄�ð892Þ0eþνe 8.35 – –
Dþ → K̄�ð892Þ0μþνμ 7.94 – –
D0 → K−eþνe 3.46 3.538� 0.033 PDG [57]

3.505� 0.014� 0.033 BESIII [4]
3.50� 0.03� 0.04 CLEO-c [72]
3.45� 0.07� 0.20 Belle [73]

D0 → K−μþνμ 3.36 3.33� 0.13 PDG [57]
3.505� 0.014� 0.033 BESIII

D0 → π−eþνe 0.239 0.2770� 0.0068� 0.0092 BABAR [6]
0.295� 0.004� 0.003 BESIII [4]
0.288� 0.008� 0.003 CLEO-c [72]
0.255� 0.019� 0.016 Belle [73]

D0 → π−μþνμ 0.235 0.238� 0.024 PDG [57]
D0 → K�ð892Þ−eþνe 3.25 2.16� 0.16 PDG [57]
D0 → K�ð892Þ−μþνμ 3.09 1.92� 0.25 PDG [57]
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fractions in Eqs. (16) and (20) are computed by numerically
integrating the differential branching fractions shown in
Fig. 6. The branching fractions for D → Kð�Þlþνl and
D → πlþνl are presented in Table IV. We also compare
our results with experimental results. The results for
BðDþ → K̄0lþνlÞ and BðD0 → K−lþνlÞ, (l ¼ e and μ)
show excellent agreement with the recent BESIII data [2–4]
as well with the other experimental collaborations. Also the
ratios of the different semileptonic decay widths for the
channels D → Klþνl are presented in Table V and our
results are well within the isospin conservation rules
given in Ref. [67]. We also present our results for
BðD0 → K�ð892Þ−lþνeÞ but our results overestimate the
data given in PDG [57]. This deviation of the present study
within the standard model might be explained through
hadronic uncertainty or ratios of differential distributions
for longitudinal and transverse polarizations of these K�

mesons [68]. The FOCUS [69] and CLEO-c [70] experi-
ments have also reported mixing of scalar amplitudes with
dominant vector decays. These observations open up new
possibilities of investigations in charm semileptonic
decays. There have also been attempts to explain these
exclusive decays using R-parity violating supersymmetric
effects [71] and their direct correlation with possible
supersymmetric signals expected from LHC and BESIII
data. We predict the branching fractions for Dþ →
K̄�ð892Þ0lþνe but we do not compare our results since
no experimental results are available for this channel.
We also present our results for branching fractions of

Dþ → π0lþνl and D0 → π−lþνl transitions. Our predic-
tion for BðDþ → π0eþνeÞ is higher than BESIII [2] and
CLEO-c data [72] while the trend is opposite in the case of
BðD0 → π−eþνeÞ. The deviation of the BðDþ → π0eþνeÞ
from experimental and LQCD data might be attributed to
the computed form factors. However, our BðD0 → π−eþνeÞ
is in close proximity to that by Belle [73] and BðD0 →
π−μþνμÞ is in excellent agreement with PDG data [57].
We also list some more physical observables in terms of

helicity amplitudes. We have already shown the computed
differential branching fractions in Fig. 6. Next, the
helicity amplitudes defined above are used to plot the

FIG. 7. Forward-backward asymmetries of the decays D → Kð�Þlþνl.

TABLE V. Ratios of the semileptonic decays of D mesons.

Ratio Value

ΓðD0 → K−eþνeÞ=ΓðDþ → K̄0eþνeÞ 1.02
ΓðD0 → K−μþνμÞ=ΓðDþ → K̄0μþνμÞ 0.99
ΓðDþ → K̄0μþνμÞ=ΓðDþ → K̄0eþνeÞ 0.97
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forward-backward asymmetry in Fig. 7 for D → Kð�Þlþνl
in the entire kinematical range of momentum transfer. We
use the following relation for plotting the forward-back-
ward asymmetry (AFB) [55,65]

AFBðq2Þ ¼ −
3

4

HP þ 4δlHSL

ð1þ δlÞðHU þHLÞ þ 3δlHS
: ð25Þ

It is evident from Fig. 7 that the AFBðq2Þ for D → Klþνl
and D → K�lþνl are similar for both e and μ modes.
AFBðq2Þ → 0 for in the both zero recoil and larger recoil
limits because of the zero recoil relations of the helicity
functions HP ¼ HSL ¼ 0 and longitudinal dominance in
the partial rates at the maximum recoil.
Also the lepton and hadron side convexity parameter are

defined as [55,65]

Cl
F ¼ 3

4

ð1 − 2δlÞðHU − 2HLÞ
ð1þ δlÞðHU þHLÞ þ 3δlHS

ð26Þ

and

Ch
F ¼ −

3

2

ð1þ δlÞðHU − 2HLÞ − 6δlHS

ð1þ δlÞðHU þHLÞ þ 3δlHS
: ð27Þ

The plot for the convexity parameters Eqs. (26) and (27)
as a function of entire momentum transfer range can easily
be obtained. In Table VI, we give the q2 averages of the
above observables. Note that in order to obtain the averages
of these observables, we need to multiply the numerator
and denominator by phase space factor jp2jq2v2. Also in

computation of leptonic and semileptonic branching frac-
tions, forward-backward asymmetry and convexity param-
eters, the values of CKM matrices namely jVcsj and jVcdj,
meson masses, lepton masses and their lifetimes are taken
from PDG [57].

V. CONCLUSION

In this article, we have analyzed the leptonic (Dþ →
eþνe) and semileptonic (D → Kð�Þlþνl, D → πlþνl)
decays using covariant quark model with infrared confine-
ment within the standard model framework. The ratios of
the partial widths are found to be consistent with the isospin
conservation holding within uncertainties in experimental
data. It is interesting to note here that the BðDþ → π0lþνlÞ
deviate from existing data while BðD0 → π−lþνlÞ match
well. Further exploration to this observation may lead to
interesting outcome.
The deviation of branching fractions in case of D →

K�lνl might be understood by underlying hadronic
uncertainty or ratios of differential distributions for longi-
tudinal and transverse polarizations of the K� mesons. We
are looking forward to analyzing D → K�lþνl decay and
expect the experimental facilities to throw more light on
their form factor shapes in forthcoming attempts that will
help in understanding the charm decays and possibly the
dynamics of these systems beyond the standard model.
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For computing the branching fraction for Dþ → π0lþνl using Eq. (20), there was a factor of 1=2 missing. The updated
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0.303%. Accordingly, in the numerical results section, the statement, “Our prediction for BðDþ → π0eþνeÞ is higher than
BESIII [2] and CLEO-c data [72] while the trend is opposite in the case of BðD0 → π−eþνeÞ.” (on page 8) should be read
as, “Our predictions for BðDþ → π0eþνeÞ and BðD0 → π−eþνeÞ are lower than BESIII [2] and CLEO-c data [72] data.”
The other numerical results of the paper are not affected by this unintended error. The conclusion remains unchanged.
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Abstract The mass spectra and decay properties of heavy
quarkonia are computed in nonrelativistic quark-antiquark
Cornell potential model. We have employed the numerical
solution of Schrödinger equation to obtain their mass spectra
using only four parameters namely quark mass (mc, mb) and
confinement strength (Acc̄, Abb̄). The spin hyperfine, spin-
orbit and tensor components of the one gluon exchange inter-
action are computed perturbatively to determine the mass
spectra of excited S, P , D and F states. Digamma, digluon
and dilepton decays of these mesons are computed using the
model parameters and numerical wave functions. The pre-
dicted spectroscopy and decay properties for quarkonia are
found to be consistent with available data from experiments,
lattice QCD and other theoretical approaches. We also com-
pute mass spectra and life time of the Bc meson without addi-
tional parameters. The computed electromagnetic transition
widths of heavy quarkonia and Bc mesons are in tune with
available experimental data and other theoretical approaches.

1 Introduction

Mesonic bound states having both heavy quark and antiquark
(cc̄, bb̄ and cb̄) are among the best tools for understanding the
quantum chromodynamics. Many experimental groups such
as CLEO, LEP, CDF, D0 and NA50 have provided data and
BABAR, Belle, CLEO-III, ATLAS, CMS and LHCb are pro-
ducing and expected to produce more precise data in upcom-
ing experiments. Comprehensive reviews on the status of
experimental heavy quarkonium physics are found in litera-
ture [1–6].

Within open flavor threshold, the heavy quarkonia have
very rich spectroscopy with narrow and experimentally char-
acterized states. The potential between the interacting quarks
within the hadrons demands the understanding of underly-

a e-mail: nrsoni-apphy@msubaroda.ac.in
b e-mail: jnpandya-apphy@msubaroda.ac.in

ing physics of strong interactions. In PDG [7], large amount
of experimental data is available for masses along with
different decay modes. There are many theoretical groups
viz. the lattice quantum chromodynamics (LQCD) [8–18],
QCD [19,20], QCD sum rules [21,22], perturbative QCD
[23], lattice NRQCD [24,25] and effective field theories [26]
that have attempted to explain the production and decays
of these states. Others include phenomenological potential
models such as the relativistic quark model based on quasi-
potential approach [27–33], where the relativistic quasi-
potential including one loop radiative corrections reproduce
the mass spectrum of quarkonium states. The quasi-potential
has also been employed along with leading order radia-
tive correction to heavy quark potential [34–37], relativistic
potential model [38–40] as well as semirelativistic potential
model [41]. In nonrelativistic potential models, there exist
several forms of quark antiquark potentials in the literature.
The most common among them is the coulomb repulsive
plus quark confinement interaction potential. In our previous
work [42–45], we have employed the confinement scheme
based on harmonic approximation along with Lorentz scalar
plus vector potential. The authors of [46–52] have consid-
ered the confinement of power potential Arν with ν vary-
ing from 0.1 to 2.0 and the confinement strength A to vary
with potential index ν. Confinement of the order r2/3 have
also been attempted [53]. Linear confinement of quarks has
been considered by many groups [54–66] and they have
provided good agreement with the experimental data for
quarkonium spectroscopy along with decay properties. The
Bethe–Salpeter approach was also employed for the mass
spectroscopy of charmonia and bottomonia [60,61,67]. The
quarkonium mass spectrum was also computed in the nonrel-
ativistic quark model [68], screened potential model [65,66]
and constituent quark model [69]. There are also other non-
linear potential models that predict the mass spectra of the
heavy quarkonia successfully [70–80].

In 90’s, the nonrelativistic potential models predicted not
only the ground state mass of the tightly bound state of c
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and b̄ in the range of 6.2–6.3 GeV [81,82] but also predicted
to have very rich spectroscopy. In 1998, CDF collaboration
[83] reported Bc mesons in p p̄ collisions at

√
s = 1.8 TeV

and was later confirmed by D0 [84] and LHCb [85] collab-
orations. The LHCb collaboration has also made the most
precise measurement of the life time of Bc mesons [86]. The
first excited state is also reported by ATLAS Collaborations
[87] in p p̄ collisions with significance of 5.2σ .

It is important to show that any given potential model
should be able to compute mass spectra and decay properties
of Bc meson using parameters fitted for heavy quarkonia.
Attempts in this direction have been made in relativistic quark
model based on quasi-potential along with one loop radiative
correction [27], quasistatic and confinement QCD potential
with confinement parameters along with quark masses [88]
and rainbow-ladder approximation of Dyson–Schwinger and
Bethe–Salpeter equations [67].

The interaction potential for mesonic states is difficult
to derive for full range of quark antiquark separation from
first principles of QCD. So most forms of QCD inspired
potential would result in uncertainties in the computation
of spectroscopic properties particularly in the intermediate
range. Different potential models may produce similar mass
spectra matching with experimental observations but they
may not be in mutual agreement when it comes to decay
properties like decay constants, leptonic decays or radia-
tive transitions. Moreover, the mesonic states are identified
with masses along with certain decay channels, therefore
the test for any successful theoretical model is to reproduce
the mass spectrum along with decay properties. Relativis-
tic as well as nonrelativistic potential models have success-
fully predicted the spectroscopy but they are found to differ
in computation of the decay properties [22,47–51,55,78–
80]. In this article, we employ nonrelativistic potential with
one gluon exchange (essentially Coulomb like) plus linear
confinement (Cornell potential) as this form of the poten-
tial is also supported by LQCD [89–91]. We solve the
Schrödinger equation numerically for the potential to get
the spectroscopy of the quarkonia. We first compute the
mass spectra of charmonia and bottomonia states to deter-
mine quark masses and confinement strengths after fitting the
spin-averaged ground state masses with experimental data
of respective mesons. Using the potential parameters and
numerical wave function, we compute the decay properties
such as leptonic decay constants, digamma, dilepton, digluon
decay width using the Van-Royen Weiskopf formula. These
parameters are then used to compute the mass spectra and
life-time of Bc meson. We also compute the electromagnetic
(E1 and M1) transition widths of heavy quarkonia and Bc

mesons.

2 Methodology

Bound state of two body system within relativistic quantum
field is described in Bethe–Salpeter formalism. However, the
Bethe–Salpeter equation is solved only in the ladder approx-
imations. Also, Bethe–Salpeter approach in harmonic con-
finement is successful in low flavor sectors [92,93]. There-
fore the alternative treatment for the heavy bound state is
nonrelativistic. Significantly low momenta of quark and anti-
quark compared to mass of quark-antiquark systemmQ,Q̄ �
�QCD ∼ |p| also constitutes the basis of the nonrelativistic
treatment for the heavy quarkonium spectroscopy. Here, for
the study of heavy bound state of mesons such as cc̄, cb̄ and
bb̄, the nonrelativistic Hamiltonian is given by

H = M + p2

2Mcm
+ VCornell(r) + VSD(r) (1)

where

M = mQ + mQ̄ and Mcm = mQmQ̄

mQ + mQ̄
(2)

where mQ and mQ̄ are the masses of quark and antiquark
respectively, p is the relative momentum of the each quark
and VCornell(r) is the quark-antiquark potential of the type
coulomb plus linear confinement (Cornell potential) given
by

VCornell(r) = −4

3

αs

r
+ Ar. (3)

Here, 1/r term is analogous to the Coulomb type interac-
tion corresponding to the potential induced between quark
and antiquark through one gluon exchange that dominates at
small distances. The second term is the confinement part of
the potential with the confinement strength A as the model
parameter. The confinement term becomes dominant at the
large distances. αs is a strong running coupling constant and
can be computed as

αs(μ
2) = 4π

(
11 − 2

3n f
)

ln
(
μ2/�2

) (4)

where n f is the number of flavors, μ is renormalization
scale related to the constituent quark masses as μ =
2mQmQ̄/(mQ + mQ̄) and � is a QCD scale which is taken
as 0.15 GeV by fixing αs = 0.1185 [7] at the Z -boson mass.

The confinement strengths with respective quark masses
are fine tuned to reproduce the experimental spin averaged
ground state masses of both cc̄ and bb̄ mesons and they are
given in Table 1. We compute the masses of radially and
orbitally excited states without any additional parameters.
Similar work has been done by [47,51,52] and they have con-
sidered different values of confinement strengths for different
potential indices. The Cornell potential has been shown to be
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Table 1 Parameters for quarkonium spectroscopy

mc mc Acc Abb

1.317 GeV 4.584 GeV 0.18 GeV2 0.25 GeV2

independently successful in computing the spectroscopy of
ψ and ϒ families. In this article, we compute the mass spectra
of the ψ and ϒ families along with Bc meson with minimum
number of parameters.

Using the parameters defined in Table 1, we compute
the spin averaged masses of quarkonia. In order to compute
masses of different nmL J states according to different J PC

values, we use the spin dependent part of one gluon exchange
potential (OGEP)VSD(r) perturbatively. The OGEP includes
spin-spin, spin-orbit and tensor terms given by [20,22,59,68]

VSD(r) = VSS(r)

[
S(S + 1) − 3

2

]
+ VLS(r)(L · S)

+VT (r)
[
S(S + 1) − 3(S · r̂)(S · r̂)] (5)

The spin-spin interaction term gives the hyper-fine split-
ting while spin-orbit and tensor terms gives the fine structure
of the quarkonium states. The coefficients of spin dependent
terms of the Eq. (5) can be written as [20]

VSS(r) = 1

3mQmQ̄
∇2VV (r) = 16παs

9mQmQ̄
δ3(r) (6)

VLS(r) = 1

2mQmQ̄r

(
3
dVV (r)

dr
− dVS(r)

dr

)
(7)

VT (r) = 1

6mQmQ̄

(

3
dV 2

V (r)

dr2 − 1

r

dVV (r)

dr

)

(8)

Where VV (r) and VS(r) correspond to the vector and scalar
part of the Cornell potential in Eq. (3) respectively. Using
all the parameters defined above, the Schrödinger equation
is numerically solved using Mathematica notebook utilizing
the Runge–Kutta method [94]. It is generally believed that
the charmonia need to be treated relativistically due to their
lighter masses, but we note here that the computed wave
functions of charmonia using relativistic as well as nonrel-
ativistic approaches do not show significant difference [33].
So we choose to compute the charmonium mass spectra non-
relativistically in present study. The computed mass spectra
of heavy quarkonia and Bc mesons are listed in Tables 2, 3,
4, 5, 6 and 7.

3 Decay properties

The mass spectra of the hadronic states are experimentally
determined through detection of energy and momenta of
daughter particles in various decay channels. Generally, most

phenomenological approaches obtain their model parame-
ters like quark masses and confinement/Coulomb strength
by fitting with the experimental ground states. So it becomes
necessary for any phenomenological model to validate their
fitted parameters through proper evaluation of various decay
rates in general and annihilation rates in particular. In the
nonrelativistic limit, the decay properties are dependent on
the wave function. In this section, we test our parameters and
wave functions to determine various annihilation widths and
electromagnetic transitions.

3.1 Leptonic decay constants

The leptonic decay constants of heavy quarkonia play very
important role in understanding the weak decays. The matrix
elements for leptonic decay constants of pseudoscalar and
vector mesons are given by

〈0|Q̄γ μγ5Q|Pμ(k)〉 = i fPk
μ (9)

〈0|Q̄γ μQ|Pμ(k)〉 = i fV MV ε∗μ (10)

where k is the momentum of pseudoscalar meson, ε∗μ is the
polarization vector of meson. In the nonrelativistic limit, the
decay constants of pseudoscalar and vector mesons are given
by Van Royen-Weiskopf formula [96]

f 2
P/V = 3|RnsP/V (0)|2

πMnsP/V
C̄2(αS). (11)

Here the QCD correction factor C̄2(αS) [97,98]

C̄2(αS) = 1 − αs

π

(

δP,V − mQ − mQ̄

mQ + mQ̄
ln
mQ

mQ̄

)

. (12)

With δP = 2 and δV = 8/3. Using the above relations, we com-
pute the leptonic decay constants f p and fv for charmonia,
bottomonia and Bc mesons. The results are listed in Tables
8, 9, 10, 11, 12 and 13 in comparison with other models
including LQCD.

3.2 Annihilation widths of heavy quarkonia

Digamma, digluon and dilepton annihilation decay widths
of heavy quarkonia are very important in understanding the
dynamics of heavy quarks within the mesons. The mea-
surement of digamma decay widths provides the informa-
tion regarding the internal structure of meson. The decay
ηc → γ γ , χc0,2 → γ γ was reported by CLEO-c [103],
BABAR [104] and then BESIII [105] collaboration have
reported high accuracy data. LQCD is found to underesti-
mate the decay widths of ηc → γ γ and χc0 → γ γ when
compared to experimental data [106,107]. Other approaches
to attempt computation of annihilation rates of heavy quarko-
nia include NRQCD [108–112], relativistic quark model
[31,32], effective Lagrangian [113,114] and next-to-next-to

123
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Table 2 Mass spectrum of S and P-wave charmonia (in GeV)

State Present [27] [65] [67] [76] [39] [73] [59] [68] [70] LQCD [17] PDG [7]

11S0 2.989 2.981 2.984 2.925 2.979 2.980 2.980 2.982 3.088 2.979 2.884 2.984

13S1 3.094 3.096 3.097 3.113 3.097 3.097 3.097 3.090 3.168 3.096 3.056 3.097

21S0 3.602 3.635 3.637 3.684 3.623 3.597 3.633 3.630 3.669 3.600 3.535 3.639

23S1 3.681 3.685 3.679 3.676 3.673 3.685 3.690 3.672 3.707 3.680 3.662 3.686

31S0 4.058 3.989 4.004 – 3.991 4.014 3.992 4.043 4.067 4.011 – –

33S1 4.129 4.039 4.030 3.803 4.022 4.095 4.030 4.072 4.094 4.077 – 4.039

41S0 4.448 4.401 4.264 – 4.250 4.433 4.244 4.384 4.398 4.397 – –

43S1 4.514 4.427 4.281 – 4.273 4.477 4.273 4.406 4.420 4.454 – 4.421

51S0 4.799 4.811 4.459 – 4.446 – 4.440 – – – – –

53S1 4.863 4.837 4.472 – 4.463 – 4.464 – – – – –

61S0 5.124 5.155 – – 4.595 – 4.601 – – – – –

63S1 5.185 5.167 – – 4.608 – 4.621 – – – – –

13P0 3.428 3.413 3.415 3.323 3.433 3.416 3.392 3.424 3.448 3.488 3.412 3.415

13P1 3.468 3.511 3.521 3.489 3.510 3.508 3.491 3.505 3.520 3.514 3.480 3.511

11P1 3.470 3.525 3.526 3.433 3.519 3.527 3.524 3.516 3.536 3.539 3.494 3.525

13P2 3.480 3.555 3.553 3.550 3.556 3.558 3.570 3.556 3.564 3.565 3.536 3.556

23P0 3.897 3.870 3.848 3.833 3.842 3.844 3.845 3.852 3.870 3.947 – 3.918

23P1 3.938 3.906 3.914 3.672 3.901 3.940 3.902 3.925 3.934 3.972 – –

21P1 3.943 3.926 3.916 3.747 3.908 3.960 3.922 3.934 3.950 3.996 – –

23P2 3.955 3.949 3.937 – 3.937 3.994 3.949 3.972 3.976 4.021 4.066 3.927

33P0 4.296 4.301 4.146 – 4.131 – 4.192 4.202 4.214 – – –

33P1 4.338 4.319 4.192 3.912 4.178 – 4.178 4.271 4.275 – – –

31P1 4.344 4.337 4.193 – 4.184 – 4.137 4.279 4.291 – – –

33P2 4.358 4.354 4.211 – 4.208 – 4.212 4.317 4.316 – – –

43P0 4.653 4.698 – – – – – – – – – –

43P1 4.696 4.728 – – – – – – – – – –

41P1 4.704 4.744 – – – – – – – – – –

43P2 4.718 4.763 – – – – – – – – – –

53P0 4.983 – – – – – – – – – – –

53P1 5.026 – – – – – – – – – – –

51P1 5.034 – – – – – – – – – – –

53P2 5.049 – – – – – – – – – – –

leading order QCD correction to χc0,2 → γ γ in the frame-
work of nonrelativistic QCD factorization [115].

The meson decaying into digamma suggests that the spin
can never be one [116,117]. Corresponding digamma decay
width of a pseudoscalar meson in nonrelativistic limit is given
by Van Royen-Weiskopf formula [96,118]

�n1S0→γ γ = 3α2
e e

4
Q |RnsP (0)|2
m2

Q

[
1 + αs

π

(
π2 − 20

3

)]

(13)

�n3P0→γ γ = 27α2
e e

4
Q |R′

nP (0)|2
M4

Q

[
1 + αs

π

(
3π2 − 28

9

)]

(14)

�n3P2→γ γ = 36α2
e e

4
Q |R′

nP(0)|2
5M4

Q

[
1 − 16

3

αs

π

]
(15)

where the bracketed quantities are QCD next-to-leading
order radiative corrections [118,119].

Digluon annihilation of quarkonia is not directly observed
in detectors as digluonic state decays into various hadronic
states making it a bit complex to compute digluon annihila-
tion widths from nonrelativistic approximations derived from
first principles. The digluon decay width of pseudoscalar
meson along with the QCD leading order radiative correction
is given by [113,118–120]
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Table 3 Mass spectrum of D and F-wave charmonia (in GeV)

State Present [27] [65] [67] [76] [39] [73] [59] [68] [70]

13D3 3.755 3.813 3.808 3.869 3.799 3.831 3.844 3.806 3.809 3.798

11D2 3.765 3.807 3.805 3.739 3.796 3.824 3.802 3.799 3.803 3.796

13D2 3.772 3.795 3.807 3.550 3.798 3.824 3.788 3.800 3.804 3.794

13D1 3.775 3.783 3.792 – 3.787 3.804 3.729 3.785 3.789 3.792

23D3 4.176 4.220 4.112 3.806 4.103 4.202 4.132 4.167 4.167 4.425

21D2 4.182 4.196 4.108 – 4.099 4.191 4.105 4.158 4.158 4.224

23D2 4.188 4.190 4.109 – 4.100 4.189 4.095 4.158 4.159 4.223

23D1 4.188 4.105 4.095 – 4.089 4.164 4.057 4.142 4.143 4.222

33D3 4.549 4.574 4.340 – 4.331 – 4.351 – – –

31D2 4.553 3.549 4.336 – 4.326 – 4.330 – – –

33D2 4.557 4.544 4.337 – 4.327 – 4.322 – – –

33D1 4.555 4.507 4.324 – 4.317 – 4.293 – – –

43D3 4.890 4.920 – – – – 4.526 – – –

41D2 4.892 4.898 – – – – 4.509 – – –

43D2 4.896 4.896 – – – – 4.504 – – –

43D1 4.891 4.857 – – – – 4.480 – – –

13F2 3.990 4.041 – – – 4.068 – 4.029 – –

13F3 4.012 4.068 – 3.999 – 4.070 – 4.029 – –

11F3 4.017 4.071 – 4.037 – 4.066 – 4.026 – –

13F4 4.036 4.093 – – – 4.062 – 4.021 – –

23F2 4.378 4.361 – – – – – 4.351 – –

23F3 4.396 4.400 – – – – – 3.352 – –

21F3 4.400 4.406 – – – – – 4.350 – –

23F4 4.415 4.434 – – – – – 4.348 – –

33F2 4.730 – – – – – – – – –

33F3 4.746 – – – – – – – – –

31F3 4.749 – – – – – – – – –

33F4 4.761 – – – – – – – – –

�n1S0→gg = 2α2
s |RnsP (0)|2

3m2
Q

[1 + CQ(αs/π)] (16)

�n3P0→gg = 6α2
s |R′

nP(0)|2
m4

Q

[1 + C0Q(αs/π)] (17)

�n3P2→gg = 4α2
s |R′

nP(0)|2
5m4

Q

[1 + C2Q(αs/π)] (18)

Here, the coefficients in the bracket have values ofCQ = 4.8,
C0Q = 9.5,C2Q = −2.2 for the charm quark andCQ = 4.4,
C0Q = 10.0, C2Q = −0.1 for the bottom quark [118].

The vector mesons have quantum numbers 1−− and can
annihilate into dilepton. The dileptonic decay of vector
meson along with one loop QCD radiative correction is given
by [96,118]

�n3S1→�+�− = 4α2
e e

2
Q |RnsV (0)|2
M2

nsV

[
1 − 16αs

3π

]
(19)

Here, αe is the electromagnetic coupling constant, αs is the
strong running coupling constant in Eq. (4) and eQ is the
charge of heavy quark in terms of electron charge. In above
relations, |RnsP/V (0)| corresponds to the wave function of
S-wave at origin for pseudoscalar and vector mesons while
|R′

nP(0)| is the derivative of P-wave function at origin. The
annihilation rates of heavy quarkonia are listed in Tables 14,
15, 16, 17, 18 and 19.

3.3 Electromagnetic transition widths

The electromagnetic transitions can be determined broadly in
terms of electric and magnetic multipole expansions and their
study can help in understanding the non-perturbative regime
of QCD. We consider the leading order terms i.e. electric (E1)
and magnetic (M1) dipoles with selection rules �L = ±1
and �S = 0 for the E1 transitions while �L = 0 and
�S = ±1 for M1 transitions. We now employ the numerical
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Table 4 Mass spectrum of S and P-wave bottomonia (in GeV)

State Present [64] [27] [66] [67] [77] [40] [73] [69] PDG [7]

11S0 9.428 9.402 9.398 9.390 9.414 9.389 9.393 9.392 9.455 9.398

13S1 9.463 9.465 9.460 9.460 9.490 9.460 9.460 9.460 9.502 9.460

21S0 9.955 9.976 9.990 9.990 9.987 9.987 9.987 9.991 9.990 9999

23S1 9.979 10.003 10.023 10.015 10.089 10.016 10.023 10.024 10.015 10.023

31S0 10.338 10.336 10.329 10.326 – 10.330 10.345 10.323 10.330 –

33S1 10.359 10.354 10.355 10.343 10.327 10.351 10.364 10.346 10.349 10.355

41S0 10.663 10.523 10.573 10.584 – 10.595 10.623 10.558 – –

43S1 10.683 10.635 10.586 10.597 – 10.611 10.643 10.575 10.607 10.579

51S0 10.956 10.869 10.851 10.800 – 10.817 – 10.741 – –

53S1 10.975 10.878 10.869 10.811 – 10.831 – 10.755 10.818 10.876

61S0 11.226 11.097 11.061 10.997 – 11.011 – 10.892 – –

63S1 11.243 11.102 11.088 10.988 – 11.023 – 10.904 10.995 11.019

13P0 9.806 9.847 9.859 9.864 9.815 9.865 9.861 9.862 9.855 9.859

13P1 9.819 9.876 9.892 9.903 9.842 9.897 9.891 9.888 9.874 9.893

11P1 9.821 9.882 9.900 9.909 9.806 9.903 9.900 9.896 9.879 9.899

13P2 9.825 9.897 9.912 9.921 9.906 9.918 9.912 9.908 9.886 9.912

23P0 10.205 10.226 10.233 10.220 10.254 10.226 10.230 10.241 10.221 10.232

23P1 10.217 10.246 10.255 10.249 10.120 10.251 10.255 10.256 10.236 10.255

21P1 10.220 10.250 10.260 10.254 10.154 10.256 10.262 10.261 10.240 10.260

23P2 10.224 10.261 10.268 10.264 – 10.269 10.271 10.268 10.246 10.269

33P0 10.540 10.552 10.521 10.490 – 10.502 – 10.511 10.500 –

33P1 10.553 10.538 10.541 10.515 10.303 10.524 – 10.507 10.513 –

31P1 10.556 10.541 10.544 10.519 – 10.529 – 10.497 10.516 –

33P2 10.560 10.550 10.550 10.528 – 10.540 – 10.516 10.521 –

43P0 10.840 10.775 10.781 – – 10.732 – – – –

43P1 10.853 10.788 10.802 – – 10.753 – – – –

41P1 10.855 10.790 10.804 – – 10.757 – – – –

43P2 10.860 10.798 10.812 – – 10.767 – – – –

53P0 11.115 11.004 – – – 10.933 – – – –

53P1 11.127 11.014 – – – 10.951 – – – –

51P1 11.130 11.016 – – – 10.955 – – – –

53P2 11.135 11.022 – – – 10.965 – – – –

wave function for computing the electromagnetic transition
widths among quarkonia and Bc meson states in order to
test parameters used in present work. For M1 transition, we
restrict our calculations for transitions among S-waves only.
In the nonrelativistic limit, the radiative E1 and M1 widths
are given by [4,54,55,124,125]

�
(
n2S+1Li Ji → n′2S+1L f J f + γ

)

= 4αe〈eQ〉2ω3

3
(2J f + 1)SE1

i f |ME1
i f |2 (20)

�
(
n3S1 → n′1S0 + γ

)
= αeμ

2ω3

3
(2J f + 1)|MM1

i f |2
(21)

where, mean charge content 〈eQ〉 of the QQ̄ system, mag-
netic dipole moment μ and photon energy ω are given by

〈eQ〉 =
∣∣∣∣
∣
mQ̄eQ − eQ̄mQ

mQ + mQ̄

∣∣∣∣
∣

(22)

μ = eQ
mQ

− eQ̄
mQ̄

(23)

and

ω = M2
i − M2

f

2Mi
(24)
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Table 5 Mass spectrum of D and F-wave bottomonia (in GeV)

State Present [64] [27] [66] [67] [77] [40] [73] [69] PDG [7]

13D3 10.073 10.115 10.166 10.157 10.232 10.156 10.163 10.177 10.127 –

11D2 10.074 10.148 10.163 10.153 10.194 10.152 10.158 10.166 10.123 –

13D2 10.075 10.147 10.161 10.153 10.145 10.151 10.157 10.162 10.122 10.163

13D1 10.074 10.138 10.154 10.146 – 10.145 10.149 10.147 10.117 –

23D3 10.423 10.455 10.449 10.436 – 10.442 10.456 10.447 10.422 –

21D2 10.424 10.450 10.445 10.432 – 10.439 10.452 10.440 10.419 –

23D2 10.424 10.449 10.443 10.432 – 10.438 10.450 10.437 10.418 –

23D1 10.423 10.441 10.435 10.425 – 10.432 10.443 10.428 10.414 –

33D3 10.733 10.711 10.717 – – 10.680 – 10.652 – –

31D2 10.733 10.706 10.713 – – 10.677 – 10.646 – –

33D2 10.733 10.705 10.711 – – 10.676 – 10.645 – –

33D1 10.731 10.698 10.704 – – 10.670 – 10.637 – –

43D3 11.015 10.939 10.963 – – 10.886 – 10.817 – –

41D2 11.015 10.935 10.959 – – 10.883 – 10.813 – –

43D2 11.016 10.934 10.957 – – 10.882 – 10.811 – –

43D1 11.013 10.928 10.949 – – 10.877 – 10.805 – –

13F2 10.283 10.350 10.343 10.338 – – 10.353 – 10.315 –

13F3 10.287 10.355 10.346 10.340 10.302 – 10.356 – 10.321 –

11F3 10.288 10.355 10.347 10.339 10.319 – 10.356 – 10.322 –

13F4 10.291 10.358 10.349 10.340 – – 10.357 – – –

23F2 10.604 10.615 10.610 – – – 10.610 – – –

23F3 10.607 10.619 10.614 – – – 10.613 – – –

21F3 10.607 10.619 10.647 – – – 10.613 – – –

23F4 10.609 10.622 10.617 – – – 10.615 – – –

33F2 10.894 10.850 – – – – – – – –

33F3 10.896 10.853 – – – – – – – –

31F3 10.897 10.853 – – – – – – – –

33F4 10.898 10.856 – – – – – – – –

respectively. Also the symmetric statistical factor is given by

SE1
i f = max(Li , L f )

{
Ji 1 J f
L f S Li

}2

. (25)

The matrix element |Mi f | for E1 and M1 transition can be
written as

∣∣∣ME1
i f

∣∣∣ = 3

ω

〈
f
∣∣∣
ωr

2
j0

(ωr

2

)
− j1

(ωr

2

)∣∣∣ i
〉

(26)

and

∣
∣∣MM1

i f

∣
∣∣ =

〈
f
∣
∣∣ j0

(ωr

2

)∣
∣∣ i

〉
(27)

The electromagnetic transition widths are listed in Tables 20,
21, 22, 23, 24 and 25 and also compared with experimental
results as well as theoretical predictions.

3.4 Weak decays of Bc mesons

The decay modes of Bc mesons are different from charmonia
and bottomonia because of the inclusion of different flavor
quarks. Their decay properties are very important probes for
the weak interaction as Bc meson decays only through weak
decays, therefore have relatively quite long life time. The
pseudoscalar state can not decay via strong or electromag-
netic decays because of this flavor asymmetry.

In the spectator model [126], the total decay width of Bc

meson can be broadly classified into three classes. (i) Decay
of b quark considering c quark as a spectator, (ii) Decay of c
quark consideringb quark as a spectator and (iii) Annihilation
channel Bc → �+ν�. The total width is given by

�(Bc → X) = �(b → X) + �(c → X) + �(Anni) (28)

In the calculations of total width we have not considered the
interference among them as all these decays lead to different
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Table 6 Mass spectrum of S and P-wave Bc meson (in GeV)

State Present [46] [27] [63] [95] PDG [7]

11S0 6.272 6.278 6.272 6.271 6.275 6.275

13S1 6.321 6.331 6.333 6.338 6.314 –

21S0 6.864 6.863 6.842 6.855 6.838 6.842

23S1 6.900 6.873 6.882 6.887 6.850 –

31S0 7.306 7.244 7.226 7.250 – –

33S1 7.338 7.249 7.258 7.272 – –

41S0 7.684 7.564 7.585 – – –

43S1 7.714 7.568 7.609 – – –

51S0 8.025 7.852 7.928 – – –

53S1 8.054 7.855 7.947 – – –

61S0 8.340 8.120 – – – –

63S1 8.368 8.122 – – – –

13P0 6.686 6.748 6.699 6.706 6.672 –

13P1 6.705 6.767 6.750 6.741 6.766 –

11P1 6.706 6.769 6.743 6.750 6.828 –

13P2 6.712 6.775 6.761 6.768 6.776 –

23P0 7.146 7.139 7.094 7.122 6.914 –

23P1 7.165 7.155 7.134 7.145 7.259 –

21P1 7.168 7.156 7.094 7.150 7.322 –

23P2 7.173 7.162 7.157 7.164 7.232 –

33P0 7.536 7.463 7.474 – – –

33P1 7.555 7.479 7.510 – – –

31P1 7.559 7.479 7.500 – – –

33P2 7.565 7.485 7.524 – – –

43P0 7.885 – 7.817 – – –

43P1 7.905 – 7.853 – – –

41P1 7.908 – 7.844 – – –

43P2 7.915 – 7.867 – – –

53P0 8.207 – – – –

53P1 8.226 – – – –

51P1 8.230 – – – –

53P2 8.237 – – – –

channel. In the spectator approximation, the inclusive decay
width of b and c quark is given by

�(b → X) = 9G2
F |Vcb|2m5

b

192π3 (29)

�(c → X) = 9G2
F |Vcs |2m5

c

192π3 (30)

�(Anni) = G2
F

8π
|Vbc|2 f 2

BcMBcm
2
q

(

1 − m2
q

MB2
c

)2

Cq (31)

where Cq = 3|Vcs | for Ds mesons and mq is the mass of
heaviest fermions. Vcs and Vcb are the CKM matrices and
we have taken the value of CKM matrices from the PDG.
G f is the Fermi coupling constant. Here we have used the

Table 7 Mass spectrum of D and F-wave Bc meson (in GeV)

State Present [46] [27] [63] [95]

13D3 6.990 7.026 7.029 7.045 6.980

11D2 6.994 7.035 7.026 7.041 7.009

13D2 6.997 7.025 7.025 7.036 7.154

13D1 6.998 7.030 7.021 7.028 7.078

23D3 7.399 7.363 7.405 – –

21D2 7.401 7.370 7.400 – –

23D2 7.403 7.361 7,399 – –

23D1 7.403 7.365 7.392 – –

33D3 7.761 – 7.750 – –

31D2 7.762 – 7.743 – –

33D2 7.764 – 7.741 – –

33D1 7.762 – 7.732 – –

43D3 8.092 – – – –

41D2 8.093 – – – –

43D2 8.094 – – – –

43D1 8.091 – – – –

13F2 7.234 – 7.273 7.269 –

13F3 7.242 – 7.269 7.276 –

11F3 7.241 – 7.268 7.266 –

13F4 7.244 – 7.277 7.271 –

23F2 7.607 – 7.618 – –

23F3 7.615 – 7.616 – –

21F3 7.614 – 7.615 – –

23F4 7.617 – 7.617 – –

33F2 7.946 – – – –

33F3 7.954 – – – –

31F3 7.953 – – – –

33F4 7.956 – – – –

model quark masses, Bc meson mass and decay constants for
the computation of total width. Here we compute the decay
width of Bc meson using Eq. (28) and corresponding life
time. The computed life time comes out to be 0.539 × 10−12

s which is in very good agreement with the world averaged
mean life time (0.507 ± 0.009) × 10−12 s [7].

4 Numerical results and discussion

Having determined the confinement strengths and quark
masses, we are now in position to present our numerical
results. We first compute the mass spectra of heavy quarko-
nia and Bc meson. In most of the potential model compu-
tations, the confinement strength is fixed by experimental
ground state masses for cc̄, bb̄ and cb̄ independently. We
observe here that the confinement strength A for Bc meson
is arithmetic mean of those for cc̄ and bb̄ which discards the
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Table 8 Pseudoscalar decay constant of charmonia (in MeV)

State f p [52] [99] [68] LQCD [100] QCDSR [100] PDG [7]

1S 350.314 363 378 402 387(7)(2) 309 ± 39 335 ± 75

2S 278.447 275 82 240 – – –

3S 249.253 239 206 193 – – –

4S 231.211 217 87 – – – –

5S 218.241 202 – – – –

6S 208.163 197 – – – – –

Table 9 Vector decay constant of charmonia (in MeV)

State fv [52] [99] [68] LQCD [100] QCDSR [100] PDG [7]

1S 325.876 338 411 393 418(8)(5) 401 ± 46 416 ± 6

2S 257.340 254 155 293 – – 304 ± 4

3S 229.857 220 188 258 – – –

4S 212.959 200 262 – – – –

5S 200.848 186 – – – – –

6S 191.459 175 – – – – –

Table 10 Pseudoscalar decay constant of bottomonia (in MeV)

State f p [52] [99] [43] [68]

1S 646.025 744 756 711 599

2S 518.803 577 285 – 411

3S 474.954 511 333 – 354

4S 449.654 471 40 – –

5S 432.072 443 – – –

6S 418.645 422 – – –

Table 11 Vector decay constant of bottomonia (in MeV)

State fv [52] [99] [68] [101] LQCD [102] PDG [7]

1S 647.250 706 707 665 498 ± (20) 649(31) 715 ± 5

2S 519.436 547 393 475 366 ± (27) 481(39) 498 ± 8

3S 475.440 484 9 418 304 ± (27) – 430 ± 4

4S 450.066 446 20 388 259 ± (22) – 336 ± 18

5S 432.437 419 – 367 228 ± (16) – –

6S 418.977 399 – 351 – – –

Table 12 Pseudoscalar decay constant of Bc meson (in MeV)

State f p [52] [30] [22] [82] [95]

1S 432.955 465 503 460 ± (60) 500 554.125

2S 355.504 361 – – –

3S 325.659 319 – – –

4S 307.492 293 – – –

5S 294.434 275 – – –

6S 284.237 261 – – –
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Table 13 Vector decay constant of Bc meson (in MeV)

State fv [52] [30] [22] [82]

1S 434.642 435 433 460 ± (60) 500

2S 356.435 337 – – –

3S 326.374 297 – – –

4S 308.094 273 – – –

5S 294.962 256 – – –

6S 284.709 243 – – –

Table 14 Digamma decay width of S and P-wave charmonia (in keV)

State �γγ [76] [32] [68] [121] PDG [7]

11S0 7.231 8.5 5.5 7.18 7.14 ± 0.95 5.1 ± 0.4

21S0 5.507 2.4 1.8 1.71 4.44 ± 0.48 2.15 ± 1.58

31S0 4.971 0.88 – 1.21 – –

41S0 4.688 – – – – –

51S0 4.507 – – – – –

61S0 4.377 – – – – –

13P0 8.982 2.5 2.9 3.28 – 2.34 ± 0.19

13P2 1.069 0.31 0.50 – – 0.53 ± 0.4

23P0 9.111 1.7 1.9 – – –

23P2 1.084 0.23 0.52 – – –

33P0 9.104 1.2 – – – –

33P2 1.0846 0.17 – – – –

43P0 9.076 – – – – –

43P2 1.080 – – – – –

53P0 9.047 – – – – –

53P2 1.077 – – – – –

Table 15 Digamma decay width of S and P-wave bottomonia (in keV)

State �γγ [77] [62] [32] [68] [121]

11S0 0.387 0.527 0.214 0.35 0.23 0.384 ± 0.047

21S0 0.263 0.263 0.121 0.15 0.07 0.191 ± 0.025

31S0 0.229 0.172 0.906 0.10 0.04 –

41S0 0.212 0.105 0.755 – – –

51S0 0.201 0.121 – – – –

61S0 0.193 0.050 – – – –

13P0 0.0196 0.050 0.0208 0.038 – –

13P2 0.0052 0.0066 0.0051 0.008 – –

23P0 0.0195 0.037 0.0227 0.029 – –

23P2 0.0052 0.0067 0.0062 0.006 – –

33P0 0.0194 0.037 – – – –

33P2 0.0051 0.0064 – – – –

43P0 0.0192 – – – – –

43P2 0.0051 – – – – –

53P0 0.0191 – – – – –

53P2 0.0050 – – – – –
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Table 16 Digluon decay width of S and P-wave charmonia (in MeV)

State �gg [70] [121] PDG [7]

11S0 35.909 22.37 19.60 26.7 ± 3.0

21S0 27.345 16.74 12.1 14.7 ± 0.7

31S0 24.683 14.30 – –

41S0 23.281 – – –

51S0 22.379 – – –

61S0 23.736 – – –

13P0 37.919 9.45 – 10.4 ± 0.7

13P2 3.974 2.81 – 2.03 ± 0.12

23P0 38.462 10.09 – –

23P2 4.034 7.34 – –

33P0 38.433 – – –

33P2 4.028 – – –

43P0 38.315 – – –

43P2 4.016 – – –

53P0 39.191 – – –

53P2 4.003 – – –

need to introduce additional confinement strength param-
eter for computation of Bc spectra. Similar approach has
been used earlier within QCD potential model [88]. Using
model parameters and numerical wave function we com-
pute the various decay properties of heavy quarkonia and
Bc mesons namely leptonic decay constants, annihilation
widths and electromagnetic transitions. In Tables 2 and 3,
we present our result for charmonium mass spectra. We com-
pare our results with PDG data [7], lattice QCD [17] data,

Table 17 Digluon decay width of S and P-wave bottomonia (in MeV)

State �gg [47] [121] [122]

11S0 5.448 17.945 6.98 12.46

21S0 3.710 – 3.47 –

31S0 3.229 – – –

41S0 2.985 – – –

51S0 2.832 – – –

61S0 2.274 – – –

13P0 0.276 5.250 – 2.15

13P2 0.073 0.822 – 0.22

23P0 0.275 – – –

23P2 0.073 – – –

33P0 0.273 – – –

33P2 0.072 – – –

43P0 0.271 – – –

43P2 0.072 – – –

53P0 0.269 – – –

53P2 0.071 – – –

relativistic quark model [27], nonrelativistic quark model
[65,68], QCD relativistic functional approach [67], relativis-
tic potential model [39] and nonrelativistic potential models
[59,70,73,76]. Our results for S-wave are in excellent agree-
ment with the experimental data [7]. We determine the mass
difference for S-wave charmonia i.e. MJ/ψ − Mηc = 105
MeV and Mψ(2S)−Mηc(2S) = 79 MeV while that from exper-
imental data are 113 and 47 MeV respectively [7]. Our results
for P-waves are also consistent with the PDG data [7] as well

Table 18 Dilepton decay width of charmonia (in keV)

State ��+�− [73] [52] [39] [31] PDG [7]

1S 2.925 4.95 6.99 1.89 5.4 5.547 ± 0.14

2S 1.533 1.69 3.38 1.04 2.4 2.359 ± 0.04

3S 1.091 0.96 2.31 0.77 – 0.86 ± 0.07

4S 0.856 0.65 1.78 0.65 – 0.58 ± 0.07

5S 0.707 0.49 1.46 – – –

6S 0.602 0.39 1.24 – – –

Table 19 Dilepton decay width of bottomonia (in keV)

State ��+�− [73] [40] [52] [31] [123] PDG [7]

1S 1.098 1.20 1.33 1.61 1.3 0.98 1.340 ± 0.018

2S 0.670 0.52 0.62 0.87 0.5 0.41 0.612 ± 0.011

3S 0.541 0.33 0.48 0.66 – 0.27 0.443 ± 0.008

4S 0.470 0.24 0.40 0.53 – 0.20 0.272 ± 0.029

5S 0.422 0.19 – 0.44 – 0.16 –

6S 0.387 0.16 – 0.39 – 0.12 –
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Table 20 E1 transition width of charmonia (in keV)

Transition Present [39] [30] [76] [65] PDG [7]

23S1 → 13P0 21.863 45.0 51.7 74 22 29.8 ± 1.5

23S1 → 13P1 43.292 40.9 44.9 62 42 27.9 ± 1.5

23S1 → 13P2 62.312 26.5 30.9 43 38 26 ± 1.5

21S0 → 11P1 36.197 8.3 8.6 146 49 –

33S1 → 23P0 31.839 87.3 – – – –

33S1 → 23P1 64.234 65.7 – – – –

33S1 → 23P2 86.472 31.6 – – – –

31S0 → 21P1 51.917 – – – – –

33S1 → 13P0 46.872 1.2 – – – –

33S1 → 13P1 107.088 2.5 – – – –

33S1 → 13P2 163.485 3.3 – – – –

31S0 → 11P1 178.312 – – – – –

13P0 → 13S1 112.030 142.2 161 167 284 119.5 ± 8

13P1 → 13S1 146.317 287.0 333 354 306 295 ± 13

13P2 → 13S1 157.225 390.6 448 473 172 384.2 ± 16

11P1 → 11S0 247.971 610.0 723 764 361 357 ± 280

23P0 → 23S1 70.400 53.6 – 61 – –

23P1 → 23S1 102.672 208.3 – 103 – –

23P2 → 23S1 116.325 358.6 – 225 – –

21P1 → 21S0 163.646 – – 309 – –

23P0 → 13S1 173.324 20.8 – 74 – –

23P1 → 13S1 210.958 28.4 – 83 – –

23P2 → 13S1 227.915 33.2 – 101 – –

21P1 → 11S0 329.384 – – 134 – –

13D1 → 13P0 161.504 – 423 486 272 172 ± 30

13D1 → 13P1 93.775 – 142 150 138 70 ± 17

13D1 → 13P2 5.722 – 5.8 5.8 7.1 ≤ 21

13D2 → 13P1 165.176 317.3 297 342 285 –

13D2 → 13P2 50.317 65.7 62 70 91 –

13D3 → 13P2 175.212 62.7 252 284 350 –

11D2 → 11P1 205.93 – 335 575 362 –

as LQCD [17] with less than 2% deviation. Since experimen-
tal/LQCD results are not available for P-wave charmonia
beyond n = 2 states, we compare our results with the rela-
tivistic quark model [27] and it is also observed to have 1–2
% deviation throughout the spectra. For charmonia, only 1P
states are available and for 2P only one state is available
namely χc2. Our results for 1P and 2P states are also satis-
factory. We also list the mass spectra of D and F wave and
find it to be consistent with the theoretical predictions. Over-
all, computed charmonium spectra is consistent with PDG
and other theoretical models.

In Tables 4 and 5, we compare our results of bottomonium
spectra with PDG data [7], relativistic quark model [27,64],
nonrelativistic quark model [66], QCD relativistic functional

approach [67], relativistic potential model [40], nonrelativis-
tic potential models [73,77] and covariant constituent quark
model [69]. Similarly for S-wave bottomonia, up to n = 3
vector states are known experimentally and for pseudoscalar
states, only n = 1 and 2 are available. Our results for ϒ(1S)

and ϒ(3S) are in good agreement with the PDG data while
for ϒ(2S), ϒ(4S) and ϒ(5S), slight deviation (within 1%) is
observed. Our results for ηb(1S) and ηb(3S) also match well
with less than 0.5% deviation. We obtain Mϒ(1S)−Mηb = 35
MeV and for Mϒ(2S) − Mηb(2S) = 24 MeV against the PDG
data of 62 and 24 MeV respectively. For P-wave, 1P and
2P states are reported and for 3P , only χb1 is reported. Our
results for 1P bottomonia deviate by � 0.3% from the experi-
mental results but for 2P , they are quite satisfactory and devi-
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Table 21 E1 transition width of bottomonia (in keV)

Transition Present [39] [30] [77] [66] PDG [7]

23S1 → 13P0 2.377 1.15 1.65 1.67 1.09 1.22 ± 0.11

23S1 → 13P1 5.689 1.87 2.57 2.54 2.17 2.21 ± 0.19

23S1 → 13P2 8.486 1.88 2.53 2.62 2.62 2.29 ± 0.20

21S0 → 11P1 10.181 4.17 3.25 6.10 3.41 –

33S1 → 23P0 3.330 1.67 1.65 1.83 1.21 1.20 ± 0.12

33S1 → 23P1 7.936 2.74 2.65 2.96 2.61 2.56 ± 0.26

33S1 → 23P2 11.447 2.80 2.89 3.23 3.16 2.66 ± 0.27

33S1 → 13P0 0.594 0.03 0.124 0.07 0.097 0.055 ± 0.010

33S1 → 13P1 1.518 0.09 0.307 0.17 0.0005 0.018 ± 0.010

33S1 → 13P2 2.354 0.13 0.445 0.15 0.14 0.20 ± 0.03

31S0 → 11P1 3.385 0.03 0.770 1.24 0.67 –

31S0 → 21P1 13.981 – 3.07 11.0 4.25 –

13P2 → 13S1 57.530 31.2 29.5 38.2 31.8 –

13P1 → 13S1 54.927 27.3 37.1 33.6 31.9 –

13P0 → 13S1 49.530 22.1 42.7 26.6 27.5 –

11P1 → 11S0 72.094 37.9 54.4 55.8 35.8 –

23P2 → 23S1 28.848 16.8 18.8 18.8 15.5 15.1 ± 5.6

23P1 → 23S1 26.672 13.7 15.9 15.9 15.3 19.4 ± 5.0

23P0 → 23S1 23.162 9.90 11.7 11.7 14.4 –

21P1 → 21S0 35.578 – 23.6 24.7 16.2 –

23P2 → 13S1 29.635 7.74 8.41 13.0 12.5 9.8 ± 2.3

23P1 → 13S1 28.552 7.31 8.01 12.4 10.8 8.9 ± 2.2

23P0 → 13S1 26.769 6.69 7.36 11.4 5.4 –

21P1 → 11S0 34.815 – 9.9 15.9 16.1 –

13D1 → 13P0 9.670 – 24.2 23.6 19.8 –

13D1 → 13P1 6.313 – 12.9 12.3 13.3 –

13D1 → 13P2 0.394 – 0.67 0.65 1.02 –

13D2 → 13P1 11.489 19.3 24.8 23.8 21.8 –

13D2 → 13P2 3.583 5.07 6.45 6.29 7.23 –

13D3 → 13P2 14.013 21.7 26.7 26.4 32.1 –

11D2 → 11P1 14.821 – 30.2 42.3 30.3 –

ating by 0.2% only from the PDG data. Our result for ϒ(1D)

also agrees well with the experimental data with 0.8% devi-
ation. The F-wave mass spectra is also in good agreement
with the theoretical predictions. Looking at the comparison
with PDG data Ref. [7] and relativistic quark model Ref.
[27], present quarkonium mass spectra deviate less than 2%
for charmonia and less than 1% for bottomonia.

We now employ the quark masses and confinement
strengths used for computing mass spectra of quarkonia to
predict the spectroscopy of Bc mesons without introducing
any additional parameter. Our results are tabulated in Tables
6 and 7. For Bc mesons, only 0−+ states are experimentally
observed for n = 1 and 2 and our results are in very good

agreement with the experimental results with less than 0.3 %
error.

We note here that the masses of orbitally excited states
(especially n = 1 states) of charmonia are systematically
lower than the other models and experimental data. This ten-
dency decreases as one moves to higher n states. Absence of
similar trend in case of Bc and bottomonia systems suggests
that relativistic treatment might improve the results in lower
energy regime of charmonia.

Using the mass spectra of heavy quarkonia and Bc meson,
we plot the Regge trajectories in (J, M2) and (nr , M2) planes
where nr = n − 1. We use the following relations [27]

J = αM2 + α0 (32)

nr = βM2 + β0 (33)
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Table 22 E1 transition width of Bc meson (in keV)

Transition Present [30] [63] [46]

23S1 → 13P0 4.782 5.53 2.9 0.94

23S1 → 13P1 11.156 7.65 4.7 1.45

23S1 → 13P2 16.823 7.59 5.7 2.28

21S0 → 11P1 18.663 4.40 6.1 3.03

33S1 → 23P0 7.406 – – –

33S1 → 23P1 17.049 – – –

33S1 → 23P2 25.112 – – –

33S1 → 13P0 6.910 – – –

33S1 → 13P1 17.563 – – –

33S1 → 13P2 27.487 – – –

31S0 → 11P1 38.755 – – –

31S0 → 21P1 27.988 – – –

13P2 → 13S1 55.761 122 83 64.24

13P1 → 13S1 53.294 87.1 11 51.14

13P0 → 13S1 46.862 75.5 55 58.55

11P1 → 11S0 71.923 18.4 80 72.28

23P2 → 23S1 41.259 75.3 55 64.92

23P1 → 23S1 38.533 45.3 45 50.40

23P0 → 23S1 38.308 34.0 42 55.05

21P1 → 21S0 52.205 13.8 52 56.28

23P2 → 13S1 60.195 – 14 –

23P1 → 13S1 57.839 – 5.4 –

23P0 → 13S1 52.508 – 1.0 –

21P1 → 11S0 74.211 – 19 –

13D1 → 13P0 44.783 133 55 –

13D1 → 13P1 28.731 65.3 28 –

13D1 → 13P2 1.786 3.82 1.8 –

13D2 → 13P1 51.272 139 64 –

13D2 → 13P2 16.073 23.6 15 –

13D3 → 13P2 60.336 149 78 –

11D2 → 11P1 66.020 143 63 –

where α, β are slopes and α0, β0 are the intercepts that can
be computed using the methods given in Ref. [27]. In Figs.
1, 2 and 3, we plot the Regge trajectories. Regge trajectories
from present approach and relativistic quark model [27] show
similar trend i.e. for charmonium spectra, the computed mass
square fits very well to a linear trajectory and found to be
almost parallel and equidistant in both the planes. Also, for
bottomonia and Bc mesons, we observe the nonlinearity in
the parent trajectories. The nonlinearity increases as we go
from cb̄ to bb̄mesons indicating increasing contribution from
the inter-quark interaction over confinement.

According to the first principles of QCD, while the one-
gluon-exchange interaction gives rise to employment of
Coulomb potential with a strength proportional to the strong

Table 23 M1 transition width of charmonia (in keV)

Transition Present [39] [30] [65] [75] PDG [7]

13S1 → 11S0 2.722 2.7 1.05 2.39 3.28 1.58 ± 0.37

23S1 → 21S0 1.172 1.2 0.99 0.19 1.45 0.21 ± 0.15

23S1 → 11S0 7.506 0.0 0.95 7.80 – 1.24 ± 0.29

33S1 → 31S0 9.927 – – 0.088 – –

Table 24 M1 transition width of bottomonia (in eV)

Transition Present [39] [30] [66] [75] PDG [7]

13S1 → 11S0 37.668 4.0 5.8 10 15.36 –

23S1 → 21S0 5.619 0.05 1.40 0.59 1.82 –

23S1 → 11S0 77.173 0.0 6.4 66 – 12.5 ± 4.9

33S1 → 31S0 2.849 – 0.8 3.9 – –

33S1 → 21S0 36.177 – 1.5 11 – ≤ 14

33S1 → 11S0 76.990 – 10.5 71 – 10 ± 2

Table 25 M1 transition width of Bc meson (in eV)

Transition Present [30] [63] [46]

13S1 → 11S0 53.109 33 80 2.2

23S1 → 21S0 21.119 17 10 0.014

23S1 → 11S0 481.572 428 600 495

21S0 → 13S1 568.346 488 300 1092

running coupling constant at very short distances, nonpertur-
bative effect like confinement becomes prominent at larger
distances. Charmonium belongs to neither purely nonrela-
tivistic nor the relativistic regime where chiral symmetry
breaking is more significant from physics point of view.
Though Lattice QCD calculations in the quenched approx-
imation have suggested a linearly increasing potential in
the confinement range [8–18], a specific form of interac-
tion potential in the full range is not yet known. At short
distances relativistic effects are more important as they give
rise to quark-antiquark pairs from the vacuum that in turn
affect the nonrelativistic Coulomb interaction in the presence
of sea quarks. The mass spectra of quarkonia is not sensitive
to these relativistic effects at short distances. However, the
decay properties show significant difference with inclusion
of relativistic corrections. We have used the most accepted
available correction terms for computation of decay proper-
ties [113,118–120] that improves the results significantly in
most cases.

Using the potential parameters and numerical wave func-
tion, we compute the various decay properties of heavy
quarkonia. We first compute the leptonic decay constants of
pseudoscalar and vector mesons and our numerical results
are tabulated in Tables 8, 9, 10, 11, 12 and 13. For the case
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Fig. 1 Parent and daughter Regge trajectories (J, M2) for charmonia (left), bottomonia (middle) and Bc (right) mesons with natural parity
(P = (−1)J )

Fig. 2 Parent and daughter Regge trajectories (J, M2) for charmonia (left), bottomonia (middle) and Bc (right) mesons with unnatural parity
(P = (−1)J+1)

Fig. 3 Parent and daughter Regge trajectories (nr → M2) for charmonia (left), bottomonia (middle) and Bc (right) mesons

of charmonia, our results are higher than those using LQCD
and QCDSR [100]. In order to overcome this discrepancy, we
include the QCD correction factors given in Ref. [97] and the
results are tabulated in Tables 8 and 9. After introducing the
correction factors our results match with PDG, LQCD and
QCDSR [100] along with other theoretical models. We also
compute the decay constants for excited S-wave charmonia
and we found that our results are consistent with the other
theoretical predictions. We also compute the decay constants
of bottomonia and Bc mesons. In this case, our results match
with other theoretical predictions without incorporating the
relativistic corrections. In the case of vector decay constants
of bottomonia, our results are very close to experimental
results as well as those obtained in LQCD Ref. [102]. For
the decay constants of Bc mesons, we compare our results
with nonrelativistic potential models [52,95].

Next we compute the digamma, digluon and dilepton
decay widths using the relations Eqs. (13)–(16). Where the

bracketed quantities are the first order radiative corrections to
the decay widths. We compare our results with the available
experimental results. We also compare our results with the
theoretical models such as screened potential model [76,77],
Martin-like potential model [73], relativistic quark model
(RQM) [31,32], heavy quark spin symmetry [114], relativis-
tic Salpeter model [121] and other theoretical data.

Tables 14 and 15 we present our results for digamma
decay widths for charmonia and bottomonia. Our results for
�(ηc → γ γ ) and �(ηc(2S) → γ γ ) are higher than the
experimental results. Experimental observation of the two
photon decays of pseudoscalar states are considered as an
important probe for identification of flavour as well as inter-
nal structure of mesons. The first order radiative correction
[bracketed terms in Eq. (13)] was utilized to incorporate the
difference and it is observed that our results along with the
correction match with the experimental results [7]. We also
compute the digamma decay width of excited charmonia.
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Our results for P-wave charmonia are higher than that of
screened potential model [76] and relativistic quark model
[32]. Our results for �(ηb → γ γ ) match quite well with
the experimental data while computed �(ηb(2S) → γ γ )

value is overestimated when compared with the PDG data.
For the excited state of S-wave bottomonia, our results fall in
between those obtained in screened potential model [77] and
relativistic quark model with linear confinement [64]. The
scenario is similar with P-wave bottomonia and charmonia.

Di-gluon decay has substantial contribution to hadronic
decay of quarkonia below cc̄ and bb̄ threshold. In Tables
16 and 17 we represent our results for digluon decay width
of charmonia and bottomonia respectively. Our results for
�(ηc → gg) match perfectly with the PDG data [7] but in
the case of �(ηc(2S) → gg) our result is higher than the
PDG data. We also compare the results obtained with that
of the relativistic Salpeter method [121] and an approximate
potential model [70]. It is seen from Table 16 that the rela-
tivistic corrections provide better results in case of P-wave
charmonia where as that for bottomonia are underestimated
in present calculations when compared to relativistic QCD
potential model [122] and power potential model [47]. As
the experimental data of digluon annihilation of bottomonia
are not available, the validity of either of the approaches can
be validated only after observations in forthcoming experi-
ments.

We present the result of dilepton decay widths in the Tables
18 and 19 and it is observed that our results matches with the
PDG data [7] upto n = 3 for both charmonia and bottomonia.
The contribution of the correction factor is more significant
in the excited states with compared to that in the ground
states of the quarkonia, indicating different dynamics in the
intermediate quark-antiquark distance. Our results are also
in good accordance with the other theoretical models.

We present our results of E1 transitions in Tables 20, 21
and 22 in comparison with theoretical attempts such as rela-
tivistic potential model [39], quark model [30], nonrelativis-
tic screened potential model [66,76,77]. We also compare our
results of charmonia transitions with available experimental
results. Our result for �(ψ(2S) → χcJ (1P) + γ ) is in good
agreement with the experimental result for J = 0 but our
results for J = 1, 2 are higher than the PDG data. Our results
also agree well for the transition �(χc2(1P) → J/ψ + γ ).
We also satisfy the experimental constraints for the transi-
tion �(13D1 → χcJ + γ ) for J = 0, 1, 2. Our results share
the same range with the results computed in other theoretical
models. The E1 transitions of bottomonia agree fairly well
except for the channel �(ϒ(3S) → χbJ (3P)), where our
results are higher than the experimental results. The com-
parison of our results of E1 transitions in Bc mesons with
relativistic quark model [30,63] and power potential model
[46] are found to be in good agreement. In Tables 23, 24
and 25, we present our results of M1 transitions and also

compared with relativistic potential model [39], quark model
[30,64], nonrelativistic screened potential model [65,66],
power potential [46] as well as with available experimental
results. Our results of �(nψ → n′ηc + γ ) are in very good
agreement with the PDG data as well with the other theo-
retical predictions. Computed M1 transitions in Bc mesons
are also within the results obtained from theoretical predic-
tions. The computed M1 transition of bottomonia are found
to be higher than the PDG data and also theoretical predic-
tions.

5 Conclusion

In this article, we have reported a comprehensive study of
heavy quarkonia in the framework of nonrelativistic poten-
tial model considering linear confinement with least number
of free model parameters such as confinement strength and
quark mass. They are fine tuned to obtain the correspond-
ing spin averaged ground state masses of charmonia and bot-
tomonia determined from experimental data. The parameters
are then used to predict the masses of excited states. In order
to compute mass spectra of orbitally excited states, we incor-
porate contributions from the spin dependent part of confined
one gluon exchange potential perturbatively.

Our results are found to be consistent with available PDG
data, LQCD, relativistic quark model and other theoretical
potential models. We also compute the digamma, digluon
and dilepton decay widths of heavy quarkonia using nonrel-
ativistic Van-Royen Weiskopf formula. The first order radia-
tive corrections in calculation of these decays provide satis-
factory results for the charmonia while no such correction is
needed in case of bottomonia for being purely nonrelativis-
tic system. We employ our parameters in computation of Bc

spectroscopy employing the quark masses and mean value
of confinement strength of charmonia and bottomonia and
our results are also consistent with the PDG data. We also
compute the weak decays of Bc mesons and the computed
life time is also consistent with the PDG data. It is inter-
esting to note here that despite having a c quark, the non-
relativistic calculation of Bc spectroscopy is in very good
agreement with experimental and other theoretical mod-
els.
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Inspired by recent improved measurements of charm semileptonic decays at BESIII, we study a large set
of DðDsÞ-meson semileptonic decays where the hadron in the final state is one of D0, ρ, ω, ηð0Þ in the case
of Dþ decays, and D0, ϕ, K0, K�ð892Þ0, ηð0Þ in the case of Dþ

s decays. The required hadronic form factors
are computed in the full kinematical range of momentum transfer by employing the covariant confined
quark model developed by us. A detailed comparison of the form factors with those from other approaches
is provided. We calculate the decay branching fractions and their ratios, which show good agreement with
available experimental data. We also give predictions for the forward-backward asymmetry and the
longitudinal and transverse polarizations of the charged lepton in the final state.

DOI: 10.1103/PhysRevD.98.114031

I. INTRODUCTION

Semileptonic DðDsÞ-meson decays provide a good plat-
form to study both the weak and strong interactions
in the charm sector (for a review, see e.g., Ref. [1]).
Measurements of their decay rates allow a direct determi-
nation of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements jVcsj and jVcdj. In particular, the average of the
measurements of BABAR [2,3], Belle [4], BESIII [5], and
CLEO [6] of the decays D → πðKÞlν was used to extract
the elements jVcdðsÞj, as recently reported by the Particle
Data Group (PDG) [7]. Such extraction of the CKM matrix
elements from experiments requires theoretical knowledge
of the hadronic form factors which take into account the
nonperturbative quantum chromodynamics (QCD) effects.

The elements jVcsj and jVcdj can also be determined
indirectly by using the unitarity constraint on the CKM
matrix. This method was very useful in the past when the
direct measurements still suffered from large uncertainties,
both experimental and theoretical. Once these matrix
elements are determined, whether directly or indirectly,
one can in reverse study the strong interaction effects in
various charm semileptonic channels to reveal the decay
dynamics. One can also test the predictions of different
theoretical approaches, such as the form factors and the
branching fractions. In this manner, the study of semi-
leptonic charm decays can indirectly contribute to a more
precise determination of other CKM matrix elements such
as jVubj, in the sense that constraints provided by charm
decays can improve the theoretical inputs needed for
extracting jVubj from exclusive charmless B semileptonic
decays.
Recent progresses in experimental facilities and theo-

retical studies have made more and more stringent tests of
the standard model (SM) available in the charm sector and
have opened a new window through which to look for
possible new physics effects beyond the SM. These tests
include the CKM matrix unitarity, charge-conjugation-
parity violation, isospin symmetry, and lepton flavor
universality (LFU). Notably, the BESIII collaboration
has reported recently measurements of many semimuonic
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charm decays [8–10], some for the first time and some with
much improved precision. This paves the way to the search
for signals of LFU violations in these channels. In addition,
the study of the decays Ds → ηð0Þlþνl provides informa-
tion about the η − η0 mixing angle and helps probe the
interesting η − η0-glueball mixing [11,12].
From the theoretical point of view, the calculation of

hadronic form factors plays a crucial role in the study of
charm semileptonic decays. This calculation is carried out
by nonperturbative methods including lattice QCD
(LQCD) [13–15], QCD sum rules [16–18], light-cone
sum rules (LCSR) [19–25], and phenomenological quark
models. Regarding the quark models used in studies of
semileptonic D decays, one can mention the Isgur-Scora-
Grinstein-Wise (ISGW) model [26] and its updated version
ISGW2 [27], the constituent quark model (CQM) [28], the
relativistic quark model based on the quasipotential
approach [29], the chiral quark model [30], the light-front
quark model (LFQM) [31–33], and the model based on the
combination of heavy meson and chiral symmetries
(HMχT) [34,35]. Several semileptonic decay channels of
the DðsÞ mesons were also studied in the large energy
effective theory [36], chiral perturbation theory [37], the so-
called chiral unitary approach (χUA) [38], and a new
approach assuming pure heavy quark symmetry [39].
Recently, a simple expression for D → K semileptonic
form factors was studied in Ref. [40]. We also mention here
early attempts to account for flavor symmetry breaking in
pseudoscalar meson decay constants by the authors of
Ref. [41]. It is worth noting that each method has only a
limited range of applicability, and their combination will
give a better picture of the underlined physics [28].
In this paper, we compute the form factors of

the semileptonic DðDsÞ decays in the framework
of the covariant confined quark model (CCQM) [42–45].
To be more specific, we study the decays Dþ→
ðD0;ρ0;ω;η;η0Þlþνl, Dþ

s →ðD0;ϕ;K0;K�ð892Þ0;η;η0Þlþνl,
and D0 → ρ−lþνl. This paper follows our previous study
[46] in which some of us have considered the decays D →
Kð�Þlþνl and D → πlþνl in great detail. Our aim is to
provide a systematic and independent study of DðsÞ semi-
leptonic channels in the same theoretical framework. This
will shed more light on the theoretical study of the charm
decays, especially on the shape of the corresponding form
factors, since the CCQM predicts the form factors in the
whole physical range of momentum transfer without using
any extrapolations. Besides, many of the studies mentioned
in the previous paragraph were done about a decade ago,
with the main focus on the branching fraction. In light of
recent data, more up-to-date predictions are necessary, not
only for the branching fraction but also for other physical
observables such as the forward-backward asymmetry and
the lepton polarization. Finally, such a systematic study is
necessary to test our model’s predictions and to better
estimate its theoretical error.

The rest of the paper is organized as follows. In Sec. II,
we briefly provide the definitions of the semileptonic
matrix element and hadronic form factors. Then we give
the decay distribution in terms of the helicity amplitudes. In
Sec. III, we introduce the essential ingredients of the
covariant confined quark model and describe in some
detail the calculation of the form factors in our approach.
Numerical results for the form factors, the decay branching
fractions, and other physical observables are presented in
Sec. IV. We compare our findings with other theoretical
approaches as well as experimental data including recent
LQCD calculations and BESIII data. Finally, the conclu-
sion is given in Sec. V.

II. MATRIX ELEMENT AND DECAY
DISTRIBUTION

Within the SM, the matrix element for semileptonic
decays of the DðsÞ meson to a pseudoscalar (P) or a vector
(V) meson in the final state is written as

MðDðsÞ → ðP;VÞlþνlÞ

¼ GFffiffiffi
2

p VcqhðP;VÞjq̄OμcjDðsÞi½lþOμνl�; ð1Þ

where Oμ ¼ γμð1 − γ5Þ, and q ¼ d, s. The hadronic part in
the matrix element is parametrized by the invariant form
factors which depend on the momentum transfer squared q2

between the two mesons as follows:

hPðp2Þjq̄OμcjDðsÞðp1Þi¼Fþðq2ÞPμþF−ðq2Þqμ;

hVðp2;ϵ2Þjq̄OμcjDðsÞðp1Þi¼
ϵ†2α

M1þM2

½−gμαPqA0ðq2Þ

þPμPαAþðq2ÞþqμPαA−ðq2Þ
þ iεμαPqVðq2Þ�; ð2Þ

where P ¼ p1 þ p2, q ¼ p1 − p2, and ϵ2 is the polariza-
tion vector of the vector meson V, so that ϵ†2 · p2 ¼ 0. The
mesons are on shell: p2

1 ¼ m2
DðsÞ ¼ M2

1, p
2
2 ¼ m2

P;V ¼ M2
2.

For later comparison of the form factors with other
studies, we relate our form factors defined in Eq. (2) to the
well-known Bauer-Stech-Wirbel (BSW) form factors [47],
namely, Fþ;0 for DðsÞ → P and A0;1;2 and V for DðsÞ → V.
Note that in Ref. [47] the notation F1 was used instead of
Fþ. The relations read

Ã2 ¼ Aþ; Ṽ ¼ V; F̃þ ¼ Fþ;

Ã1 ¼
M1 −M2

M1 þM2

A0; F̃0 ¼ Fþ þ q2

M2
1 −M2

2

F−;

Ã0 ¼
M1 −M2

2M2

�
A0 − Aþ −

q2

M2
1 −M2

2

A−

�
: ð3Þ
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Here, the BSW form factors are denoted with a tilde to
distinguish from our form factors. However, for simplicity,
we will omit the tilde in what follows. In all comparisons of
the form factors to appear below, we use the BSW ones.
Once the form factors are known, one can easily

calculate the semileptonic decay rates. However, it is more
convenient to write down the differential decay width in
terms of the so-called helicity amplitudes which are
combinations of the form factors. This is known as the
helicity technique, first described in Ref. [48] and further
discussed in our recent papers [49,50]. One has

dΓðDðsÞ→ ðP;VÞlþνlÞ
dq2

¼G2
FjVcqj2jp2jq2
96π3M2

1

�
1−

m2
l

q2

�
2

×

��
1þm2

l

2q2

�
ðjHþj2þjH−j2þjH0j2Þþ

3m2
l

2q2
jHtj2

�
; ð4Þ

where jp2j ¼ λ1=2ðM2
1;M

2
2; q

2Þ=2M1 is the momentum of
the daughter meson in the rest frame of the parent meson.
Here, the helicity amplitudes for the decays DðsÞ → Vlþνl
are defined as

H� ¼ 1

M1 þM2

ð−PqA0 � 2M1jp2jVÞ;

H0 ¼
1

M1 þM2

1

2M2

ffiffiffiffiffi
q2

p ½−PqðM2
1 −M2

2 − q2ÞA0

þ 4M2
1jp2j2Aþ�;

Ht ¼
1

M1 þM2

M1jp2j
M2

ffiffiffiffiffi
q2

p ½Pqð−A0 þ AþÞ þ q2A−�: ð5Þ

In the case of the decays DðsÞ → Plþνl one has

H� ¼ 0; H0 ¼
2M1jp2jffiffiffiffiffi

q2
p Fþ;

Ht ¼
1ffiffiffiffiffi
q2

p ðPqFþ þ q2F−Þ: ð6Þ

In order to study the lepton-mass effects, one can define
several physical observables such as the forward-backward
asymmetry Al

FBðq2Þ and the longitudinal Pl
Lðq2Þ and

transverse Pl
Tðq2Þ polarization of the charged lepton in

the final state. This requires the angular decay distribution,
which was described elsewhere [50]. In short, one can write
down these observables in terms of the helicity amplitudes
as follows:

Al
FBðq2Þ ¼ −

3

4

jHþj2 − jH−j2 þ 4δlH0Ht

ð1þ δlÞ
P jHnj2 þ 3δljHtj2

; ð7Þ

Pl
Lðq2Þ ¼ −

ð1 − δlÞ
P jHnj2 − 3δljHtj2

ð1þ δlÞ
P jHnj2 þ 3δljHtj2

; ð8Þ

Pl
Tðq2Þ ¼ −

3π

4
ffiffiffi
2

p
ffiffiffiffiffi
δl

p ðjHþj2 − jH−j2 − 2H0HtÞ
ð1þ δlÞ

P jHnj2 þ 3δljHtj2
; ð9Þ

where δl ¼ m2
l=2q

2 is the helicity-flip factor, and the index
n runs through (þ, −, 0). The average of these observables
over the q2 range is better suited for experimental mea-
surements with low statistics. To calculate the average one
has to multiply the numerator and denominator of e.g.,
Eq. (7) by the phase-space factor Cðq2Þ ¼ jp2jðq2 −
m2

lÞ2=q2 and integrate them separately. These observables
are sensitive to contributions of physics beyond the SM and
can be used to test LFU violations [51–57].

III. FORM FACTORS IN THE COVARIANT
CONFINED QUARK MODEL

In this study, the semileptonic form factors are calculated
in the framework of the CCQM [42,43]. The CCQM is an
effective quantum field approach to the calculation of
hadronic transitions. The model is built on the assumption
that hadrons interact via constituent quark exchange only.
This is realized by adopting a relativistic invariant
Lagrangian that describes the coupling of a hadron to its
constituent quarks. This approach can be used to treat not
only mesons [58–62], but also baryons [63–65], tetraquarks
[66–68], and other multiquark states [69] in a consistent
way. For a detailed description of the model and the
calculation techniques we refer the reader to the references
mentioned above. We list below only several key features
of the CCQM for completeness.
For the simplest hadronic system, i.e., a meson M, the

interaction Lagrangian is given by

Lint ¼ gMMðxÞ
Z

dx1dx2FMðx; x1; x2Þ

× q̄2ðx2ÞΓMq1ðx1Þ þ H:c:; ð10Þ
where gM is the quark-meson coupling and ΓM is the Dirac
matrix. For a pseudoscalar (vector) meson ΓM ¼ γ5
(ΓM ¼ γμ). The vertex function FMðx; x1; x2Þ effectively
describes the quark distribution in the meson and is given by

FMðx; x1; x2Þ ¼ δ

�
x −

X2
i¼1

wixi

�
·ΦMððx1 − x2Þ2Þ; ð11Þ

where wqi ¼ mqi=ðmq1 þmq2Þ such that w1 þ w2 ¼ 1. The
function ΦM depends on the effective size of the meson. In
order to avoid ultraviolet divergences in the quark loop
integrals, it is required that the Fourier transform of ΦM has
an appropriate falloff behavior in the Euclidean region. Since
the final results are not sensitive to the specific form of ΦM,
for simplicity, we choose a Gaussian form as follows:
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Φ̃Mð−p2Þ ¼
Z

dxeipxΦMðx2Þ ¼ ep
2=Λ2

M ; ð12Þ

where the parameter ΛM characterizes the finite size of
the meson.
The coupling strength gM is determined by the compos-

iteness condition ZM ¼ 0 [70], where ZM is the wave
function renormalization constant of the meson. This
condition ensures the absence of any bare quark state in
the physical mesonic state and, therefore, helps avoid
double counting and provides an effective description of
a bound state.
In order to calculate the form factors, one first writes

down the matrix element of the hadronic transition. In the
CCQM, the hadronic matrix element is described by the
one-loop Feynman diagram depicted in Fig. 1 and is
constructed from the convolution of quark propagators
and vertex functions as follows:

hPðp2Þjq̄OμcjDðsÞðp1Þi ¼ NcgDðsÞgP

Z
d4k

ð2πÞ4i Φ̃DðsÞ ð−ðkþ w13p1Þ2ÞΦ̃Pð−ðkþ w23p2Þ2Þ

× tr½OμS1ðkþ p1Þγ5S3ðkÞγ5S2ðkþ p2Þ�; ð13Þ

hVðp2; ϵ2Þjq̄OμcjDðsÞðp1Þi ¼ NcgDðsÞgV

Z
d4k

ð2πÞ4i Φ̃DðsÞ ð−ðkþ w13p1Þ2ÞΦ̃Vð−ðkþ w23p2Þ2Þ

× tr½OμS1ðkþ p1Þγ5S3ðkÞ=ϵ†2S2ðkþ p2Þ�; ð14Þ

where Nc ¼ 3 is the number of colors, wij ¼
mqj=ðmqi þmqjÞ, and S1;2 are quark propagators, for which
we use the Fock-Schwinger representation

SiðkÞ ¼ ðmqi þ =kÞ
Z

∞

0

dαi exp½−αiðm2
qi − k2Þ�: ð15Þ

It should be noted that all loop integrations are carried out
in Euclidean space.
Using various techniques described in our previous

papers, a form factor F can be finally written in the form
of a threefold integral

F ¼ NcgDðsÞgðP;VÞ

Z
1=λ2

0

dtt
Z

1

0

dα1

×
Z

1

0

dα2δð1 − α1 − α2Þfðtα1; tα2Þ; ð16Þ

where fðtα1; tα2Þ is the resulting integrand corresponding
to the form factor F, and λ is the so-called infrared cutoff
parameter, which is introduced to avoid the appearance of
the branching point corresponding to the creation of free
quarks and taken to be universal for all physical processes.
The model parameters, namely, the meson size param-

eters, the constituent quark masses, and the infrared cutoff
parameter are determined by fitting the radiative and
leptonic decay constants to experimental data or LQCD
calculations. The model parameters required for the cal-
culation in this paper are listed in Tables I and II. Other
parameters such as the mass and lifetime of mesons and
leptons, the CKM matrix elements, and physical constants
are taken from the recent report of the PDG [7]. In
particular, we adopt the following values for the CKM
matrix elements: jVcdj ¼ 0.218 and jVcsj ¼ 0.997.
Once the model parameters are fixed, the form factors are

obtained by calculating the threefold integral in Eq. (16).

FIG. 1. Quark model diagram for the DðsÞ-meson semileptonic
decay.

TABLE I. Meson size parameters in GeV.

ΛD ΛDs
ΛK ΛK� Λϕ Λρ Λω Λqq̄

η Λss̄
η Λqq̄

η0 Λss̄
η0

1.600 1.750 1.014 0.805 0.880 0.610 0.488 0.881 1.973 0.257 2.797
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This is done by using MATHEMATICA as well as FORTRAN

code. In the CCQM, the form factors are calculable in
the entire range of momentum transfer. The calculated
form factors are very well represented by the double-pole
parametrization

Fðq2Þ ¼ Fð0Þ
1 − aŝþ bŝ2

; ŝ ¼ q2

m2
DðsÞ

: ð17Þ

Our results for the parameters Fð0Þ, a, and b appearing in
the parametrization Eq. (17) are given in Table III.
It is worth noting here that in the calculation of the

DðsÞ → ηð0Þ form factors one has to take into account the
mixing of the light and the s-quark components. By
assuming mu ¼ md ≡mq, the quark content can be written
as

�
η

η0

�
¼ −

�
sin δ cos δ

− cos δ sin δ

��
qq̄

ss̄

�
;

qq̄≡ uūþ dd̄ffiffiffi
2

p : ð18Þ

The angle δ is defined by δ ¼ θP − θI, where θI ¼
arctanð1= ffiffiffi

2
p Þ is the ideal mixing angle. We adopt the

value θP ¼ −15.4° from Ref. [71].

IV. RESULTS AND DISCUSSION

A. Form factors

In this subsection, we compare our form factors with
those from other theoretical approaches and from exper-
imental measurements. For convenience, we relate all form
factors from different studies to the BSW form factors, as
mentioned in Sec. II. In the SM, the hadronic matrix
element between two mesons is parametrized by two form
factors (Fþ and F0) for the P → P0 transition and four form
factors (A0;1;2 and V) for the P → V one. However, in
semileptonic decays of D and Ds mesons, the form factors
F0 and A0 are less interesting because their contributions to
the decay rate vanish in the zero lepton-mass limit (the tau
mode is kinematically forbidden). Therefore, we focus
more on the form factors Fþ, A1, A2, and V. We note that
the uncertainties of our form factors mainly come from the
errors of the model parameters. These parameters are
determined from a least-squares fit to available experimen-
tal data and some lattice calculations. We have observed
that the errors of the fitted parameters are within 10%. We
then calculated the propagation of these errors on the form
factors and found the uncertainties on the form factors
to be of order 20% at small q2 and 30% at high q2. At
maximum recoil q2 ¼ 0, the form factor uncertainties are of
order 15%.
We start with the DðsÞ → P transition form factor

Fþðq2Þ. In Table IV, we compare the maximum-recoil
values Fþðq2 ¼ 0Þ with other theoretical approaches. It is
observed that our results are in good agreement with other
quark models, especially with the CQM [28] and the
LFQM [32]. Besides, quark model predictions for Fþð0Þ
of the DðsÞ → ηð0Þ channels are in general higher than those
obtained by LCSR [22,24] and LQCD [14]. This suggests
that more studies of these form factors are needed. For
example, a better LQCD calculation of Fþð0Þ is expected.
Note that the authors of Ref. [14] considered their LQCD
calculation as a pilot study rather than a conclusive one.
Regarding the DðsÞ → V transition form factors A1, A2,

and V, it is more interesting to compare their ratios at
maximum recoil. The ratios are defined as follows:

r2 ¼
A2ðq2 ¼ 0Þ
A1ðq2 ¼ 0Þ ; rV ¼ Vðq2 ¼ 0Þ

A1ðq2 ¼ 0Þ : ð19Þ

In Table V, we compare these ratios with the world average
given by the PDG [7] and with other theoretical results
obtained in CQM [28], LFQM [32], HMχT [35], and
LQCD [13]. Our results for the form factor ratios r2 and rV
agree well with the PDG data within uncertainty except for
the ratio rVðDþ

s → ϕÞ, for which our prediction is much
lower than that from PDG. Note that our prediction
rVðDþ

s → ϕÞ ¼ 1.34 is close to the value 1.42 from the
LFQM [32]. It is also seen that for most cases, the HMχT
predictions [35] for the ratios at q2 ¼ 0 are largely different

TABLE II. Quark masses and infrared cutoff parameter in GeV.

mu=d ms mc mb λ

0.241 0.428 1.672 5.05 0.181

TABLE III. Parameters of the double-pole parametrization
Eq. (17) for the form factors.

F Fð0Þ a b F Fð0Þ a b

AD→ρ
þ 0.57 0.96 0.15 AD→ρ

− −0.74 1.11 0.22
AD→ρ
0 1.47 0.47 −0.10 VD→ρ 0.76 1.13 0.23

AD→ωþ 0.55 1.01 0.17 AD→ω
− −0.69 1.17 0.26

AD→ω
0 1.41 0.53 −0.10 VD→ω 0.72 1.19 0.27

ADs→ϕ
þ 0.67 1.06 0.17 ADs→ϕ

− −0.95 1.20 0.26
ADs→ϕ
0 2.13 0.59 −0.12 VDs→ϕ 0.91 1.20 0.25

ADs→K�
þ 0.57 1.13 0.21 ADs→K�

− −0.82 1.32 0.34
ADs→K�
0 1.53 0.61 −0.11 VDs→K�

0.80 1.32 0.33
FD→η
þ 0.67 0.93 0.12 FD→η

− −0.37 1.02 0.18
FD→η0
þ 0.76 1.23 0.23 FD→η0

− −0.064 2.29 1.71
FD→D0

þ 0.91 5.88 4.40 FD→D0

− −0.026 6.32 8.37
FDs→η
þ 0.78 0.69 0.002 FDs→η

− −0.42 0.74 0.008
FDs→η0
þ 0.73 0.88 0.018 FDs→η0

− −0.28 0.92 0.009
FDs→K
þ 0.60 1.05 0.18 FDs→K

− −0.38 1.14 0.24
FDs→D0

þ 0.92 5.08 2.25 FDs→D0

− −0.34 6.79 8.91

SEMILEPTONIC DðsÞ-MESON DECAYS IN THE … PHYS. REV. D 98, 114031 (2018)

114031-5



from the PDG values, demonstrating the fact that this
model is more suitable for the high q2 region.
In order to have a better picture of the form factors in the

whole q2 range 0 ≤ q2 ≤ q2max ¼ ðmDðsÞ −mP=VÞ2 we plot
in Figs. 2–5 their q2 dependence from various studies. It is
very interesting to note that, in all cases, our form factors
are close to those obtained in the covariant LFQM [32], and
this is not for the first time such a good agreement is
observed. In a previous study of the semileptonic decays
Bc → J=ψðηcÞlν [72] it was seen that the corresponding
form factors agree very well between our model and the

covariant LFQM [73]. This suggests that a comparison of
the two models in more detail may be fruitful. It is also
worth noting that the HMχT [35] prediction for the form
factor A0ðq2Þ is systematically much higher than that from
other theoretical calculations.
Very recently, the ETM collaboration has provided the

lattice determination [75] for the full set of the form factors
characterizing the semileptonic D → πðKÞlν and rare
D → πðKÞll decays within and beyond the SM, when
an additional tensor coupling is considered. As mentioned
before, the decays D → πðKÞlν have been studied in our
model already [46]. However, we compute the D →
πðKÞlν form factors including the tensor one in this paper,
in order to compare with the recent ETM results. This
demonstrates the fidelity of the CCQM predictions for the
hadronic form factors and helps us better estimate the
theoretical uncertainties of our model. Moreover, the tensor
and scalar form factors are essential for the study of
possible new physics in these decays [for more detail we
refer to a similar calculation of the full set of B → Dð�Þ and
B → πðρÞ form factors in our model [76,77]].
The new tensor form factor is defined by

hPðp2Þjq̄σμνð1 − γ5ÞcjDðp1Þi

¼ iFTðq2Þ
M1 þM2

ðPμqν − Pνqμ þ iεμνPqÞ: ð20Þ

Note that we obtained F0ðq2Þ by using the form factors
Fþðq2Þ and F−ðq2Þ defined in Eq. (2), with the help of the
relation

TABLE IV. Comparison of Fþð0Þ for DðsÞ → P transitions.

D → η D → η0 Ds → η Ds → η0 Ds → K0

Present 0.67� 0.10 0.76� 0.11 0.78� 0.12 0.73� 0.11 0.60� 0.09
CQM [28] � � � � � � 0.78 0.78 0.72
LFQM [32] 0.71 � � � 0.76 � � � 0.66
LQCDMπ¼470 MeV[14] � � � � � � 0.564(11) 0.437(18) � � �
LQCDMπ¼370 MeV[14] � � � � � � 0.542(13) 0.404(25) � � �
LCSR [22] 0.552� 0.051 0.458� 0.105 0.432� 0.033 0.520� 0.080 � � �
LCSR [24] 0.429þ0.165

−0.141 0.292þ0.113
−0.104 0.495þ0.030

−0.029 0.558þ0.047
−0.045 � � �

TABLE V. Ratios of the DðsÞ → V transition form factors at maximum recoil.

Channel Ratio Present PDG [7] LQCD [13] CQM [28] LFQM [32] HMχT [35]

D → ρ r2 0.93� 0.19 0.83� 0.12 � � � 0.83 0.78 0.51
rV 1.26� 0.25 1.48� 0.16 � � � 1.53 1.47 1.72

Dþ → ω r2 0.95� 0.19 1.06� 0.16 � � � � � � 0.84 0.51
rV 1.24� 0.25 1.24� 0.11 � � � � � � 1.47 1.72

Dþ
s → ϕ r2 0.99� 0.20 0.84� 0.11 0.74(12) 0.73 0.86 0.52

rV 1.34� 0.27 1.80� 0.08 1.72(21) 1.72 1.42 1.80
Dþ

s → K�0 r2 0.99� 0.20 � � � � � � 0.74 0.82 0.55
rV 1.40� 0.28 � � � � � � 1.82 1.55 1.93

FIG. 2. Form factor Fþðq2Þ forDþ
s → K0 in our model, LFQM

[32], LCSR [20], and CQM [28].
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F0ðq2Þ ¼ Fþðq2Þ þ
q2

M2
1 −M2

2

F−ðq2Þ: ð21Þ

Meanwhile, the ETM collaboration directly calculated the
scalar matrix element hPðp2Þjq̄cjDðp1Þi and then deter-
mined F0ðq2Þ using the equation of motion. In this way, the
final result becomes sensitive to the quark mass difference.
In Fig. 6 we compare the form factors F0ðq2Þ, Fþðq2Þ,

and FTðq2Þ of the D → πðKÞlν transitions with those
obtained by the ETM collaboration. It is seen that our
F0ðq2Þ agrees well with the ETM only in the low q2 region.
However, our results for Fþðq2Þ are very close to those of
the ETM. Note that the determination of Fþðq2Þ by the
ETM is dependent on F0ðq2Þ. It is interesting that the
tensor form factors between the two studies are in perfect
agreement. Even though this form factor does not appear
within the SM, this agreement has an important meaning
because, in both approaches, the tensor form factor is
determined directly from the corresponding matrix element
without any additional assumptions. In Table VI, we
present the values of the form factors and their ratios at

maximum recoil. One sees that our results agree with the
ETM calculation within uncertainty.

B. Branching fractions and other observables

In Tables VII and VIII, we summarize our predictions for
the semileptonic branching fractions of the D and Ds
mesons, respectively. For comparison, we also list results of
other theoretical calculations and the most recent exper-
imental data given by the CLEO and BESIII collaborations.
Note that the uncertainties of our predictions for the
branching fractions and other polarization observables
are of order 50%, taking into account only the main source
of uncertainties related to the form factors.
In general, our results for the branching fractions are

consistent with experimental data as well as with other
theoretical calculations. It is worth mentioning that,
for such a large set of decays considered in this study,
our branching fractions agree very well with all available
experimental data except for one channel, the
Dþ

s → K0lþνl. In this case, our prediction is nearly twice

FIG. 3. Form factor Fþðq2Þ for Dþ
ðsÞ → ηð0Þ in our model, LCSR [20,22,24], and CQM [28].
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FIG. 4. Form factors for Dþ
s → ϕ (left) and Dþ

s → K�ð892Þ0 (right) in our model, LFQM [32], HMχT [35], and CQM [28].
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FIG. 5. Form factors for D → ρ (left) and Dþ → ω (right) in our model, LFQM [32], HMχT [35], CQM [28], and CLEO data [74].
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as small as the CLEO central value [83] and about 30%
smaller than the LFQM prediction [33].
We also give prediction for the ratio ΓðD0 →

ρ−eþνeÞ=2ΓðDþ → ρ0eþνeÞ which should be equal to
unity in the SM, assuming isospin invariance. Our

calculation yields 0.98, in agreement with CLEO’s result
of 1.03� 0.09þ0.08

−0.02 [74]. Besides, our ratio of branching
fractions BðDþ

s → η0eþνeÞ=BðDþ
s → ηeþνeÞ ¼ 0.37 coin-

cides with the result 0.36� 0.14 obtained by CLEO [85]
and the more recent value 0.40� 0.14 by BESIII [84].

FIG. 6. D → πðKÞlν form factors obtained in our model (solid lines) and in lattice calculation (dots with error bars) by the ETM
collaboration [75].

TABLE VI. D → πðKÞlν form factors and their ratios at q2 ¼ 0.

fDπþ ð0Þ fDKþ ð0Þ fDπ
T ð0Þ fDK

T ð0Þ fDπ
T ð0Þ=fDπþ ð0Þ fDK

T ð0Þ=fDKþ ð0Þ
Present 0.63 0.78 0.53 0.70 0.84 0.90
ETM [75] 0.612(35) 0.765(31) 0.506(79) 0.687(54) 0.827(114) 0.898(50)

N. R. SONI et al. PHYS. REV. D 98, 114031 (2018)

114031-10



TABLE VII. Branching fractions of DþðD0Þ-meson semileptonic decays.

Channel Unit Present Other Reference Data Reference

D0 → ρ−eþνe 10−3 1.62 1.97 χUA [38] 1.445� 0.058� 0.039 BESIII [78]
1.749þ0.421

−0.297 � 0.006 LCSR [25] 1.77� 0.12� 0.10 CLEO [74]
2.0 HMχT [35]

D0 → ρ−μþνμ 10−3 1.55 1.84 χUA [38]

Dþ → ρ0eþνe 10−3 2.09 2.54 χUA [38] 1.860� 0.070� 0.061 BESIII [78]
2.217þ0.534

−0.376 � 0.015 LCSR [25] 2.17� 0.12þ0.12
−0.22 CLEO [74]

2.5 HMχT [35]
Dþ → ρ0μþνμ 10−3 2.01 2.37 χUA [38] 2.4� 0.4 PDG [7]

Dþ → ωeþνe 10−3 1.85 2.46 χUA [38] 1.63� 0.11� 0.08 BESIII [79]
2.5 HMχT [35] 1.82� 0.18� 0.07 CLEO [74]

2.1� 0.2 LFQM [33]
Dþ → ωμþνμ 10−3 1.78 2.29 χUA [38]

2.0� 0.2 LFQM [33]

Dþ → ηeþνe 10−4 9.37 12� 1 LFQM [33] 10.74� 0.81� 0.51 BESIII [80]
24.5� 5.26 LCSR [22] 11.4� 0.9� 0.4 CLEO [81]

14.24� 10.98 LCSR [24]
Dþ → ημþνμ 10−4 9.12 12� 1 LFQM [33]

Dþ → η0eþνe 10−4 2.00 1.8� 0.2 LFQM [33] 1.91� 0.51� 0.13 BESIII [80]
3.86� 1.77 LCSR [22] 2.16� 0.53� 0.07 CLEO [81]
1.52� 1.17 LCSR [24]

Dþ → η0μþνμ 10−4 1.90 1.7� 0.2 LFQM [33]

TABLE VIII. Branching fractions of Ds-meson semileptonic decays (in %).

Channel Present Other Reference Data Reference

Dþ
s → ϕeþνe 3.01 2.12 χUA [38] 2.26� 0.45� 0.09 BESIII [9]

3.1� 0.3 LFQM [33] 2.61� 0.03� 0.08� 0.15 BABAR [82]
2.4 HMχT [35] 2.14� 0.17� 0.08 CLEO [83]

Dþ
s → ϕμþνμ 2.85 1.94 χUA [38]

2.9� 0.3 LFQM [33] 1.94� 0.53� 0.09 BESIII [9]

Dþ
s → K0eþνe 0.20 0.27� 0.02 LFQM [33] 0.39� 0.08� 0.03 CLEO [83]

Dþ
s → K0μþνμ 0.20 0.26� 0.02 LFQM [33]

Dþ
s → K�0eþνe 0.18 0.202 χUA [38] 0.18� 0.04� 0.01 CLEO [83]

0.19� 0.02 LFQM [33]
0.22 HMχT [35]

Dþ
s → K�0μþνμ 0.17 0.189 χUA [38]

0.19� 0.02 LFQM [33]

Dþ
s → ηeþνe 2.24 2.26� 0.21 LFQM [33] 2.30� 0.31� 0.08 BESIII [84]

2.00� 0.32 LCSR [22] 2.28� 0.14� 0.19 CLEO [83]
2.40� 0.28 LCSR [24]

Dþ
s → ημþνμ 2.18 2.22� 0.20 LFQM [33] 2.42� 0.46� 0.11 BESIII [9]

Dþ
s → η0eþνe 0.83 0.89� 0.09 LFQM [33] 0.93� 0.30� 0.05 BESIII [84]

0.75� 0.23 LCSR [22] 0.68� 0.15� 0.06 CLEO [83]
0.79� 0.14 LCSR [24]

Dþ
s → η0μþνμ 0.79 0.85� 0.08 LFQM [33] 1.06� 0.54� 0.07 BESIII [9]
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Finally, we predict BðDþ → η0eþνeÞ=BðDþ → ηeþνeÞ ¼
0.21, which agrees very well with the values 0.19� 0.05
and 0.18� 0.05 we got from experimental data by CLEO
[81] and BESIII [80], respectively. It is worth mentioning
here that very recently, the BESIII collaboration has
reported their measurement of BðD0 → K−μþνμÞ [86] with
significantly improved precision. In their paper, they also
approved the prediction of our model for the ratio BðD0 →
K−μþνμÞ=BðD0 → K−eþνeÞ provided in Ref. [46].
In Table IX, we present our results for the semileptonic

decays Dþ
ðsÞ → D0eþνe, which are rare in the SM due to

phase-space suppression. These decays are of particular
interest since they are induced by the light quark decay,
while the heavy quark acts as the spectator. Besides, the
small phase space helps reduce the theoretical errors. The
first experimental constraint on the branching fraction
BðDþ → D0eþνeÞ was recently obtained by the BESIII
collaboration [87]. However, the experimental upper limit
is still far above the SM predictions. The branching
fractions obtained in our model are comparable with other
theoretical calculations using the flavor SU(3) symmetry in
the light quark sector [88,89].
Finally, in Table X we list our predictions for the

forward-backward asymmetry hAl
FBi, the longitudinal

polarization hPl
Li, and the transverse polarization hPl

Ti
of the charged lepton in the final state. It is seen that, for the
P → V transitions, the lepton-mass effect in hAl

FBi is small,
resulting in a difference of only 10%–15% between the
corresponding electron and muon modes. For the P → P0
transitions, hAμ

FBi are about 104 times larger than hAe
FBi.

This is readily seen from Eq. (7): for P → P0 transitions the

two helicity amplitudes H� vanish and the forward-back-
ward asymmetry is proportional to the lepton mass squared.
Regarding the longitudinal polarization, the difference
between hPμ

Li and hPe
Li is 10%–30%. One sees that the

lepton-mass effect in the transverse polarization is much
more significant than that in the longitudinal one. This is
true for both P → P0 and P → V transitions. Note that the
values of hAe

FBi and hPe
LðTÞi for the rare decays Dþ

ðsÞ →
D0eþνe are quite different in comparison with other P →
P0 transitions due to their extremely small kinematical
regions.

V. SUMMARY AND CONCLUSION

We have presented a systematic study of the D and Ds
semileptonic decays within the framework of the CCQM.
All the relevant form factors are calculated in the entire
range of momentum transfer squared. We have also
provided a detailed comparison of the form factors with
other theoretical predictions and, in some cases, with
available experimental data. In particular, we have observed
a good agreement with the form factors obtained in the
covariant LFQM, for all decays. It is worth noting that our
tensor form factors for the D → πðKÞlν decays are in
perfect agreement with the recent LQCD calculation by the
ETM collaboration [75].
We have given our predictions for the semileptonic

branching fractions and their ratios. In general, our results
are in good agreement with other theoretical approaches
and with recent experimental data obtained by BABAR,
CLEO, and BESIII. In all cases, our predictions for the

TABLE X. Forward-backward asymmetry and lepton polarization components.

hAe
FBi hAμ

FBi hPe
Li hPμ

Li hPe
Ti hPμ

Ti
D0 → ρ−lþνl 0.21 0.19 −1.00 −0.92 1.4 × 10−3 0.22
Dþ → ρ0lþνl 0.22 0.19 −1.00 −0.92 1.4 × 10−3 0.22
Dþ → ωlþνl 0.21 0.19 −1.00 −0.92 1.4 × 10−3 0.22
Dþ → ηlþνl −6.4 × 10−6 −0.06 −1.00 −0.83 2.8 × 10−3 0.44
Dþ → η0lþνl −13.0 × 10−6 −0.10 −1.00 −0.70 4.2 × 10−3 0.59
Dþ → D0lþνl −0.10 � � � −0.72 � � � 0.56 � � �
Dþ

s → ϕlþνl 0.18 0.15 −1.00 −0.91 1.5 × 10−3 0.23
Dþ

s → K�0lþνl 0.22 0.20 −1.00 −0.92 1.4 × 10−3 0.22
Dþ

s → K0lþνl −5.0 × 10−6 −0.05 −1.00 −0.86 2.4 × 10−3 0.39
Dþ

s → ηlþνl −6.0 × 10−6 −0.06 −1.00 −0.84 2.7 × 10−3 0.42
Dþ

s → η0lþνl −11.2 × 10−6 −0.09 −1.00 −0.75 3.8 × 10−3 0.54
Dþ

s → D0lþνl −7.37 × 10−4 � � � −1.00 � � � 0.038 � � �

TABLE IX. Semileptonic branching fractions for Dþ
ðsÞ → D0lþνl.

Channel Present Other Reference Data Reference

Dþ → D0eþνe 2.23 × 10−13 2.78 × 10−13 [88] < 1.0 × 10−4 BESIII [87]
2.71 × 10−13 [89]

Dþ
s → D0eþνe 2.52 × 10−8 ð2.97� 0.03Þ × 10−8 [88] � � � � � �

3.34 × 10−8 [89]
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branching fractions agree with experimental data within
10%, except for the Dþ

s → K0lþνl channel. Our predic-
tions for the ratios of branching fractions are in full
agreement with experimental data. To conclude, we have
provided the first ever theoretical predictions for the
forward-backward asymmetries and lepton longitudinal
and transverse polarizations, which are important for future
experiments.
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Note added.—Recently, we became aware of the paper [90]
where the BESIII collaboration reported their new mea-
surements of the branching fractions for the decays
Dþ

s → K0eþνe and Dþ
s → K�0eþνe with improved preci-

sion. They also obtained for the first time the values of the
form factors at maximum recoil. Our predictions for the
branching fraction BðDþ

s → K�0eþνeÞ as well as the form
factor parameters fDsKþ ð0Þ, rDsK�

V ð0Þ, and rDsK�
2 ð0Þ agree

with the new BESIII results. Regarding their result
BðDþ

s → K0eþνeÞ ¼ ð3.25� 0.41Þ × 10−3, the central
value is closer to our prediction, in comparison with the
CLEO result [83]. However, the BESIII result is still at 1σ
larger than ours.
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