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Chapter 3  

Thermodynamic Properties of metallic glasses and polymers 

3.1 Introduction 

 

Glasses are in excited state, from physics point of view. They will relax and 

eventually transform to the crystalline ground state if sufficient time is provided at 

any given temperature.  The reason is that any metallic glass, rapidly cooled below its 

melting temperature, Tm, will not get sufficient time to arrange it’s atoms in a regular 

periodic fashion. So, a thermodynamically stable state is not achieved by all the 

metallic glasses.  It is well known that metallic liquids can extend the periods of time 

for being undercooled and avoiding crystallization from occurring [2.1]. The stability 

of the undercooled melt against nucleation of a crystalline phase is a good indicator of 

glass forming ability.Whole phenomena of being glass, depends upon the properties 

in the highly undercooled liquid state which include temperature dependent 

thermodynamic properties such as specific heat, entropy, enthalpy and Gibbs free 

energy. 

According to classical nucleation theory [2.2, 2.3] thermodynamic and kinetic factors 

are used to evaluate the nucleation rate. [3.4]According to classical thermodynamics 

ΔG is a function of the heat capacity difference between metastable liquid and 

crystalline solid. The specific heat at high undercooling is an important characteristic 

for crystallization or glass formation. Gibbs free energy difference ΔG between the 

undercooled liquid and the corresponding crystalline solid, is the the most important 

factor in the analysis of the kinetics of crystallization at high undercooling . [In the 

supercooled liquid, the bulk glass forming alloys show a low driving force for 

crystallization. The low driving force leads to low nucleation rates and enhances glass 

forming ability (GFA). Metallic glasses are stable against crystallization in highly 

undercooled liquid state upto above 100K above the glass transition temperature. It 

opens a new vision into the dynamic and thermal properties of highly undercooled 

metallic liquids. It also provides a chance to prove theoretical concepts about glass 

transition itself for metallic materials.  

Theoretical evaluation of ΔG, ΔS (entropy difference between solid and liquid phase) 

and 
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ΔH (enthalpy difference between the solid and liquid phase) with the aid of the 

specific heat difference (ΔCp) between the under cooled liquid and corresponding 

equilibrium solid can be done with fundamental thermodynamic procedures.  The 

experimental determination of the specific heat of the under cooled melts is always 

tough due to their strong tendency to crystallize. It can be measured close to the 

melting temperature Tm  and at the glass transition temperature Tg in the case of glass 

forming melts. These experimental difficulties lead us towards reliable analytical 

expressions for the estimation of the thermodynamic parameters.  Several researchers 

have proposed expressions for ΔG.  

They were not satisfactory for describing the correct temperature dependence of ΔG 

over a large degree of under cooling because  most of these expressions did not deal 

with the appropriate temperature dependence of ΔCp.  Considering these limitations, 

two different ΔG expressions are derived, using appropriate variation of ΔCp with 

temperature. These 

expressions give  good account for ΔG in most of the bulk glass forming melts.  

A quantitative measure of the stability of a glass as compared to its corresponding 

crystalline state can be obtained by calculating the thermodynamic parameters 

such as the Gibbs free energy difference (ΔG), entropy difference (ΔS) and the 

enthalpy difference (ΔH) between the super-cooled liquid and the corresponding 

crystalline phase. 

3.2 Thermodynamic Properties: Gibbs Free Energy Difference, 

ΔG, Entropy Difference, ΔS & Enthalpy Difference, ΔH 

Stability of a metallic glass is depended on the Gibbs free energy between two phases; 

amorphous and crystalline. It becomes more stable when the Gibbs free energy of the 

amorphous phase is lower than that of the competing crystalline counter phase. By 

way of explanation, the system becomes stable when the change in Gibbs free energy, 

ΔG (= Gglass - Gcrystal) exhibit minimum value. Mathematically, it can be written 

as below equation; 

ΔG = ΔH −TΔS (2.2) 

where, ΔH and ΔS represents the enthalpy difference and entropy difference 

respectively 

and the Δ symbol represents the change in these quantities between the final and 

initial 
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states.The system becomes stable when the value of ΔG is the lowest. For getting a 

minimum value of ΔG, one should either decrease the value of ΔH or increase the 

value of ΔS 

or both.  

Now, we are going to consider about ΔH and ΔS. First, we consider entropy 

difference Δ Since entropy is nothing but a disorder in a system. In other words, the 

value of different ways in which the constituent atoms arrange  is called entropy and 

this value will increase with increasing number of components in the amorphous alloy 

system. Thus, in multi component systems, the free energy will be lower because of 

the increment in entropy even if ΔH remains constant.  

On the other side, value of ΔH will be differ because of the chemical interaction 

between the 

different constituent elements.  

The free energy of the system can be decreased in other cases  at a constant 

temperature if there is a large interfacial energy between the liquid and solid phases or 

in case of low chemical potential due to low enthalpy. 

Since all other cases seem to be troublesome for decreasing the free energy, except 

the increment in ΔS in an alloy system. Increment  in ΔS also results in an increase in 

the degree of dense random packing of atoms, due to that ΔH decreases and 

consequently solid-liquid interfacial energy increases [2.1.]. Thus, the simplest way to 

decrease the free energy would be to increase ΔS by having a large number of 

components in the alloy system. 

Furthermore, smaller value ofΔS  indicates a better GFA, because it increases the 

disorder of the super-cooled liquid state and hence excesses its amorphicity.  ΔS 

decreases more & more and reaches a minimum value at Tg, as supercooling increases 

and then finally, the material 

gets converted into solid phase. It is presumed with a possibility of vanishingΔS that 

the entropy of glassy phase becomes equal to the entropy of the crystalline phase if a 

liquid is cooled below its Tg.  Hence the glassy phase becomes as stable as the 

crystalline phase when ΔS→0. The temperature at which this happens is known as 

Kauzmann temperature (TK). However, practically the super-cooling of a melt below 

its Tg is not possible since the material gets converted into solid well before TK (i.e., 

at Tg). Hence, the concept of an amorphous material having equal entropy as that of 
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its crystalline counterpart becomes self-contradictory. This concept was given by 

Walter Kauzmann in 1948 [3.5] and it is termed as “Kauzmann paradox” . 

Thus, Gibbs free energy difference, ΔG, the difference of free energy between 

amorphous metallic alloy and its crystalline counterpart, entropy difference, ΔS and 

enthalpy difference, ΔH are important parameters in order to know the thermal 

stability of metallic glass. 

 The Gibbs free energy change (ΔG) on crystallization of these multicomponent 

undercooled systems and polymers is an crucial parameter in nucleation process 

because he nucleation frequency has an exponential dependence on ΔG.  Therefore, 

the evaluation of ΔG as a function of temperature is very important in the analysis of 

nucleation phenomena.  

The heat capacities of liquid and corresponding crystalline phase must be known for 

the estimation of the exact temperature dependence of ΔG.  

 As we know, the nature of undercooled liquid is metastable hence the heat capacity 

data is not available easily. So, we have to estimate the value of the functional 

dependence of ΔG on undercooling (ΔT), theoretically.  

There are so many expressions available for ΔG in the literature [3.6-3.15]. These 

expressions are formed on some kind of assumption for the 

temperature dependence of the heat capacity. However, most of these  expressions  

for ΔG is based on the assumption that under cooling ΔT (= Tm – T) is small. This is 

the limitation for the validity of the different proposed expressions for ΔG over small 

temperature interval. Now a days, scenario is changed as the BMG forming alloys 

have a large undercooled regime. Hence, an expression of ΔG is needed which can 

enhance the validity of small underccoling.  

In the this chapter, a novel equation for ΔG is presented, which is suitably applicable 

and more reliable for BMG systems with wide undercooled region as well as 

polymers. 

 

3.2.1 Theory    

 

From the thermodynamic point of view, thermodynamic driving force for 

crystallization should be lower for the better glass former.  The thermodynamic 

driving force for crystallization is given by G. In order to understand the impact of 
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G in the nucleation theory, we should consider the factors that can influence 

nucleation. The steady state homogeneous nucleation frequency per unit volume, hom

I , 

at a temperature T below the equilibrium freezing point or liquidus temperature Tl, is 

given by [3.16] : 

 

]/*exp[
)(

2
0

hom kTG
a

NTD
I n  
          (3.1) 

where Dn (T) is the atomic diffusivity at the liquidus/nucleus interface, N is the 

volume density and a0 the mean effective diameter of the diffusing species, k is 

Boltzmann’s  constant and G* is the critical free enthalpy barrier for nucleation. 

For spherical nuclei the isotropic interfacial enthalpy  between solid and liquid is 

   23 3/16*  GG             (3.2) 

where 2

G  or, say G in the present context, is the free energy difference between 

liquid and crystal phases and which is a function of temperature T.      

The difference in Gibbs free energy between the liquid and crystalline phases is given 

by 

G = H - TS           (3.3) 

where 

 
mT

T
pm dTCHH                      (3.4) 

 

and   
mT

T
pm

T

dT
CSS          (3.5) 

 

Tm is the melting temperature, Sm is entropy of fusion and Hm is the enthalpy of 

fusion. They are related to each other by the following relation: 

 

m

m
m

T

H
S


             (3.6) 

Cp is defined as C
l
p – C

x
p is the difference in specific heats of the two phases. 

Hence, the expression for G becomes 
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m mT T

m
p p

m T T

H T dT
G C dT T C

T T

 
               (3.7) 

 

Thus, we need experimental specific heat data for the undercooled and the crystal 

phases of a material, and then, experimental G values can be calculated with the help 

of Eq.(3.7). In case of non-availability of Cp data, one has to switch over to 

approximations. The linear or hyperbolic forms of variation of Cp with temperature 

are the simplest available options to estimate G in the undercooled region. The two 

types of variation of Cp with temperature are represented as 

   Cp = AT + B   (a) 

   Cp = C/T + D (b) 

 

It is tough to derive the two constants, A & B or C & D, in absence of Cp data at any 

two different temperatures. Owing to this difficulty, most of workers in this field, 

have taken the simplest assumption that is to take A = 0 and make Cp = B i.e. 

constant through Eq.(a).  

       It is observed that, the Cp = constant assumption work quite well in most of the 

bulk glass forming alloys, in which, the specific heat of  undercooled liquid Cp
l
 does 

not vary much with temperature. Hence, 
l x

p p pC C C    remains nearly constant 

throughout the entire undercooled region. 

      However, few glass forming systems possess exceptionally high glass forming 

ability (GFA). In such cases, the specific heat of undercooled liquid Cp
l
 varies much 

with temperature. In such systems Cp increases considerably with undercooling. 

Therefore, to evaluate G correctly an appropriate hyperbolic assumption, given by 

Eq.(b), has to be considered. 

 

       Thus, we can summarize that an appropriate variation of Cp should be 

considered while deriving an analytical expression for G.  
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33..22..22  EEaarrlliieerr  pprrooppoosseedd  EExxpprreessssiioonnss  for Calculation of Thermodynamic 

Parameters GG,,                SS  aanndd  HH    expressions                                  

  

Several models [3.6-3.15] of varying degrees of complexity have been proposed for 

the dependence of G on undercooling. All analytical expressions depend on some 

kind of assumption for the temperature dependence of the heat capacity.   

The simplest expression for G was given by Turnbull [3.6] where Cp was assumed 

to be zero. So, using Cp = 0, Eq.(3.7) simplifies to 

 

m

m

H
G T

T


             (3.8) 

 

As, Cp is most often non-zero, the expression given by Turnbull shows very large 

deviation. 

The most widely used expression for estimation of G is the one given by Thompson 

and Spaepen [3.10]. They have assumed linear variation of Cp given by Eq.(a) and 

further taking A = 0 and making Cp = B= constant . Using this assumption Eq. (3.7) 

simplifies to 

 

lnm m
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m
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    
      

  
       (3.9) 

To simplify Eq. (3.9), TS have used the following approximation: 
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       (3.10) 

 

Also, using Kauzmann phenomena [3.16] which states that the entropy difference S, 

which is configurational in nature, decreases with the decrease in temperature and 

vanishes at a temperature, TK, known as Kauzmann temperature, TS approximated 

Cp in following way 

Assuming Cp to be constant, Eq. (3.5) for S reduces to 
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
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Since  S = 0 at T = TK      

    
m

m
p

T

H
C


                      (3.12) 

 

where  
1

ln m

K

T
T

 
 
 
 

                         

(3.13)  

 

Using this, they have derived an expression given as 
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m

m )1()1( 
      (3.14) 

Still in order to evaluate G one requires the knowledge of TK, which is not easily 

known. So, TS suggested that, if no experimental data are available, the best 

approximation for Cp is when  1.  

Hence, Eq. (3.14) reduces to 

 

 
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mm

m 2
        (3.15) 

 

It is clear that in derivation of G, TS have used two approximations one is 

approximating the logarithmic term and second considering   1. Approximation of 

Eq. (3.10) is strictly valid only for small T and as reported by TS, in the temperature 

range of interest (Tm/2 < T < Tm) this leads to errors in G of less than 4% at the 

largest undercooling [3.14]. But, for the multicomponent metallic glass forming 

alloys, which exhibits a large undercooled regime, this error is greater than 5%. Also, 

it is observed that  values calculated in most of bulk metallic glasses are always 
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greater than one. Because of these two limitations, the G values obtained using TS 

expressions show large deviations. 

Eq. (3.14) reduces to Hoffman [3.12] expression if  = 1 + Tm/T 











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mm

m

T

T

T

TH
G                      (3.16) 

 

The expression given by Singh & Holtz [3.15] is 

 

7
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        (3.17) 

 

In order to account for the wide undercooled region of the multicomponent metallic 

alloys Lad et al [3.18] modified the Eq.(2.15) by considering  
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Eventually they derived expression for G as 
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This expression, when utilized to estimate G for various metallic glass forming 

alloys, gives good results. But, when applied for the alloys which posses very high 

glass forming ability, it was found that the calculated values showed deviation a large 

undercooling. Hence, in order to obtain satisfactory results for such systems Lad et al 

[3.20] have extended the Taylor series expansion of Eq.(3.10) upto second order to 

give: 
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The new expression for G derived by them is given by 
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Eq. (3.21), gives good account of G in most of the systems. But, since the derivation 

again involves the approximation of the logarithmic term, the results obtained are not 

in excellent agreement with the experimental points. 

Another quite extensively used expression for G is the one given by Dubey and 

Ramchandrarao (DR) [3.16]:  
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The above expression is an approximate formula and the exact one derived by DR 

based on hole theory of liquids leads to the following expression for G 

 

( )Re (1A T T

mG S T T T e                   (3.23) 

where mT T T   , h

K

E

RT
   and K

m

T

T
  . The other terms have their usual meaning 

and the same can be seen in the work of DR [3.16].  

However, it is obvious from Eq.(3.23) that it involves evaluation of many parameters 

like , , , TK, and Eh, which in turn, requires the knowledge of Cp at two 

temperatures (taken at Tm and Tg by DR). 

An expression derived by Battezzati and Garrone , Eq.(3.24) does not involve the 

approximation of  the logarithmic term  
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where Hx  and Tx  are heat and temperature of crystallization respectively. 

 

Normally,   has been taken to be 0.8 for glass forming liquids and G has been 

reported using this value in Eq. (3.24.) for multicomponent amorphous alloys  and 

even for bulk metallic glass  Battezzati and Baricco [3.12] have reported an 

experimental study of thermodynamic properties in a ZBLAN glass-forming system 

in which   has been taken to be ~ 3.5.  

Moreover, the correct evaluation of  in multicomponent amorphous systems is 

difficult owing to the following practical reasons: 

 

I. Bulk amorphous alloys normally possess multicomponent nature and 

therefore crystallize in multiple steps. It is difficult to make a choice 

of the step to be taken for derivation of  . 

II. Tx is a function of heating rate and; even Hx is not constant at all 

heating rates. 

 

The above two points pose difficulty in evaluating  and one often gets  value which 

is not unique. In fact, upper limit to  is obtained
 
[3.12] as the input experimental 

parameter Hx represents only a lower limit of the value.   

 

Recently, Ji and Pan  have proposed an expression for G assuming hyperbolic 

variation of Cp in undercooled region  
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This expression is derived considering 
m

p
HC

T
   for hyperbolic temperature 

variation of Cp. At T = Tm and using their expression, 
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In fact, the above expression for Cp
m

 could be obtained assuming Cp
 
to be constant 

between TK and Tm and inserting Cp
 
= Cp

m   
and taking  = 1 (following Thompson & 

Spaepen) from Eq.(3.12), 

 

m m
p

m

H
C

T


    

   
 

Assumption of constant Cp at one instance and obtaining temperature variation at 

the other are self contradictory. Moreover, values obtained using Ji & Pan approach under 

estimate Cp and also at T = Tm, 
mm

p
m

HC
T

   provides the reference values of Cp
m 

which is much below the experimental values. Eventually the expression derived for G does 

not account well for bulk glass forming alloys. 

Cp to be constant work well for most of these systems.  

Heena et al derived following expression considering Cp to be constant 

 

Then, for Cp = AT+B, assuming A = 0; B = Cp = constant Following the argument of vanishing S at 

the Kauzmann temperature TK, using the Eq.(3.12) for Cp, they derived following expression 
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For bulk glass forming alloys having excellent GFA it is observed that the specific heat increases 

considerably with undercooling. In such systems the hyperbolic variation for Cp given by Cp = C/T + 

D is to be considered. Again in order to estimate the values of the constants C and D, the knowledge 

of Cp data at two different temperatures is required. In absence of Cp data it can be assumed that D 

= 0 and C = Cp
m

Tm, since the value of constant D is very low (almost negligible) compared to C.  

Heena et al derived one more expression for such case as discussing above. 

 

They considered, Cp at any temperature TK < T < Tm in the undercooled region can be 

expressed as  
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Cp
m 

being the specific heat difference at the melting point. Substituting Cp from Eq. 

(3.28) in Eqs.(2.7), we get; 
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Now, S can be obtained by differentiating G  with respect to T i.e. 
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              (3.30) 

substituting above eq. in Eq.(3.3) we can get the expression for H as: 
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The expression for S in case of hyperbolic dependence of Cp on T can be obtained 

by partial differentiation of Eq.(3.29), hence  
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and H can be obtained using equations (3.29) and (3.32) in Eq. (3)  
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 

                  (3.33) 

 

 

                                                         .                                         

                      

3.2.3Equations for ΔG assuming Hyperbolic Variations of ΔCp with 

Temperature   

The difference in Gibbs free energy G is expressed as 

 

  
m mT T

p

m p m

T T

C
G H C dT T S dT

T

   
             

   
                   (3.34) 

The choice of proper Cp variation is important to evaluate G accurately. The linear 

or hyperbolic forms of variation of Cp with temperature are the simplest available 

options to estimate G in the undercooled region.   



Chapter 3  Thermodynamic Properties of metallic glasses and 

polymers  

 

51 
 

Derivation of G assuming hyperbolic variation Cp  with temperature 

Assumption of constant Cp works quite well for most of the glass forming systems 

and provides fairly close results for G. But, for few systems having outstanding 

glass forming ability (GFA), temperature variation of Cp has to be accounted for in 

some form. For bulk glass forming alloys having excellent GFA it is observed that the 

specific heat increases considerably with undercooling. In such systems the 

hyperbolic variation for Cp given by Cp = C/T + D is to be considered. Again in 

order to estimate the values of the constants C and D, the knowledge of Cp data at 

two different temperatures is required. In absence of Cp data it can be assumed that 

D = 0 and C = Cp
m
Tm, since the value of constant D is very low (almost negligible) 

compared to C.  

Hence, Cp at any temperature TK < T < Tm in the undercooled region can be 

expressed as  

m

p m

p

C T
C

T


                      (3.35) 

Cp
m 

being the specific heat difference at the melting point. Substituting Cp from Eq. 

(3.28) in Eqs.(3.7), we get; 

 

lnmm m
p m

m m

H T T T
G C T

T T T

   
    

 
    (3.36) 

 

This equation, assuming hyperbolic variation of Cp differs only in a temperature 

term with respect to Eq. (3.9) (taking Cp = constant) from which expression for G 

given has been derived. 

Now, we consider the below approximation  and substituting into Eqn (3.36) 
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T
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2
1ln

 

 

We can get the following new expression for G in case of hyperbolic dependence of 

Cp on T, 
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2

1 1

2

mm
p m

m m

H T T
G C T T

T T T T

   
      

                                    (3.52)

 

Eq. (3.52) is the new expression for multi component BMG forming alloys with large 

undercooled region. It is derived by taking the hyperbolic variation of Cp, and it 

involves approximation for the logarithmic term.  

3.3 Results and Discussions 

3.3.1 Gibbs Free Energy Difference, Entropy Difference and Enthalpy Difference 

for      Six       Glass Forming Polymeric Melts 

The temperature dependence of the Gibbs free energy difference (ΔG), entropy 

difference (ΔS) and enthalpy difference (ΔH) between the undercooled melt and the 

corresponding equilibrium solid has been analysed for glass forming polymeric 

materials. It is done by calculating ΔG, ΔS and ΔH for  four samples of glass forming 

polymeric melt, polyethylene (PE), polytetramethylene oxide (PTMO), polyamid-6 

(PA-6), polypropylene oxide (PPO) and two samples of simple organic liquids: o-

terphenyl (o-ter),  tri-α-naphthyl benzene(tri-α-NB), in the entire temperature range 

melting temperature(Tm) to glass transition temperature(Tg). The expression for ΔG, 

ΔS and ΔH has been derived assuming hyperbolic dependence of ΔCp on T.  

. The result of tri-α-NB  shows excellent match with experimental data. This is simple 

organic liquid and no polymerization undergoes. So we can say that polymerization 

may have effect on Glass Forming Ability (GFA) of material. Lad et al (Eq.3.21) are 

somewhat closer and the possible reason is Cp may not vary much.  

Figures 1-6 show the results of  G as function of T in the undercooled region 

for three polymeric melts and two simple organic liquids obtained using Eq (3.21), 

(3.22) ,(3.29) and present Eq.(3.52).The parameters used for the calculations of  G 

for these systems are given in table.1. The results for these systems (fig.1-6) are 

calculated with our present Eq. (3.52),   Lad et al Eq.(3.21),Mishra etalEq(3.22) 

,Heeana et al Eq(3.29) and compared with the experimental results of [19]. We can 

see the fair agreement of the present results obtained through Eq. (3.52) with 

experimental data. 

The tri-α-NB shows the good agreement and close matching of our present 

Eq.(3.52)and Eq(3.29) with experimental curves  up to large degrees of undercooling. 
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All three polymeric and simple organic liquid samples (fig.1-6) have a large deviation 

of the curves obtained using the formulation given by Lad et al Eq.(6). 

          Figures 6-12 show the result of S as function of T in the undercooled 

region for two samples of glass forming polymeric melts and one simple organic 

liquid obtained using our present Eq. and Mishra et al Eq., The graphs for PA6, PPO  

and tri-α-NB show  results for S of our present Eq. and seem to be  matching with 

experimental curve.   

In the result for S of PA6 , our result Eq.and results obtained by Mishra et al 

match with experimental data qualitatively. However, quantitatively they deviate from 

experimental points. 

        Figures 13-18 are presenting the results of H as a function of T in the 

undercooled region for two samples of glass forming polymeric melts and one simple 

organic liquid obtained using our present Eq.  and that of Mishra et al Eq . The PA6 , 

PPO  and tri-α-NB show  excellent result for H. The results using our present Eq. for 

both the systems are much nearer to experimental results. 

Figures 1-6 show the results of Gibbs free energy differences G as function of 

T in the undercooled region for five polymeric melts obtained using hole theory of 

liquids Eq, and hyperbolic variation of Cp Eqs.(8) almost coinside with the 

experimental points [19] in the entire undercooled region. The parameters used for the 

calculations of  G for these systems are given in table.1.  The good agreement of the 

present results obtained through equation (8) with experimental data can be observed. 

         The PE show good agreement and  close matching of the two curves of 

Mishra expression Eq(3.22) and present expression Eq(3.52) with experimental 

curves  up to large degrees of undercooling.  The  PB, PEO, PP and PTMO show  

good agreement of Mishra expression Eq and present expression Eq(3.52) with 

experimental curves. The plot using the Lad expression Eq(3.21) show a  deviation 

from the experimental curves in all the samples. All five polymeric samples (fig.1-6) 

have a large deviation in Lad expression. 

            Figures 6-12 show the result of  S as function of T in the undercooled 

region for two samples of glass forming polymeric melts and one simple organic 

liquids. It is obtained from the derivative of the plotted ΔG using the hole theory of 

liquid [8];Eq.(9) and hyperbolic dependence of Cp on T; Eq .The O-ter and the 
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PTMO show good result for S using present eq.. For both the systems, the results are 

much nearer to experimental points while PE show deviation at lower(<250K) 

temperature range. 

             Figures 13--18 are presenting the results of H as a function of T in the 

undercooled region for two samples of glass forming polymeric melts and one simple 

organic liquids. It is obtained using the hole theory of liquid [8]; eq(12) and 

hyperbolic dependence of Cp on T; Eqs (13). The O-ter(fig.9) and the PTMO(fig.10) 

show wonderful result for H. The results using present eq.(13) for both the systems 

are much nearer to experimental results while PE(fig.11) show deviation at 

lower(<280K) temperature range. 

 

 

 

Table 3.1: Parameters used for the calculation of G 

for glass forming polymeric melts[8] 

 

 

 

  

                                            

 

 

System Ti=Tg 

(K) 

Tk 

(K) 

Tm 

(K) 

 

Tk/Tm  

(K) 

Hm 

(kJ/mol) 

Cp
m
 

(kJ/mol-K) 

Sm 

(kJ/mol-

K) 

tri-α-NB 342 255.4  472  0.54 42.489 0.09086 0.09002 

Salol 230 209.5 316.6 0.66 9.799 0.02368 0.03095 

PET 342 253.6 543 

 

0.47 22.600  0.0088 0.04162 

PA6 323 252.5 496 0.51 21.814 0.03815 0.04396 

PPO 198 156.7 350 0.45 8.4 0.02198 0.024 
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                                       Fig. 3.1 Gibbs free energy difference, ΔG as a function of temperature for PE 
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                                            Fig. 3.2 Gibbs free energy difference, ΔG as a function of temperature for 
PTMO 
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                    Fig. 3.3 Gibbs free energy difference, ΔG as a function of temperature for PA6 
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                           Fig. 3.4 Gibbs free energy difference, ΔG as a function of temperature for  PPO 
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                               Fig. 3.5 Gibbs free energy difference, ΔG as a function of temperature for tri-α NB 
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                        Fig. 3.6Gibbs free energy difference, ΔG as a function of temperature for OTER 
 

 
Fig. 3.7 Entropy difference, ΔS as a function of temperature for PE  
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Fig. 3.8 Entropy difference, ΔS as a function of temperature for PTMO 
 
                     

 

Fig. 3.9 Entropy difference, ΔS as a function of temperature for tri-α NB 
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Fig. 3.10 Entropy difference, ΔS as a function of temperature for OTER 
                     
 

 

Fig. 3.11Entropy difference, ΔS as a function of temperature for PA6 
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                                 Fig. 3.12 Entropy difference, ΔS as a function of temperature for PPO 
 

 
                                            Fig. 3.13 Enthalpy difference, ΔH as a function of temperature for PE 
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                         Fig. 3.14 Enthalpy difference, ΔH as a function of temperature for PTMO 

 

 

                           Fig. 3.15 Enthalpy difference, ΔH as a function of temperature for tri-α NB 
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Fig. 3.16 Enthalpy difference, ΔH as a function of temperature for OTER  
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                      Fig. 3.17 Enthalpy difference, ΔH as a function of temperature for PA6 

 

 

                    Fig. 3.18 Enthalpy difference, ΔH as a function of temperature for PPO 
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3.4 Conclusions  

It is important to consider an appropriate variation of ΔCp with temperature while 

deriving an analytical expression for ΔG for bulk metallic glass forming alloys. All 

the earlier expressions for ΔG involve mainly two kinds of approximations. First the 

temperature dependence of ΔCp is assumed to be linear, and subsequently for 

simplified derivation it is approximated to be constant. Second, the logarithmic term 

appearing in the expression is 

approximated with the help of a series expansion about Tm. These approximations in 

the expression for ΔG make it insensitive to the nature of the variation of ΔCp in the 

undercooled region and also limit its validity upto small undercooling (ΔT). 

Considering these limitations, three new expressions for ΔG, depending on the type of 

ΔCp variation (constant, hyperbolic and linear), are derived. Assumption of constant 

ΔCp in most of the glass forming alloys provides fairly accurate results and shows 

very small deviation even at temperature as low as T ~ TK. However, one of the 

indicators of enhanced GFA could be lower value of ΔG. Increased GFA, in turn, is 

associated with substantial increase in ΔCp and therefore hyperbolic variation of ΔCp 

has been taken and it accounts well for such systems which posses good glass forming 

ability. In case of magnetic liquid metals ΔCp rises linearly with temperature hence 

ΔG values derived using linear variation of ΔCp show excellent agreement with 

experimental results. The only difficulty involved in the present approach is the lack 

of prediction of the nature of variation of ΔCp (constant or hyperbolic) in the 

undercooled region i.e. there is no fixed criterion for choosing one of them a priori. 

The proposed expression for ΔG assuming linear and hyperbolic variation of ΔCp 

provides quite accurate results in the entire undercooled region of BMG forming 

alloys polymeric melts.ΔS and ΔH derived from so obtained ΔG values also lie very 

close to experimental points. Also, for polymer the ΔS values show good agreement 

with the experimental results compared to the earlier derived expressions. Hence, 

along with the exact variation of ΔCp the evaluation of the constants existing in ΔCp 

expressions is important in derivation of an expression for ΔG. 
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