Chapter 3 Synthesis and Characterization

3.1 Synthesis of up-conversion phosphors

As discussed in the section of Chapter 1, there are certain trivalent rare earth activated phosphors, which emit intense visible luminescence under near infrared light excitation. This process of upconversion is known to have its infrared to visible light conversion efficiency to be strongly dependent on the choice of host materials and the concentration of the activator as well as sensitizer. Several host materials have been used to synthesize such upconversion system. Several pairs of activator – sensitizer have been also tried. Halides of rare earth and alkaline earth metals have been the most common choice for host materials, traditionally. Several rare earth trivalent ions have been commonly used as activators and sensitizer which includes Dy^{3+} , Er^{3+} , Ho^{3+} , Pr^{3+} , Tm^{+3} and Yb^{3+} .

In the present study a set of new host materials namely Lanthanum Molybdate, Bismuth Oxide and Cadmium Oxide have been used to synthesize up-conversion phosphors with Erbium (Er^{3+}) and Ytterbium (Yb^{3+}) as activator and sensitizer respectively.

- 1. $La_2(MoO_4)_3$: Yb, Er
- 2. Bi_2O_3 : Yb, Er
- 3. CdO : Yb, Er

All these materials have been doped by Er^{3+} as activator and Yb^{3+} as sensitizer. While a host of chemical methods can be used for synthesis, the samples in this work were prepared using the simple and inexpensive method of precipitation.

3.1.1 Synthesis of La₂(MoO₄)₃: Yb³⁺, Er³⁺ up-conversion phosphor

Samples of $La_2(MoO_4)_3$: Yb, Er were synthesized using the precipitation method. The process followed is as under.

Stoichiometric amount of Lanthanum Oxide (La_2O_3) , Ytterbium Oxide (Yb_2O_3) and Erbium Oxide (Er_2O_3) were taken and dissolved in 10 ml of dilute HNO₃ to prepare Solution A. The solution was heated moderately to drive away the unreacted HNO₃. The residue obtained was dissolved in 30 ml of deionised water and stirred for one hour at room temperature.

Another mixture (Solution B) was prepared by dissolving stoichiometric amount of Ammonium Molybdate Oxide ($(NH_4)_6Mo_7O_{24}$) in 30 ml of deionised water and stirring it for one hour at room temperature.

Solution A was added to Solution B drop by drop with continuous stirring. The mixture was then stirred continuously for 24 hours. Gradually, the precipitates were formed. These precipitates were then centrifuged at 3000 rpm for 15 minutes. The residual precipitates were washed twice in deionised water and dried. The color of the precipitates was light green like that of bottle guard. This powder was then heated at 800 °C for 5 hours and then cooled. The final product was a lemon colored powder.

Three samples were synthesized in the following proportion of the host metal, the sensitizer and activator.

LMO 1	$(La_{79}: Yb_{20}: Er_1)$
LMO 2	$(La_{78}: Yb_{20}: Er_2)$
LMO 3	(La ₇₇ :Yb ₂₀ :Er ₃)

The samples were subjected to EDAX analysis to confirm the presence of elements, particularly the doped elements in the samples LMO 1, LMO 2 and LMO 3 as shown in figure 3.1, 3.2 and 3.3 respectively. The results confirm the presence of all the elements involved.

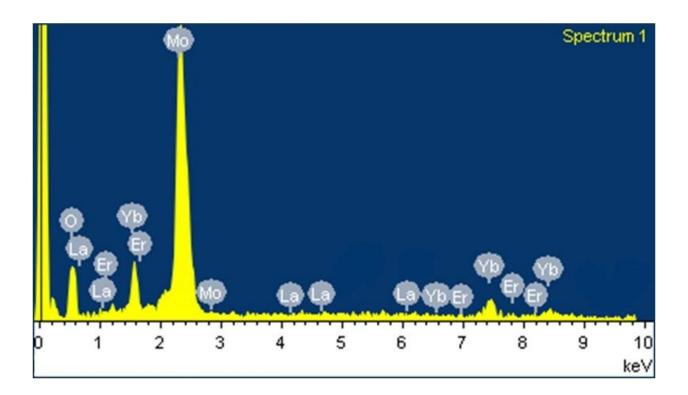


Figure 3.1: EDAX spectra of LMO 1

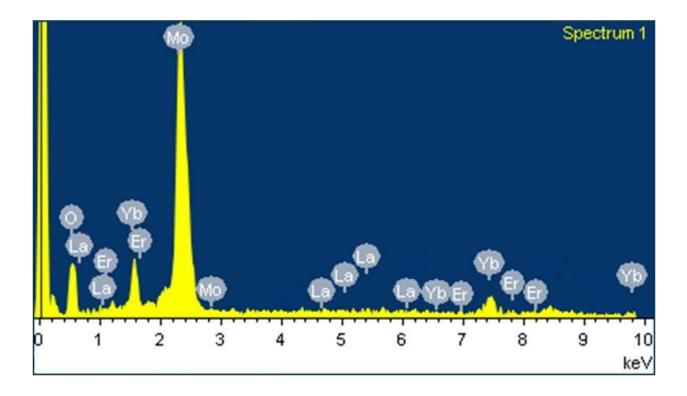


Figure 3.2: EDAX spectra of LMO 2

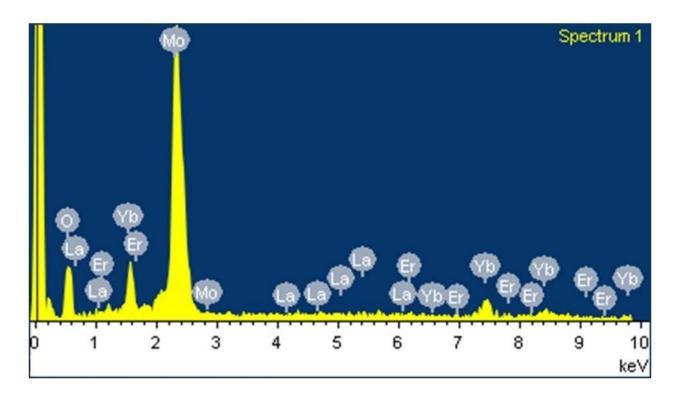


Figure 3.3: EDAX spectra of LMO 3

3.1.2 Synthesis of Bi₂O₃: Yb³⁺, Er³⁺ up-conversion phosphor

Stoichiometric amount of Bismuth Nitrate $[Bi(NO_3)_3]$, Ytterbium Nitrate $[Yb(NO_3)_3]$ and Erbium Nitrate $[Er(NO_3)_3]$ were taken and mixed in 30 ml of dilute HNO₃. More HNO₃ was added with stirring till the solution became transparent. To this solution, 20 ml of polyethylene glycol (PEG 400) was added as dispersant with continuous stirring. Another 50 ml solution of 4 mol/lit NaOH was poured into the above solution which resulted into the formation of yellow precipitates. The solution with precipitates was heated at 90° C for two hours with continuous stirring and then cooled down to room temperature. The precipitates were filtered, washed with alcohol as well as deionised water several times and then dried. The final product was a light yellow powder.

Three samples were synthesized in the following proportion of the host material, sensitizer and activator.

BO 1 (Bi_{79} : Yb₂₀: Er₁) BO 2 (Bi_{78} : Yb₂₀: Er₂) BO 3 (Bi_{77} : Yb₂₀: Er₃)

The samples were subjected to EDAX analysis to confirm the presence of elements, particularly the doped elements in the samples BO 1, BO 2 and BO 3 as shown in figure 3.4, 3.5 and 3.6 respectively. The results confirm the presence of all the elements involved.

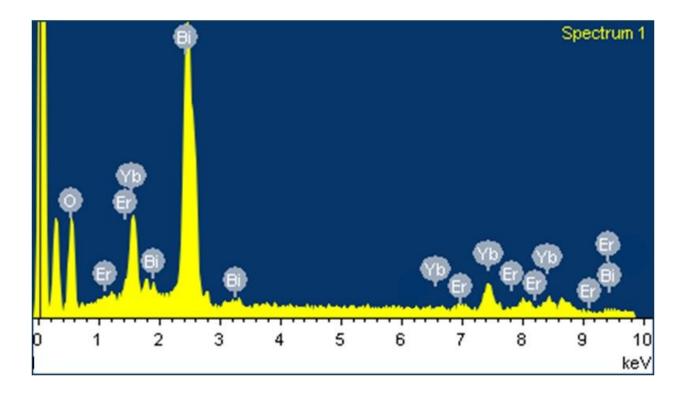


Figure 3.4: EDAX spectra of BO 1

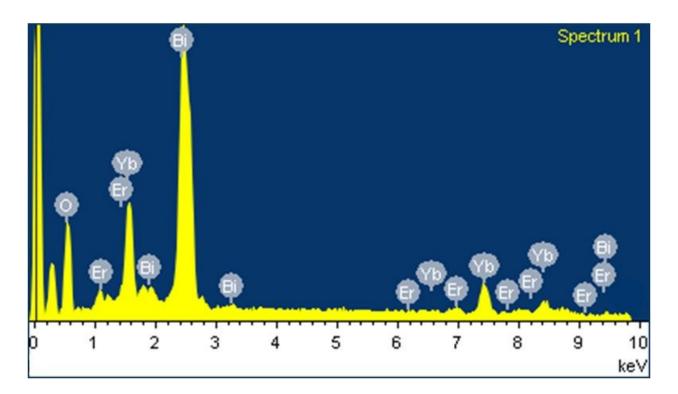


Figure 3.5: EDAX spectra of BO 2

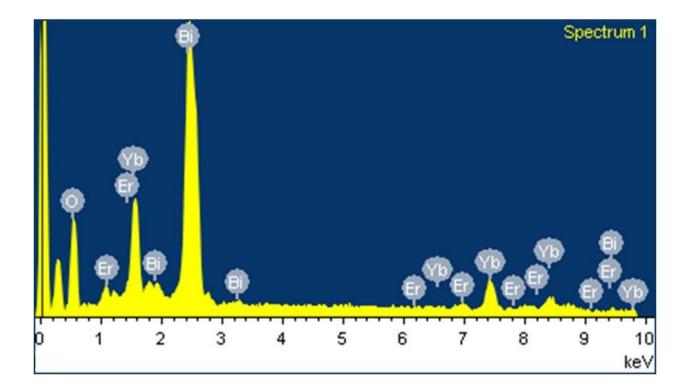


Figure 3.6: EDAX spectra of BO 3

3.1.3 Synthesis of CdO: Yb³⁺, Er³⁺ up-conversion phosphor

Stoichiometric amount of CdCl₂ was dissolved in 50 ml of Ethanol and stirred for 30 minutes at room temperature to prepare Solution A.

Another Solution B was prepared by dissolving stoichiometric amount of Yb_2O_3 and Er_2O_3 in concentrated Hydrochloric acid (HCl).

The solution B was added to solution A with continuous stirring for 10 minutes at room temperature. Aqueous solution of NaOH was added to this mixture with continuous stirring to maintain a pH value of 10. Subsequently, the solution was kept for 10 hours for deposition of precipitates. These precipitates were collected and dried at 100° C for two hours. White colored powder was obtained. This powder was heated at 400° C for one hour, which resulted into a brownish powder.

These samples were synthesized in the following proportion of the host metal, sensitizer and activator.

CO 1 (Cd_{79} : Yb_{20} : Er_1) CO 2 (Cd_{78} : Yb_{20} : Er_2) CO 3 (Cd_{77} : Yb_{20} : Er_3)

The samples were subjected to EDAX analysis to confirm the presence of elements, particularly the doped elements in the samples CO 1, CO 2 and CO 3 as shown in figure 3.7, 3.8 and 3.9

respectively.. The results confirm the presence of all the elements involved, except in the case of sample CO1 which does not show the presence of Erbium (Er). This shows that Er has not been incorporated in the material.

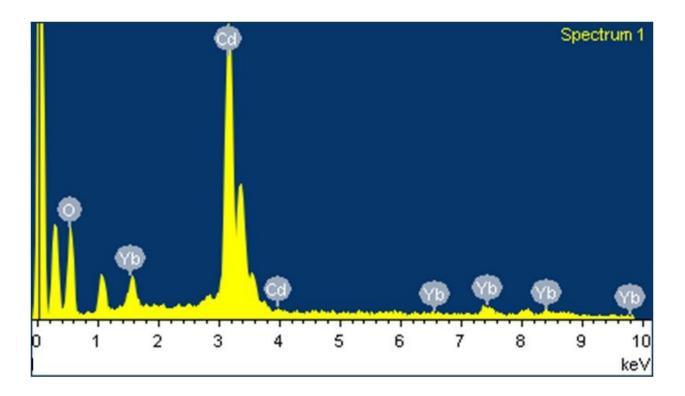


Figure 3.7: EDAX spectra of CO 1

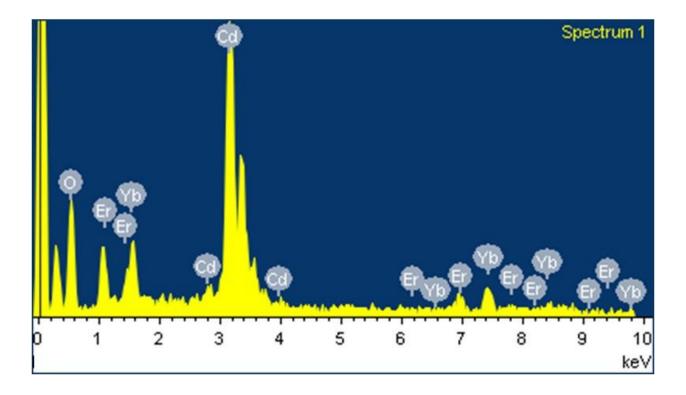


Figure 3.8: EDAX spectra of CO 2

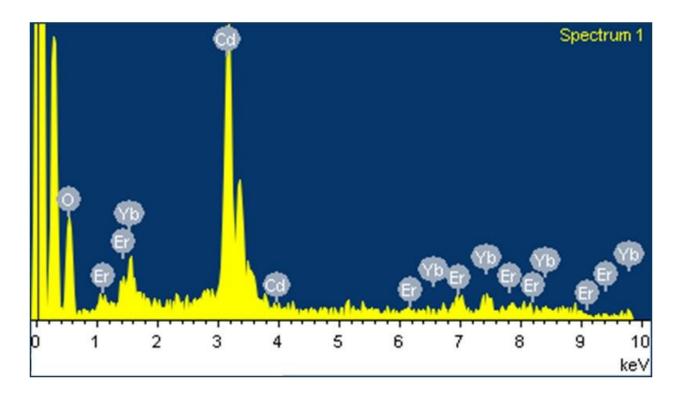


Figure 3.9: EDAX spectra of CO 3

3.2 Characterization of materials

Characterization of the materials gives the detailed information about the synthesized materials. Here, all the synthesized phosphors were characterized by X – ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X – ray spectroscopy (EDAX).

It gives information about the size, structure, phase, surface topography, elemental composition and about the presence of the functional groups, bonds etc. in the synthesized materials.

3.2.1 XRD Analysis

The X-ray powder diffraction technique has been used to get information regarding the structural properties like phase and crystallite size of the material.

1) La₂(MoO₄)₃: Yb³⁺, Er³⁺

Figure 3.10 shows the XRD pattern for sample LMO 1 ($La_2(MoO_4)_3$:Yb³⁺, Er³⁺), which has sharp peaks. The pattern indicates high degree of crystallinity. These peaks can be ascribed to $La_2(MoO_4)_3$. The structure is predominantly in monoclinic phase. The peak at 2 Θ value of 25.85° has the highest intensity, which is the characteristic peak of (-421) plane. d-values of majority of the peaks match with those reported in the JCPDS file (70 – 1382 for La₂(MoO₄)₃), while a few vary marginally with the respective peaks in the same file. That can be attributed to the presence of dopants. Figure 3.11 gives the pattern for sample LMO 2, which is identical to the pattern of sample LMO 1. This pattern also indicates high degree of crystallinity. The peak at 2 Θ value of 25.85° has the highest intensity. d-values of the peaks match with JCPDS file 70 – 1382 for La₂(MoO₄)₃.

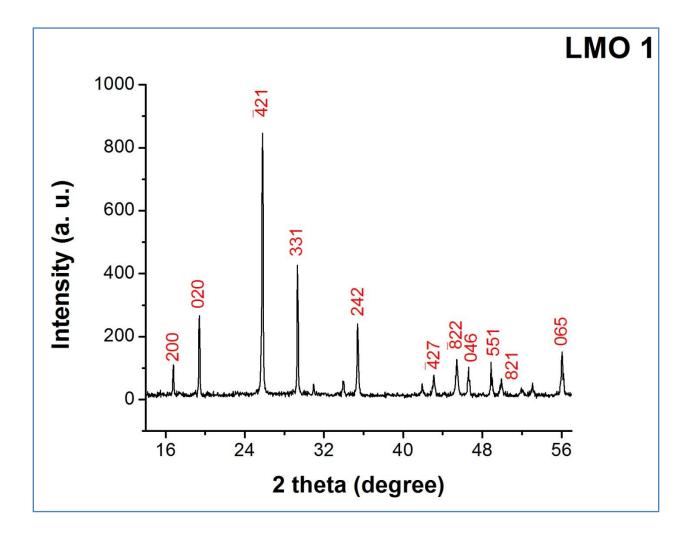


Figure 3.10: XRD pattern of La₂(MoO₄)₃ phosphors doped with Yb and Er for LMO 1

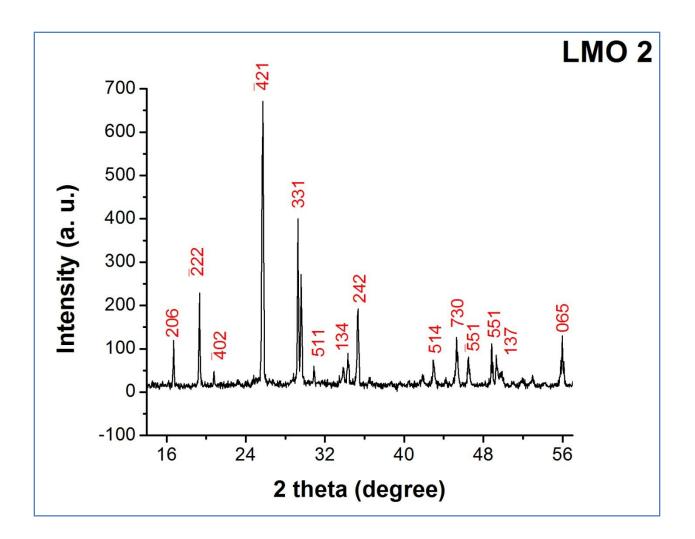


Figure 3.11: XRD pattern of La₂(MoO₄)₃ phosphors doped with Yb and Er for LMO 2

Figure 3.12 shows the pattern for sample LMO 3 which is again similar to the earlier two samples. The peak at 2 Θ values of 25.85° has the highest intensity. d-value of the peaks match with the JCPDS file 70 – 1382 for La₂(MoO₄)₃, with few exceptions.

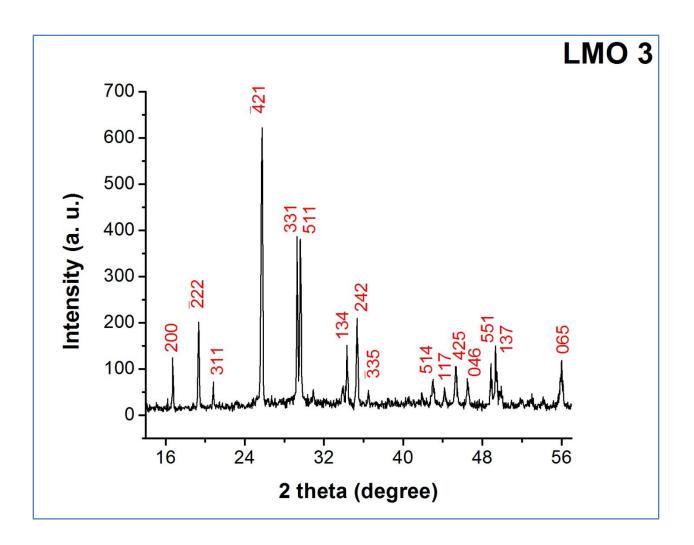


Figure 3.12: XRD pattern of La₂(MoO₄)₃ phosphors doped with Yb and Er for LMO 3

Comparison of standard d-values of JCPDS file no. 70-1382 with the calculated d-values of the samples are given in table 3.1. The slight deviation from the standard values can be attributed to the presence of activator and co-activator.

d – values		d – values (Calculated)				
JCPDS file						
no.	Sample	hkl	Sample	hkl	Sample	hkl
70 - 1382	LMO 1		LMO 2		LMO 3	
4.4606	4.5676	-222	4.5613	-222	4.5721	-222
4.3203					4.3023	311
3.4607	3.4424	-421	3.4333	-421	3.4385	-421
3.0209	3.0384	331	3.0557	331	3.0303	331
2.8844	2.8876	511	2.8849	511	2.8876	511
2.6192	2.6321	134	2.6146	134	2.6112	134
2.5415	2.5347	242	2.5347	242	2.5319	242
2.4520					2.4607	-335
2.1488	2.1476	244				
2.1172			2.1070	514	2.1056	514
2.0952	2.0953	-427				
2.0452					2.0475	117
2.0076					2.0015	425
1.9987	1.9986	-822				
1.9959			1.9940	730		
1.9517			1.9510	-551		
1.9369	1.9323	046			1.9321	046
1.8627	1.8610	551	1.8625	551		
1.8409			1.8472	137	1.8461	137
1.8295	1.8216	821				
1.7255	1.7256	714				
1.6928			1.6992	156		
1.6692	1.6406	065	1.6433	065	1.6425	065

Table 3.1: Comparison of standard d-values of JCPDS file no. 70-1382 with the calculated d-values of the samples of La₂(MoO₄)₃ phosphors

Some peaks match with JCPDS file no. 78 - 1691 of Yb₂O₃ and 76 - 0159 for Er₂O₃ which shows that there is some amount of residual Yb₂O₃ and Er₂O₃ in the samples.

2) Bi₂O₃: Yb³⁺, Er³⁺

Figure 3.13 shows the XRD pattern for sample BO1 (Bi_2O_3 :Yb³⁺, Er^{3+}), which has sharp peaks. The pattern indicates high degree of crystallinity. These peaks can be ascribed to Bi_2O_3 . The structure is monoclinic. The peak at 2 Θ value of 27.37° has the highest intensity, which is the characteristic peak of (-121) plane. d-values of the peaks match with those reported in the JCPDS file 71 – 2274 for Bi_2O_3 .

Figure 3.14 gives the pattern for sample BO2 (Bi_2O_3 :Yb³⁺, Er³⁺), which is identical to the pattern of sample BO1. This pattern also indicates high degree of crystallinity. The peak at 2 Θ value of 27.46° has the highest intensity. d-values of the peaks match with JCPDS file JCPDS file 71 – 2274 for Bi_2O_3 .

Figure 3.15 shows the pattern for sample BO3 (Bi_2O_3 :Yb³⁺, Er³⁺) which is again similar to the earlier two samples. The peak at 2 Θ value of 27.37° corresponding to (120) plane has the highest intensity. d-value of the peaks match with the JCPDS file 71 – 2274 for Bi_2O_3 .

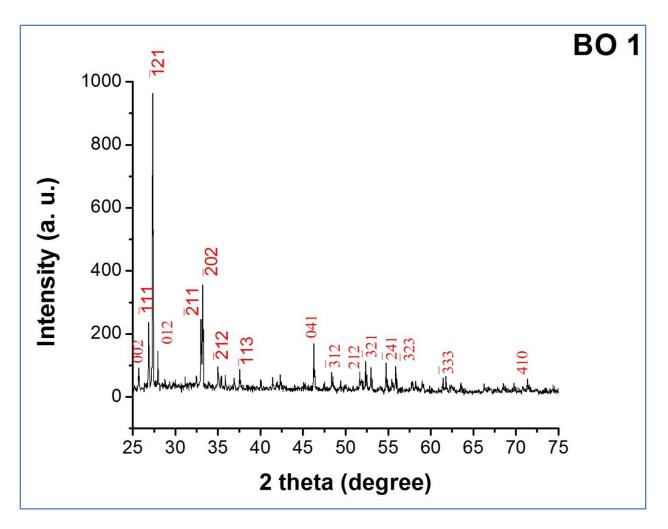


Figure 3.13: XRD pattern of Bi₂O₃ phosphors doped with Yb and Er (BO 1)

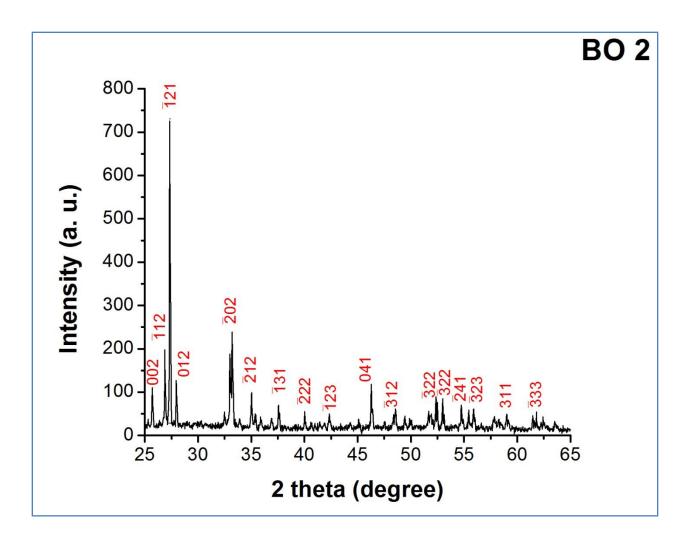


Figure 3.14: XRD pattern of Bi₂O₃ phosphors doped with Yb and Er (BO 2)

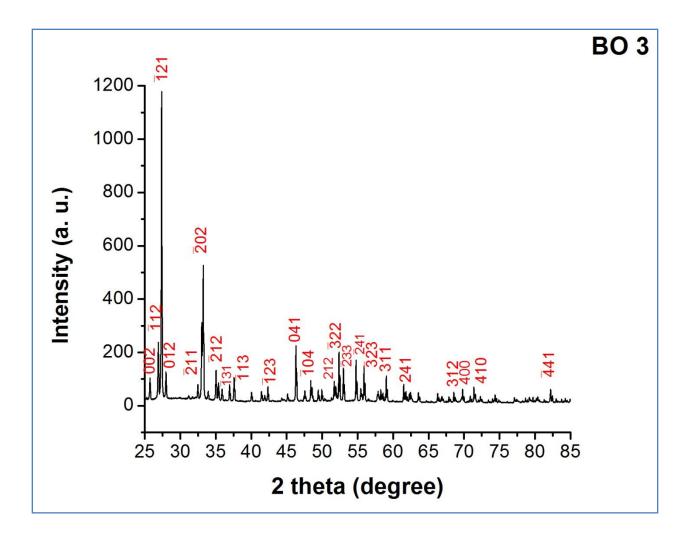


Figure 3.15: XRD pattern of Bi_2O_3 phosphors doped with Yb and Er (BO 3)

Comparisons of standard d-values of JCPDS file no. 71 - 2274 with the calculated d-values of the samples are given in table 3.2. The slight deviation from the standard values can be attributed to the presence of activator and co-activator.

d – values	d – values (Calculated)					
JCPDS file						
no.	Sample B 1	hkl	Sample B 2	hkl	Sample B 3	hkl
71 - 2274						
3.4563	3.4555	002	3.4551	002	3.4595	002
3.3111	3.3144	-112	3.3133	-112	3.3177	-112
3.2532	3.2500	-121	3.2503	-121	3.2523	-121
3.1829	3.1839	012	3.1895	012	3.1872	012
2.7516					2.7516	-211
2.6918	2.6976	-202	2.6976	-202	2.6973	-202
2.5589	2.5570	-212	2.5549	-212	2.5571	-212
2.3890	2.3844	-113	2.3854	-113	2.3873	-113
2.2490			2.2481	-222		
2.1310			2.1393	-123	2.1397	-123
1.9579	1.9522	041	1.9505	041	1.9585	041
1.8790	1.8705	-312	1.8791	-312	1.8765	-312
1.7658	1.7644	212			1.7666	212
1.7454	1.7443	-321	1.7431	-322	1.7490	-322
1.7254			1.7299	-233	1.7259	-233
1.6739	1.6748	-241	1.6799	-241	1.6715	-241
1.5628					1.5600	311
1.5060					1.5084	241
1.4993	1.4998	-333	1.4991	-333		
1.3670					1.3653	312
1.3459					1.3459	400
1.3280	1.3200	410			1.3216	410
1.1713					1.1725	-441

Table 3.2: Comparison of standard d-values of JCPDS file no. 71 - 2274 with the calculated d-

values of the samples of Bi₂O₃

In this, case also, some peaks match with JCPDS file no. 78 - 1691 of Yb₂O₃ which shows that there is some amount of residual Yb₂O₃ in the samples.

3) CdO: Yb, Er up-conversion phosphors

Figure 3.16 shows the XRD pattern for sample CO 1 (CdO:Yb³⁺, Er^{3+}), which has sharp peaks. The pattern indicates high degree of crystallinity. These peaks can be ascribed to CdO. The structure is cubic. The peak at 2 Θ value of 32.95° has the highest intensity, which is the characteristic peak of (111) plane. d-values of the peaks match with those reported in the JCPDS file 75 - 0594 for CdO.

Figure 3.17 gives the pattern for sample CO 2 (CdO:Yb³⁺, Er^{3+}), which is identical to the pattern of sample CO 1. This pattern also indicates high degree of crystallinity. The peak at 2 Θ value of 32.95° has the highest intensity. d-values of the peaks match with JCPDS file 75 - 0594 for CdO.

Figure 3.18 shows the pattern for sample CO 3 (CdO:Yb³⁺, Er^{3+}) which is again similar to the earlier two samples. The peak at 2 Θ value of 32.87° corresponding to (111) plane has the highest intensity. d-value of the peaks match with the JCPDS file 75 - 0594 for CdO.

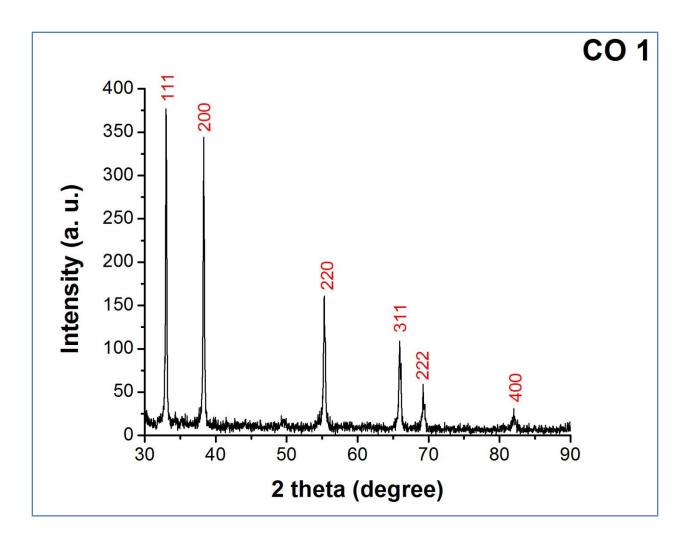


Figure 3.16: XRD pattern of CdO phosphors doped with Yb and Er (CO 1)

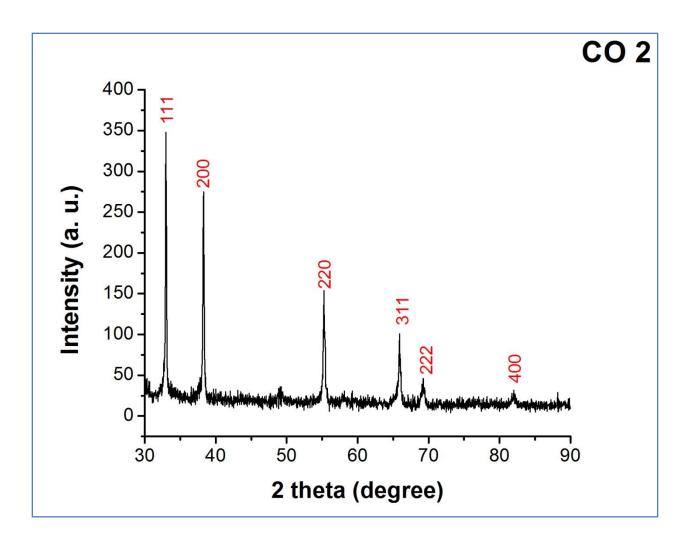


Figure 3.17: XRD pattern of CdO phosphors doped with Yb and Er (CO 2)

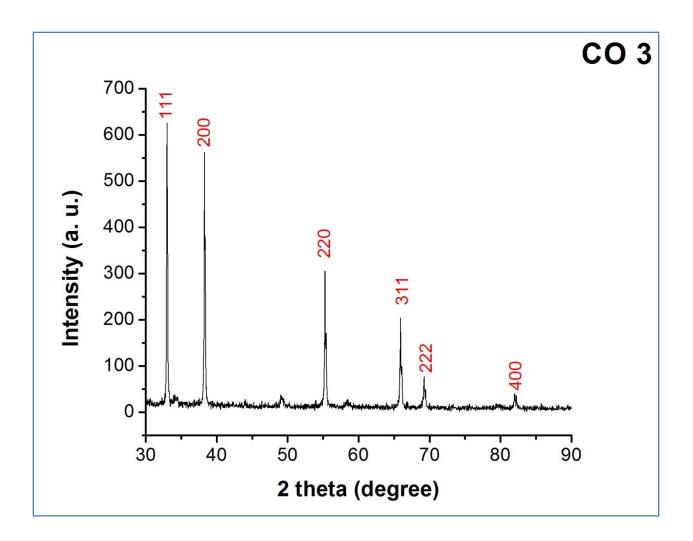


Figure 3.18: XRD pattern of CdO phosphors doped with Yb and Er (CO 3)

Comparison of standard d-values of JCPDS file no. 75 - 0594 with the calculated d-values of the samples are given in table 3.3. The slight deviation from the standard values can be attributed to the presence of activator and co-activator.

d – values	d – values (Calculated)				_	
JCPDS file no. 05 – 0640	Sample C 1	hkl	Sample C 2	hkl	Sample C 3	hkl
2.712	2.7151	111	2.7151	111	2.7115	111
2.349	2.3484	200	2.3460	200	2.3449	200
1.661	1.6681	220	1.6670	220	1.6697	220
1.416	1.4143	311	1.4135	311	1.4154	311
1.355	1.3541	222	1.3534	222	1.3560	222
1.174	1.1736	400	1.1741	400	1.1749	400

Table 3.3: Comparison of standard d-values of JCPDS file no. 75 – 0594 with the calculated d-values of the samples of CdO

In case of these samples, no peaks have been observed for Yb_2O_3 and Er_2O_3 , which suggests that

Yb and Er have been appropriately incorporated in to the system.

3.2.2 Crystallite Size

 Sample Name
 Crystallite Size (nm)

 LMO 1
 61.79

 LMO 2
 69.13

 LMO 3
 74.07

The average crystallite size was calculated by Debye – Scherrer formula. The values are given in Table 3.4, 3.5 and 3.6. The results clearly indicate that the samples are in bulk form.

Table 3.4: Crystallite size for samples of La₂(MoO₄)₃: Yb, Er

Sample Name	Crystallite Size (nm)
BO 1	138.54
BO 2	110.70
BO 3	100.75

Table 3.5: Crystallite size for samples of Bi₂O₃: Yb, Er

Sample Name	Crystallite Size (nm)
CO 1	47.70
CO 2	60.06
CO 3	73.43

Table 3.6: Crystallite size for samples of CdO: Yb, Er

3.2.3 SEM analysis

The scanning Electron Microscopy of the samples were carried out on a JEOL SEM Model JSM 5610, operated on 20 kV. The images were taken at three different resolutions for each sample.

1) La₂(MoO₄)₃: Yb³⁺, Er³⁺

The images for sample LMO 1 are given in figures 3.19 (a), 3.19 (b) and 3.19 (c). The images shows coarse grain structure with a large variation of grain size and aggregation.

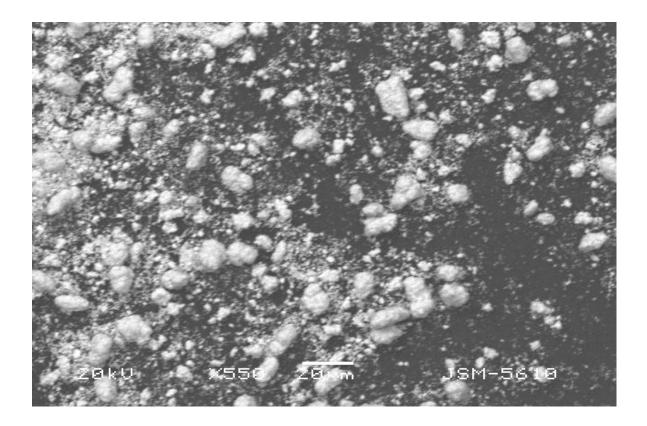


Figure 3.19 (a): SEM image of sample LMO 1 at 550 X

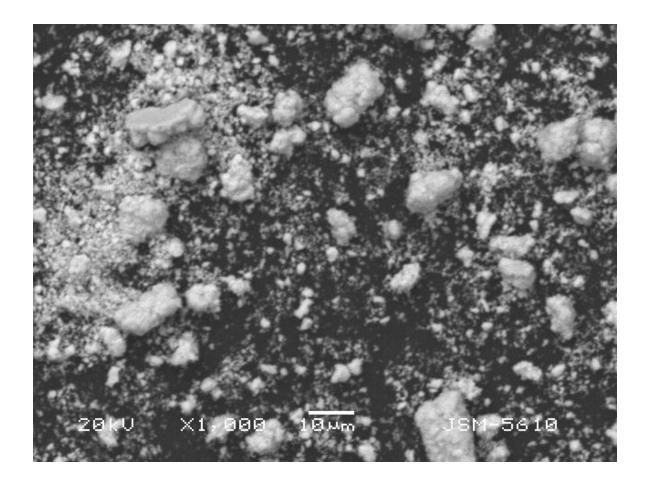


Figure 3.19 (b): SEM image of sample LMO 1 at 1000 X

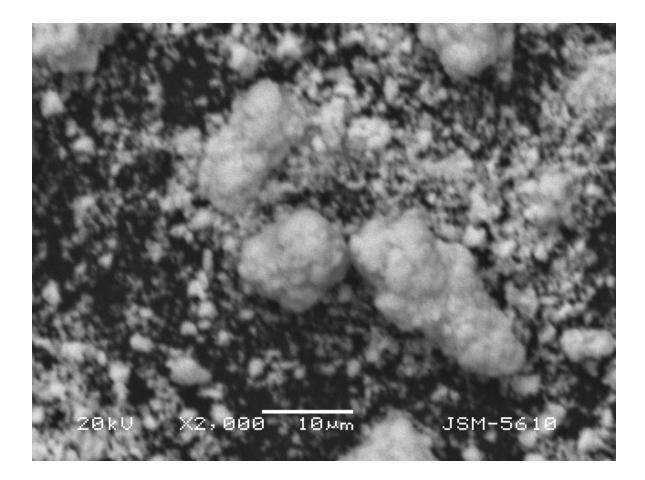


Figure 3.19 (c): SEM image of sample LMO 1 at 2000 X

The images of sample LMO 2 are given in figures 3.20 (a), 3.20 (b) and 3.20 (c). They show the formation of some rod like structures, which become evident as the resolution increases. In these images, large chunks can be seen which look like aggregated grains of rod like structures.

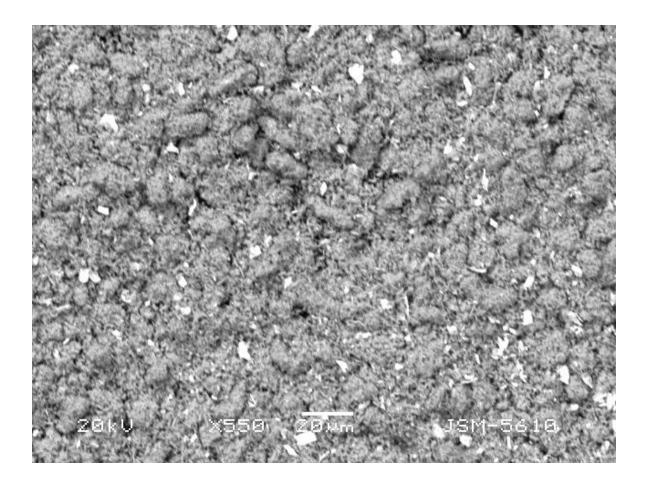


Figure 3.20 (a): SEM image of sample LMO 2 at 550 X

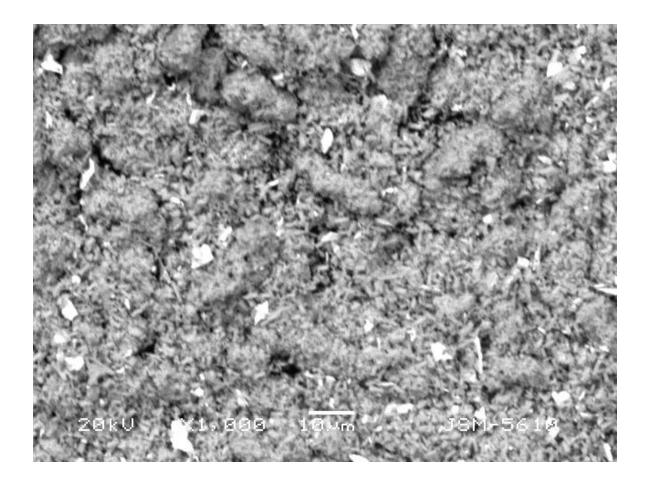


Figure 3.20 (b): SEM image of sample LMO 2 at 1000 X

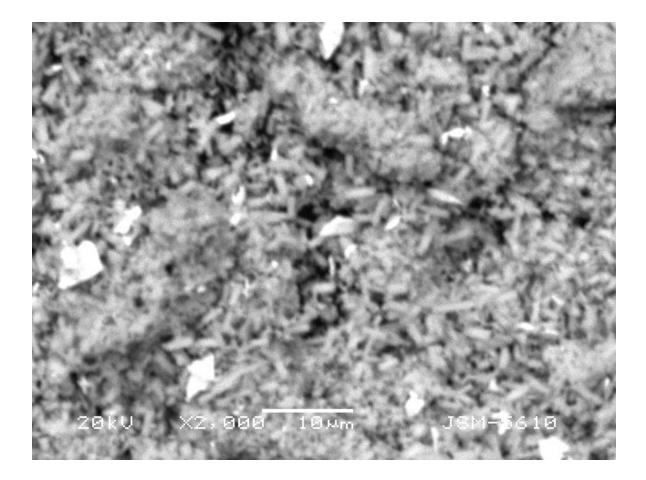


Figure 3.20 (c): SEM image of sample LMO 2 at 2000 X

For images of sample LMO 3 given in figures 3.21 (a), 3.21 (b) and 3.21 (c), the rod structure is further evident. The size distribution does not look to be very wide.

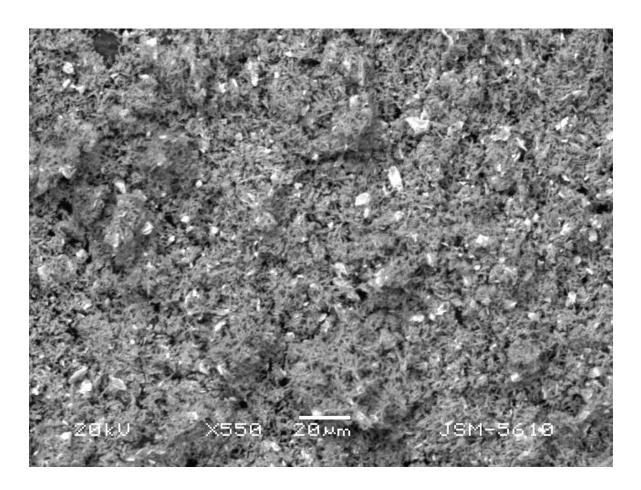


Figure 3.21 (a): SEM image of sample LMO 3 at 550 X

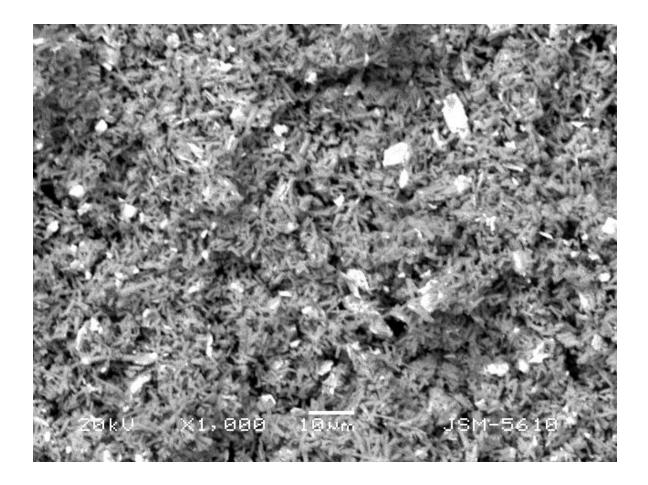


Figure 3.21 (b): SEM image of sample LMO 3 at 1000 X



Figure 3.21 (c): SEM image of sample LMO 3 at 2000 X

The difference between the samples LMO 1, LMO 2 and LMO 3 is the amount of Erbium, which increases from LMO 1 to LMO 3. Hence, it can be suggested that the presence of Erbium instrumental in the samples acquiring the rod shape. However, the host material also plays a role in determining the shape. It is also guided by the method of synthesis.

2) *Bi₂O₃: Yb³⁺, Er³⁺*

The images (i) for sample BO 1 are given in figures 3.22 (a), 3.22 (b) and 3.22 (c) (ii) for sample BO 2 are given in figures 3.23 (a), 3.23 (b) and 3.23 (c) and (iii) for sample BO 3 are given in figures 3.24 (a), 3.24 (b) and 3.24 (c) respectively.

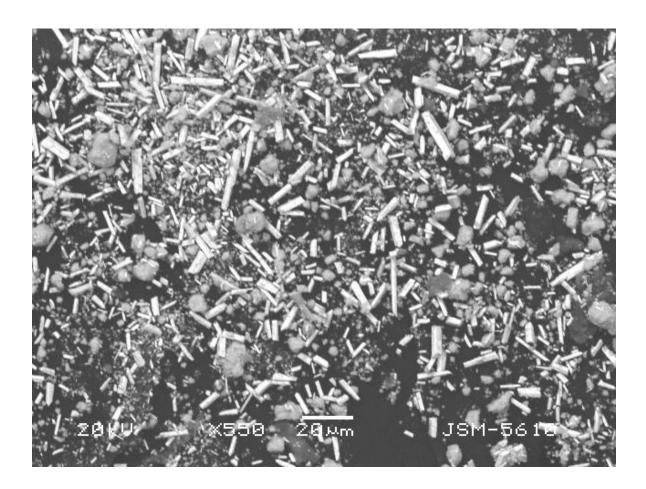


Figure 3.22 (a): SEM image of sample BO 1 at 550 X

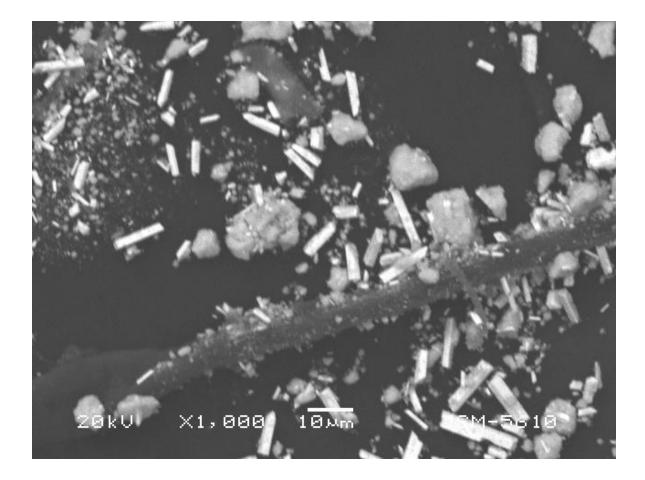


Figure 3.22 (b): SEM image of sample BO 1 at 1000 X

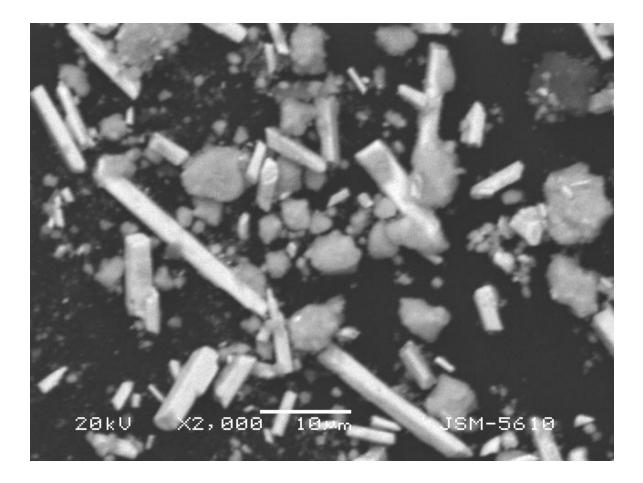


Figure 3.22 (c): SEM image of sample BO 1 at 2000 X

Figure 3.23 (a): SEM image of sample BO 2 at 550 X

Figure 3.23 (b): SEM image of sample BO 2 at 1000 X



Figure 3.23 (c): SEM image of sample BO 2 at 2000 X

Figure 3.24 (a): SEM image of sample BO 3 at 550 X

Figure 3.24 (b): SEM image of sample BO 3 at 1000 X

Figure 3.24 (c): SEM image of sample BO 3 at 2000 X

In all the images of samples BO 1, BO 2 and BO 3, there is a mix of coarse grains of varying size and clear rod shaped structures. These rods have a rectangular shape with varying length and width. Some plate like structures can be also seen, particularly at high resolution.

3) CdO: Yb³⁺, Er³⁺

The images (i) for sample CO 1 are given in figures 3.25 (a), 3.25 (b) and 3.25 (c) (ii) for sample CO 2 are given in figures 3.26 (a), 3.26 (b) and 3.26 (c) and (iii) for sample CO 3 are given in figures 3.27 (a), 3.27 (b) and 3.27 (c) respectively.

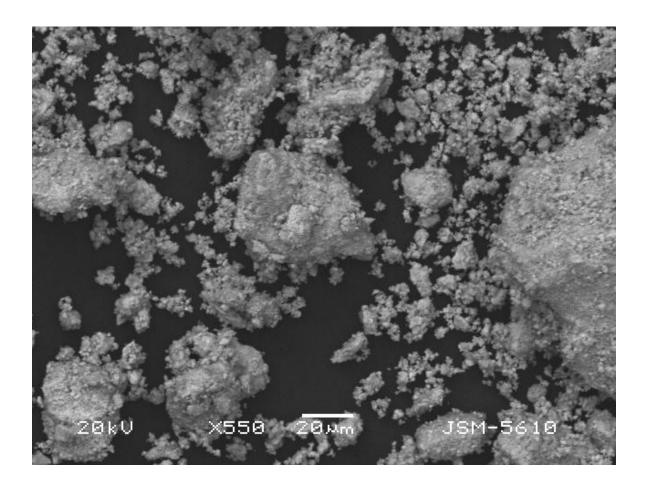


Figure 3.25 (a): SEM image of sample CO 1 at 550 X

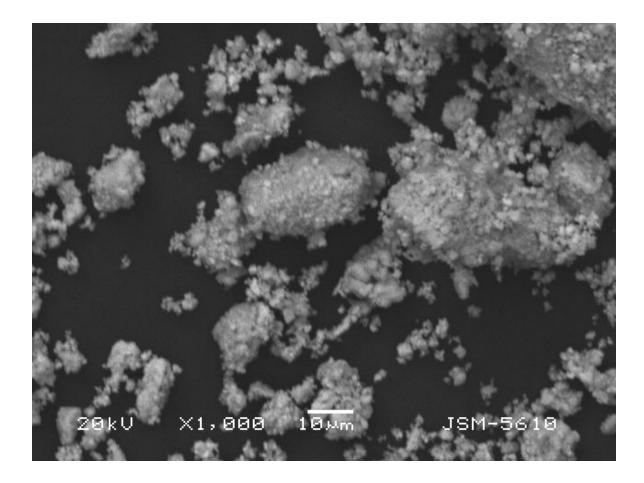


Figure 3.25 (b): SEM image of sample CO 1 at 1000 X

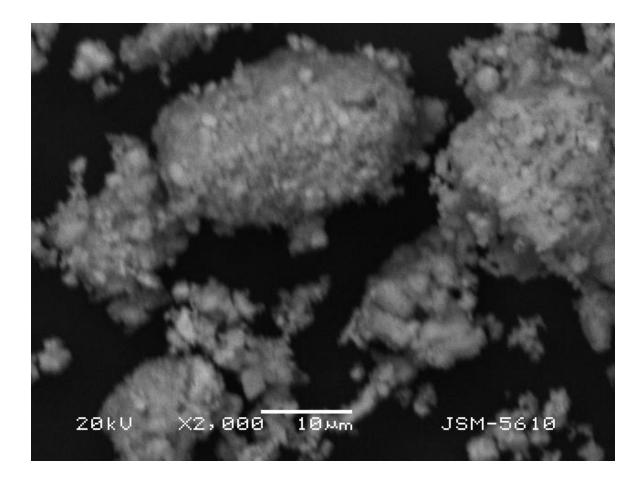


Figure 3.25 (c): SEM image of sample CO 1 at 2000 X

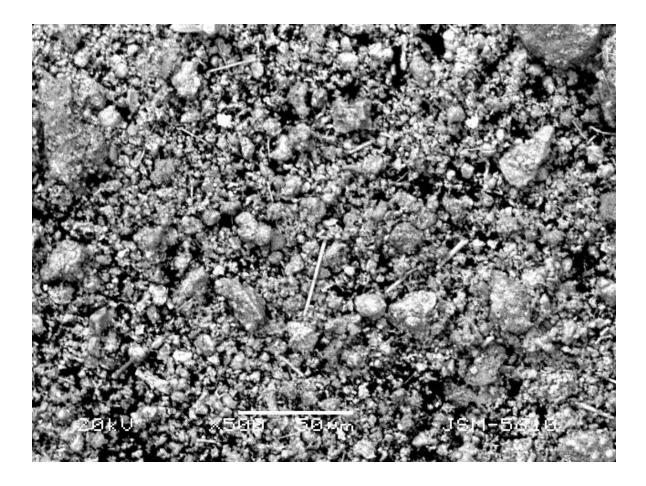


Figure 3.26 (a): SEM image of sample CO 2 at 550 X

Figure 3.26 (b): SEM image of sample CO 2 at 1000 X

Figure 3.26 (c): SEM image of sample CO 2 at 2000 X

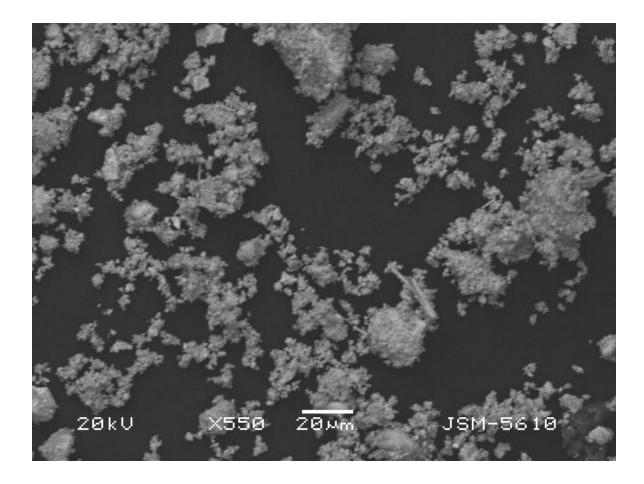


Figure 3.27 (a): SEM image of sample CO 3 at 550 X

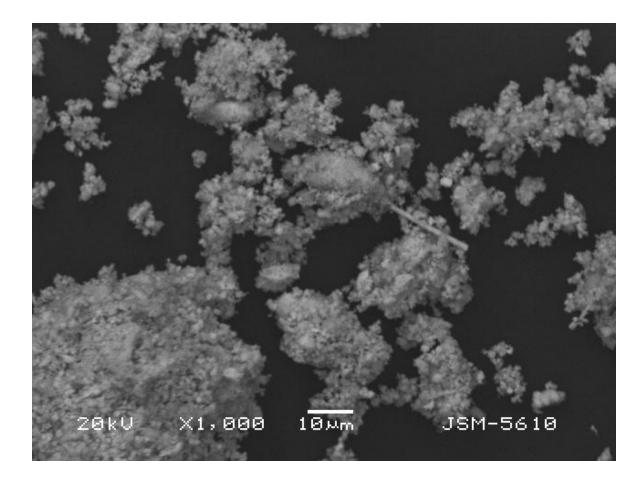


Figure 3.27 (b): SEM image of sample CO 3 at 1000 X

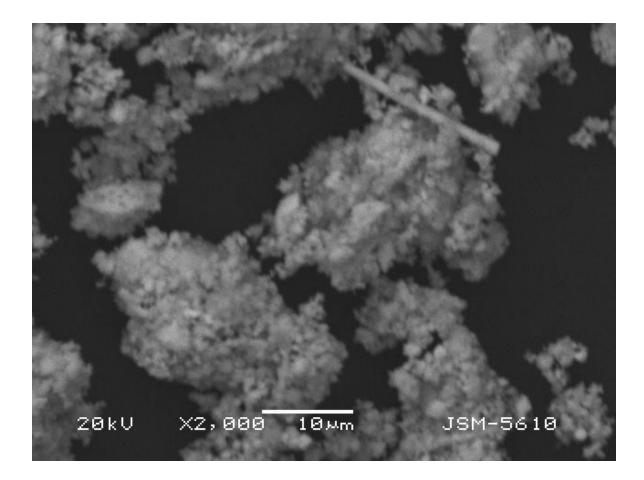


Figure 3.27 (c): SEM image of sample CO 3 at 2000 X

The images of samples CO 1, CO 2 and CO 3 in general show a coarse grain structure with large grains which are aggregates of smaller grains. Samples CO 2 and CO 3 show a few distinct rod structures. However, sample CO 1 does not show any such rods. It is significant that the EDAX analysis shows absence of Er in sample CO 1.

3.3 Summary

The choice of host and activator/sensitizer plays an important role in the performance of a phosphor. Three host materials were chosen for synthesis with Yb^{3+} and Er^{3+} as the sensitizer and activator. These host materials are Lanthanum Molybdate, Bismuth Oxide and Cadmium Oxide. The amount of Ytterbium was kept constant while amount of Erbium was varied. Three samples were prepared for each of the hosts. The samples were prepared using precipitation method.

EDAX analysis of the samples confirms the presence of the activator and sensitizer as well as all elements of the host matrix.

XRD of the Lanthanum Molybdate samples shows that the samples have high degree of crystallinity. They are in monoclinic phase. Samples of Bismuth Oxide also show high degree of crystallinity. They are also in monoclinic phase. Results for Cadmium Oxide samples are similar. They are in cubic phase.

The average crystallite size of the samples is on the higher side. Bi_2O_3 samples have the highest size while CdO samples have the lowest.

SEM images of $La_2(MoO_4)_3$ show coarse grain structure with large variation in grain size. Higher resolution images show aggregation of rod like structures. Images of Bi_2O_3 samples clearly show rectangular rod structures of different size. Images of CdO sample exhibit coarse grain structure with a few occassional rods.