# CHAPTER – 5

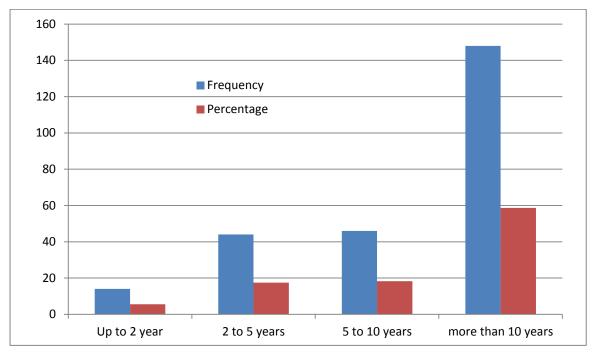
# **DATA ANALYSIS & INTERPRETATION**

### Chapter -5

#### **Data Analysis & Interpretation**

## 5.1 Introduction

This chapter of data analysis and interpretation concerned with the analysis of the data collected through survey of structured questionnaire. Researcher had administered questionnaire to about 550 numbers of respondents of the eminent companies among the fields of utility scale renewable energy projects. However, researcher receives considerably good response through personnel follow up from top management authorities of the renewable energy projects companies duly filled in questionnaire responses of about 252, which seems to be quite good responses being a senior as well as middle and junior management category of personnel.


## 5.2 Statistical Analysis:

The analyses of responses obtained from various respondents based on years of experience against the questionnaire are presented as under:

# Table 5.1: Break up of respondents with reference to `Years of Experience.

| Years of experience of respondents | Frequency | Percentage |
|------------------------------------|-----------|------------|
| Up to 2 years                      | 14        | 5.6        |
| 2 to 5 Years                       | 44        | 17.5       |
| 5 to 10 Years                      | 46        | 18.3       |
| More than 10 Years                 | 148       | 58.7       |
| Total                              | 252       | 100        |

Fig : 5.1 Graphical presentation of breakup of respondents with reference to `Years of Experience`.



From the above, it is evident that the classes of respondents are highly reach in terms of experience of utility scale renewable energy projects as such 58.7 % age respondents are having more than 10 years of experience in the field.

| State          | Frequency | Percentage |
|----------------|-----------|------------|
| Gujarat        | 105       | 41.7       |
| Maharashtra    | 21        | 8.3        |
| Karnataka      | 45        | 17.9       |
| Madhya Pradesh | 9         | 3.6        |
| Rajasthan      | 6         | 2.4        |
| Uttar Pradesh  | 9         | 3.6        |
| NCR / Delhi    | 32        | 12.7       |
| Tamil Nadu     | 13        | 5.2        |
| Hariyana       | 7         | 2.8        |
| Uttara Khand   | 3         | 1.2        |
| Telangana      | 1         | 0.4        |
| West Bengal    | 1         | 0.4        |
| Total          | 252       | 100.0      |

| Table 5.2: Break up | n of responder | its comnanies n | resence in vari | ous state of India |
|---------------------|----------------|-----------------|-----------------|--------------------|
| Table 5.2. Dreak u  | p of responder | its companies p | nesence in vari | ous state of mula  |

120 100 80 Frequency Percentage 60 40 20 Taminadu 0 Maratashtra tanatata West Beneal utar protect NCR Detri Waquys. Urtara thand Guilarat Telaneana Hariyana Rajasthan

Fig : 5.2 Graphical presentation of Breakup of respondents companies presence in various state of India

As far as state wise respondents are concerned, the majority of respondents are from Gujarat containing 41.7 percentages next to which falls Karnataka contains 17.9 percentages and NCR/Delhi having 12.7 percentages of respondents.

| Table 5.3: Break up | p of respondents | companies by `Type | s of Organizations`. |
|---------------------|------------------|--------------------|----------------------|
|                     |                  |                    |                      |

| Types of Organizations      | Frequency | Percentage |
|-----------------------------|-----------|------------|
| Private Organization        | 165       | 65.5       |
| Public Organization         | 28        | 11.1       |
| Joint Venture Organization  | 9         | 3.6        |
| Government Organization     | 36        | 14.3       |
| Non-Government Organization | 14        | 5.6        |
| Total                       | 252       | 100.0      |

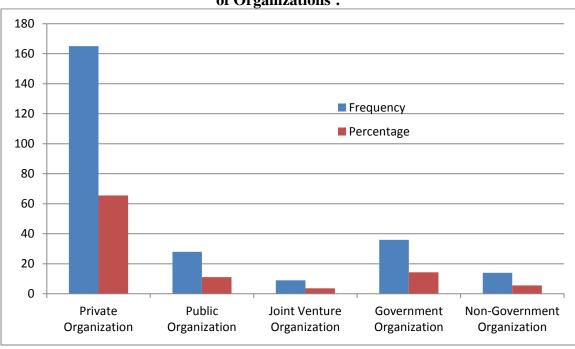



Fig : 5.3 Graphical presentation of Breakup of respondents companies by `Types of Organizations`.

The researchers have analyze the data collected for respondents companies by types of organizations which reveal that majority of respondents i.e. 65.5 percentages are from Private companies, followed by government companies respondent to the tune of 14.3 percentages.

| Stakeholders                  | Frequency | Percentage |
|-------------------------------|-----------|------------|
| Manufacturers                 | 70        | 9.37       |
| Supplier                      | 72        | 9.64       |
| EPC Contractor                | 159       | 21.29      |
| Project Developer             | 135       | 18.07      |
| Investor                      | 33        | 4.42       |
| Financier                     | 16        | 2.14       |
| Policy maker                  | 15        | 2.01       |
| Consultant                    | 101       | 13.52      |
| Power Purchaser               | 8         | 1.07       |
| Independent power producer    | 30        | 4.02       |
| Captive Users                 | 6         | 0.80       |
| Research Institution          | 17        | 2.28       |
| Promoters of renewable energy | 36        | 4.82       |

Table 5.4: Break up of stake holders/ contributor respondents.

| Renewable Energy power<br>traders | 7   | 0.94  |
|-----------------------------------|-----|-------|
| Other stake holders               | 42  | 5.62  |
| Total                             | 747 | 100.0 |

The researchers have analyzed the data collected for stake holders / Contributors respondents which reveal that majority of stakeholders respondents i.e. 159 (21.29%) are from EPC contractor, followed by Project developer 135 (18.07%) and consultant 101 (13.52%).

Further, Researcher has attempted to assess the perception of various stakeholders for their responsibility / contribution for the development of renewable energy projects (solar & wind) in five point scale.

|              | Strongly<br>Agree                   |           | 0.         | Ag        | ree        |           | on`t<br>Iow | Disa      | gree       |           | ongly<br>agree | Mea<br>n   | Stand<br>ard  |
|--------------|-------------------------------------|-----------|------------|-----------|------------|-----------|-------------|-----------|------------|-----------|----------------|------------|---------------|
| Sr<br>N<br>o | Stakeholders                        | Frequency | Percentage | Frequency | Percentage | Frequency | Percentage  | Frequency | Percentage | Frequency | Percentage     |            | devia<br>tion |
| 1            | Manufacturers                       | 105       | 41.7       | 114       | 45.2       | 15        | 6           | 18        | 7.1        | 0         | 0              | 1.785<br>7 | 0.847<br>8    |
| 2            | Supplier                            | 64        | 25.4       | 155       | 61.5       | 16        | 6.3         | 17        | 6.7        | 0         | 0              | 1.944<br>4 | 0.765<br>9    |
| 3            | EPC<br>Contractor                   | 151       | 59.9       | 94        | 37.3       | 4         | 1.6         | 3         | 1.2        | 0         | 0              | 1.440<br>5 | 0.592<br>5    |
| 4            | Project<br>Developer                | 186       | 73.8       | 65        | 25.8       | 1         | 0.4         | 0         | 0          | 0         | 0              | 1.265<br>9 | 0.451<br>6    |
| 5            | Investor                            | 97        | 38.5       | 77        | 30.6       | 35        | 13.9        | 42        | 16.7       | 1         | 0.4            | 2.099<br>2 | 1.105<br>1    |
| 6            | Financier                           | 77        | 30.6       | 97        | 38.5       | 33        | 13.1        | 44        | 17.5       | 1         | 0.4            | 2.186<br>5 | 1.067<br>9    |
| 7            | Policy maker                        | 148       | 58.7       | 90        | 35.7       | 9         | 3.6         | 4         | 1.6        | 1         | 0.4            | 1.492<br>1 | 0.682<br>7    |
| 8            | Consultant                          | 41        | 16.3       | 123       | 48.8       | 38        | 15.1        | 49        | 19.4       | 1         | 0.4            | 2.388<br>9 | 0.989<br>8    |
| 9            | Power<br>Purchaser                  | 159       | 63.1       | 73        | 29.0       | 13        | 5.2         | 6         | 2.4        | 1         | 0.4            | 1.480<br>2 | 0.738<br>6    |
| 10           | Independent<br>power<br>producer    | 157       | 62.3       | 79        | 31.3       | 13        | 5.2         | 3         | 1.2        | 0         | 0              | 1.452<br>4 | 0.651<br>2    |
| 11           | Captive Users                       | 133       | 52.8       | 94        | 37.3       | 16        | 6.3         | 8         | 3.2        | 1         | 0.4            | 1.611<br>1 | 0.777<br>9    |
| 12           | Research<br>Institution             | 27        | 10.7       | 110       | 43.7       | 56        | 22.2        | 56        | 22.2       | 3         | 1.2            | 2.595<br>2 | 0.987<br>4    |
| 13           | Promoters of<br>Renewable<br>Energy | 162       | 64.3       | 75        | 29.8       | 11        | 4.4         | 3         | 1.2        | 1         | 0.4            | 1.436<br>5 | 0.673<br>9    |

 Table No 5.5 : Perception of various stakeholders for their responsibility /

 contribution for the development of renewable energy projects

| 14 | Renewable    | 134 | 53.2 | 81  | 32.1 | 20  | 7.9  | 16 | 6.3 | 1 | 0.4 | 1.686 | 0.897 |
|----|--------------|-----|------|-----|------|-----|------|----|-----|---|-----|-------|-------|
|    | Energy Power |     |      |     |      |     |      |    |     |   |     | 5     | 6     |
|    | Trader       |     |      |     |      |     |      |    |     |   |     |       |       |
| 15 | Other stake  | 13  | 5.2  | 101 | 40.1 | 113 | 44.8 | 20 | 7.9 | 5 | 2.0 | 2.615 | 0.787 |
|    | holders      |     |      |     |      |     |      |    |     |   |     | 1     | 5     |

Source: Computed from Primary Data

Fig : 5.4 Graphical presentation of Perception of various stakeholders for their contribution

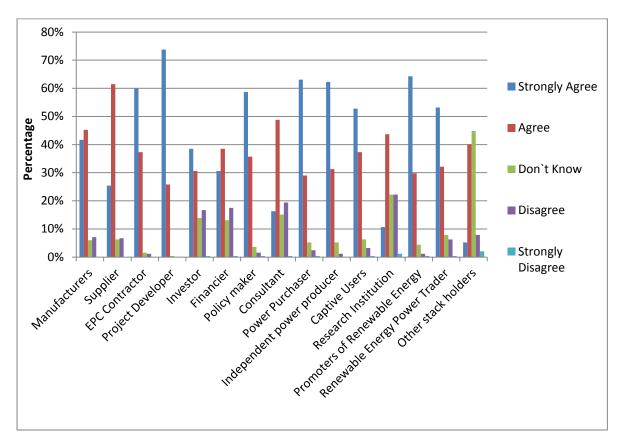



Fig No: perception of various stakeholders for their responsibility / contribution for the development of renewable energy projects

## **Interpretation**:

The perception of various stakeholders for their contribution for the development of renewable energy projects narrated as under:

Manufacturers: – Majority of respondents i.e. 45.2 % agrees and 41.7 % respondents strongly agree for manufacturer contribution for the development of renewable energy projects. Where, 7.1% respondents are disagree and none of the respondents are strongly disagree for manufacturer contribution for the development of renewable energy projects. The mean is 1.7857 and standard deviation is 0.8478.

Supplier: – Majority of respondents i.e. 61.5 % agrees and 25.4 % respondents strongly agree for suppliers contribution for the development of renewable energy projects. Where, 6.7% respondents are disagree and none of the respondents are strongly disagree for suppliers contribution for the development of renewable energy projects. The mean is 1.9444 and standard deviation is 0.7659.

EPC contractor: – Majority of respondents i.e. 59.9 % strongly agrees and 37.3 % respondents agree for EPC contractor's contribution for the development of renewable energy projects. Where, 1.2% respondents are disagree and none of the respondents are strongly disagree for EPC contractor's contribution for the development of renewable energy projects. The mean is 1.440 and standard deviation is 0.5925.

Project Developers: – Majority of respondents i.e. 73.8 % strongly agrees and 25.8 % respondents agree for Project Developer `s contribution for the development of renewable energy projects. Where, none of the respondents are agree or strongly disagree for EPC contractor`s contribution for the development of renewable energy projects. The mean is 1.2659 and standard deviation is 0.4516.

Investors: – Majority of respondents i.e. 38.5 % strongly agrees and 30.6 % respondents agree for Investor `s contribution for the development of renewable energy projects. Where, 16.7% respondents are disagree and 0.4% of respondents are strongly disagreeing for Investor `s contribution for the development of renewable energy projects. The mean is 2.0992 and standard deviation is1.1051.

Financier: – Majority of respondents i.e. 38.5 % agrees and 30.6 % respondents strongly agree for Financier's contribution for the development of renewable energy projects. Where, 17.5% respondents are disagree and 0.4% of respondents are strongly disagree for Financier's contribution for the development of renewable energy projects. The mean is 2.1865 and standard deviation is 1.0679.

Policy maker: – Majority of respondents i.e. 58.7 % strongly agrees and 35.7 % respondents agree for Policy maker `s contribution for the development of renewable energy projects. Where, 1.6% respondents are disagree and 0.4% of respondents are

strongly disagree for Policy maker `s contribution for the development of renewable energy projects. The mean is 1.4921 and standard deviation is 0.6827.

Consultant: – Majority of respondents i.e. 48.8 % agrees and 16.3 % respondents strongly agree for Consultant `s contribution for the development of renewable energy projects. Where, 19.4% respondents are disagree and 0.4% of respondents are strongly disagree for Consultant `s contribution for the development of renewable energy projects. The mean is 2.3889 and standard deviation is 0.9898.

Power Purchaser: – Majority of respondents i.e. 63.1 % strongly agrees and 29.0 % respondents agree for Power Purchaser's contribution for the development of renewable energy projects. Where, 2.4% respondents are disagree and 0.4% of respondents are strongly disagree for Power Purchaser's contribution for the development of renewable energy projects. The mean is 1.4802 and standard deviation is 0.7386.

Independent power producer: – Majority of respondents i.e. 62.3 % strongly agrees and 31.3 % respondents agree for Independent power producer `s contribution for the development of renewable energy projects. Where, 1.2% respondents are disagree and none of the respondents are strongly disagree for Independent power producer `s contribution for the development of renewable energy projects. The mean is 1.4524 and standard deviation is 0.6512.

Captive Users: – Majority of respondents i.e. 51.8 % strongly agrees and 37.3 % respondents agree for Captive Users `s contribution for the development of renewable energy projects. Where, 1.2% respondents are disagree and 0.4% of the respondents are strongly disagree for Captive Users `s contribution for the development of renewable energy projects. The mean is 1.6111 and standard deviation is 0.7779.

Research Institution: – Majority of respondents i.e. 43.7% agrees and only 10.7 % respondents agree for Research Institution's contribution for the development of renewable energy projects. Where, 22.2% respondents are disagree and 1.2% of the respondents are strongly disagree for Research Institution's contribution for the

development of renewable energy projects. The mean is 2.5952 and standard deviation is 0.9874.

Promoters of Renewable Energy: – Majority of respondents i.e. 64.3% strongly agrees and 29.8 % respondents agree for Promoters of Renewable Energy's contribution for the development of renewable energy projects. Where, 1.20% respondents are disagree and 0.4% of the respondents are strongly disagree for Promoters of Renewable Energy's contribution for the development of renewable energy projects. The mean is 1.4365 and standard deviation is 0.6739.

Renewable Energy Power Trader: – Majority of respondents i.e. 53.2% strongly agrees and 29.8 % respondents agree for Renewable Energy Power Trader's contribution for the development of renewable energy projects. Where, 1.20% respondents are disagree and 0.4% of the respondents are strongly disagree for Renewable Energy Power Trader's contribution for the development of renewable energy projects. The mean is 1.6865 and standard deviation is 0.8976.

Other stake holders: – Majority of respondents i.e. 40.1% agrees and only 5.2 % respondents agree for other stake holder's contribution for the development of renewable energy projects. Where, 44.8% respondents don't know, 7.90% respondents are disagree and 2.0% of the respondents are strongly disagree for Other stake holder's contribution for the development of renewable energy projects. The mean is 2.6151 and standard deviation is 0.7875.

Descriptive statistics on the perception of stake holders regarding "potential of Solar Renewable Energy in India":

|                              | Ν   | Range | Minimum | Maximum | Mean   | Std.      |
|------------------------------|-----|-------|---------|---------|--------|-----------|
|                              |     |       |         |         |        | Deviation |
| 11.1) India has a tremendous | 252 | 3.00  | 1.00    | 4.00    | 1.8175 | .73502    |
| potential of solar radiation |     |       |         |         |        |           |
| 11.2) Different state/area   | 252 | 2.00  | 1.00    | 3.00    | 1.8135 | .60619    |
| have different solar energy  |     |       |         |         |        |           |
| potential                    |     |       |         |         |        |           |
| 11.3) There is tremendous    | 252 | 3.00  | 1.00    | 4.00    | 1.9246 | .80231    |
| scope of solar Power project |     |       |         |         |        |           |
| development                  |     |       |         |         |        |           |
| 11.4) The target of 100 GW   | 252 | 4.00  | 1.00    | 5.00    | 2.7817 | .95932    |
| of Solar power project will  |     |       |         |         |        |           |
| be achieved up to 2022       |     |       |         |         |        |           |
| 11.5) Installation of solar  | 252 | 4.00  | 1.00    | 5.00    | 3.2143 | .91562    |
| power projects are growing   |     |       |         |         |        |           |
| at a speed as desired which  |     |       |         |         |        |           |
| may fully utilized the       |     |       |         |         |        |           |
| available solar energy       |     |       |         |         |        |           |
| resource                     |     |       |         |         |        |           |
| Valid N (list wise)          | 252 |       |         |         |        |           |

**Table 5.6: Descriptive statistics** 

Note: Likert scale: 1-Strongly Agree, 2- Agree, 3- Don't Know, 4- Disagree and Strongly Disagree (1 being the highest scale)

Source: Computed from Primary Data

The five point likert scale is considered an interval scale. The mean is very significant. Here the mean from range 1 to 1.8 means strongly agree, the mean from range 1.81 to 2.60 means agree, 2.61 to 3.40 means don't know, from 3.41 to 4.20 means dis agree and from 4.21 to 5 means strongly disagree.

In the first statement, the mean is 1.82 which revealed that most of the stake holders are agree that `India has a tremendous potential of solar radiation`. The mean of the second statement is also 1.81 which revealed that the majority of stake holders are agree that `Different state/area have different solar energy potential`. The third statement about `There is tremendous scope of solar Power project development`, the majority of stake holders are again agree as the mean is of 1.92. The mean of the fourth statement is 2.78 revealed that the majority of stake holders perceived that they

don't know whether 'The target of 100 GW of Solar power project will be achieved up to 2022 or not'. Again it is revealed that majority of the stake holders don't know that 'Installation of solar power projects are growing at a speed as desired which may fully utilized the available solar resource' as seen from the mean of 3.21.

# Descriptive statistics on the perception of stake holders regarding "potential of wind Renewable Energy in India":

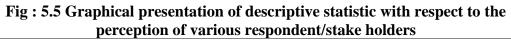
|                                                                                                                                                        | N   | Range | Minimum | Maximum | Mean   | Std.<br>Deviation |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|---------|---------|--------|-------------------|
| 12.1) India has a tremendous                                                                                                                           | 252 | 1.00  | 1.00    | 2.00    | 1.2302 | .42177            |
| potential of Wind radiation<br>12.2) Different state/area<br>have different Wind energy                                                                | 252 | 3.00  | 1.00    | 4.00    | 1.6310 | .54546            |
| potential                                                                                                                                              |     |       |         |         |        |                   |
| 12.3) There is tremendous<br>scope of Wind Power project<br>development                                                                                | 252 | 2.00  | 1.00    | 3.00    | 1.4008 | .56639            |
| 12.4) The target of 60 GW of<br>Wind power project will be<br>achieved up to 2022                                                                      | 252 | 4.00  | 1.00    | 5.00    | 3.6667 | 1.01777           |
| 12.5) Installation of Wind<br>power projects are growing<br>at a speed as desired which<br>may fully utilized the<br>available Wind energy<br>resource | 252 | 4.00  | 1.00    | 5.00    | 4.1349 | .95603            |
| Valid N (list wise)                                                                                                                                    | 252 |       |         |         |        |                   |

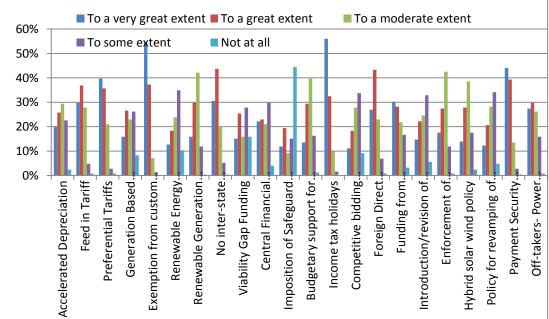
**Table 5.7: Descriptive statistics** 

Note: Likert scale: 1-Strongly Agree, 2- Agree, 3- Don't Know, 4- Disagree and Strongly Disagree (1 being the highest scale)

Source: Computed from Primary Data

Again, the five point likert scale is considered in the range of means similarly as taken in earlier statistics. In the first statement, the mean is 1.23 which revealed that most of the stake holders are strongly agree that `India has a tremendous potential of Wind resources`. The mean of the second statement is 1.63 which revealed that again the majority of stake holders are strongly agree that `Different state/area have different wind energy potential`. The third statement about `There is tremendous scope of wind Power project development`, the majority of stake holders are again strongly agree as the mean is of 1.40. The mean of the fourth statement is 3.67 revealed that the majority of stake holders disagree that `The target of 60 GW of wind power project will be achieved up to 2022`. Again it is revealed that majority of the stake holders dis agree that `Installation of wind power projects are growing at a speed as desired which may fully utilized the available wind energy resource` as seen from the mean of 4.13.


Further, Researcher has attempted to assess the evaluation of perception of various respondent/stockholders regarding various policies identified to help to promote the government target for development of renewable energy projects in five point scale.


# Table No 5.8: Frequency Distribution and descriptive statistic withrespect to the perception of various respondent/stake holdersregarding various policies identified to help to promote thegovernment target for development of renewable energy projects:

|          |                                           | To a very<br>great<br>extent |            |           | great<br>tent | To a<br>moderate<br>extent |            | To some<br>extent |            | Not at all |            | Mean       | Stand<br>ard<br>devia |
|----------|-------------------------------------------|------------------------------|------------|-----------|---------------|----------------------------|------------|-------------------|------------|------------|------------|------------|-----------------------|
| Sr<br>No | Policies                                  | Frequency                    | Percentage | Frequency | Percentage    | Frequency                  | Percentage | Frequency         | Percentage | Frequency  | Percentage |            | tion                  |
| 1        | Accelerated<br>Depreciation               | 50                           | 19.8       | 65        | 25.8          | 74                         | 29.4       | 57                | 22.6       | 6          | 2.4        | 2.619<br>0 | 1.110<br>3            |
| 2        | Feed in Tariff                            | 75                           | 29.8       | 93        | 36.9          | 70                         | 27.8       | 12                | 4.8        | 2          | 0.8        | 2.099<br>2 | 0.911<br>5            |
| 3        | Preferential Tariffs                      | 100                          | 39.7       | 90        | 35.7          | 53                         | 21.0       | 7                 | 2.8        | 2          | 0.8        | 1.892<br>9 | 0.883<br>9            |
| 4        | Generation Based<br>Incentives (GBI)      | 40                           | 15.9       | 67        | 26.6          | 58                         | 23.0       | 66                | 26.2       | 21         | 8.3        | 2.845<br>2 | 1.215<br>7            |
| 5        | Exemption from<br>custom duty             | 137                          | 54.4       | 94        | 37.3          | 18                         | 7.1        | 3                 | 1.2        | 0          | 0          | 1.551<br>6 | 0.680<br>8            |
| 6        | Renewable Energy<br>Certificates          | 32                           | 12.7       | 46        | 18.3          | 60                         | 23.8       | 88                | 34.9       | 26         | 10.3       | 3.119<br>0 | 1.201<br>6            |
| 7        | Renewable<br>Generation<br>Obligation     | 40                           | 15.9       | 75        | 29.8          | 106                        | 42.1       | 30                | 11.9       | 1          | 0.4        | 2.511<br>9 | 0.912<br>4            |
| 8        | No inter-state<br>transmission<br>charges | 77                           | 30.6       | 110       | 43.7          | 51                         | 20.2       | 13                | 5.2        | 1          | 0.4        | 2.011<br>9 | 0.867<br>7            |
| 9        | Viability Gap<br>Funding                  | 38                           | 15.1       | 64        | 25.4          | 40                         | 15.9       | 70                | 27.8       | 40         | 15.9       | 3.039<br>7 | 1.332<br>4            |
| 10       | Central Financial<br>Assistance           | 56                           | 22.2       | 58        | 23.0          | 53                         | 21.0       | 75                | 29.8       | 10         | 4.0        | 2.702<br>4 | 1.221<br>8            |

| 11 | The second se | 20  | 11.0 | 40  | 10.4 | 22  | 0.1                 | 20 | 151  | 110 | 44.4 | 2 (07 | 1 400 |
|----|-----------------------------------------------------------------------------------------------------------------|-----|------|-----|------|-----|---------------------|----|------|-----|------|-------|-------|
| 11 | Imposition of                                                                                                   | 30  | 11.9 | 49  | 19.4 | 23  | 9.1                 | 38 | 15.1 | 112 | 44.4 | 3.607 | 1.496 |
|    | Safeguard duty                                                                                                  |     | 10.7 |     |      | 100 | <b>a</b> a <b>-</b> |    |      | ā   |      | 1     | 5     |
| 12 | Budgetary support                                                                                               | 34  | 13.5 | 74  | 29.4 | 100 | 39.7                | 41 | 16.3 | 3   | 1.2  | 2.623 | 0.951 |
|    | for R&D and                                                                                                     |     |      |     |      |     |                     |    |      |     |      | 0     | 4     |
|    | demonstration of                                                                                                |     |      |     |      |     |                     |    |      |     |      |       |       |
|    | technology                                                                                                      |     |      |     |      |     |                     |    |      |     |      |       |       |
| 13 | Income tax                                                                                                      | 141 | 56.0 | 82  | 32.5 | 25  | 9.9                 | 4  | 1.6  | 0   | 0    | 1.571 | 0.735 |
|    | holidays                                                                                                        |     |      |     |      |     |                     |    |      |     |      | 4     | 3     |
| 14 | Competitive                                                                                                     | 28  | 11.1 | 46  | 18.3 | 70  | 27.8                | 85 | 33.7 | 23  | 9.1  | 3.115 | 1.149 |
|    | bidding process                                                                                                 |     |      |     |      |     |                     |    |      |     |      | 1     | 5     |
| 15 | Foreign Direct                                                                                                  | 68  | 27.0 | 109 | 43.3 | 58  | 23.0                | 15 | 6.9  | 2   | 0.8  | 2.103 | 0.895 |
|    | Investment                                                                                                      |     |      |     |      |     |                     |    |      |     |      | 2     | 6     |
| 16 | Funding from                                                                                                    | 76  | 30.2 | 71  | 28.2 | 55  | 21.8                | 42 | 16.7 | 8   | 3.2  | 2.345 | 1.165 |
|    | government                                                                                                      |     |      |     |      |     |                     |    |      |     |      | 2     | 5     |
|    | institutions for                                                                                                |     |      |     |      |     |                     |    |      |     |      |       |       |
|    | financing term                                                                                                  |     |      |     |      |     |                     |    |      |     |      |       |       |
|    | loan                                                                                                            |     |      |     |      |     |                     |    |      |     |      |       |       |
| 17 | Introduction/revisi                                                                                             | 37  | 14.7 | 56  | 22.2 | 62  | 24.6                | 83 | 32.9 | 14  | 5.6  | 2.924 | 1.166 |
|    | on of solar policy                                                                                              |     |      |     |      |     |                     |    |      |     |      | 6     | 5     |
| 18 | Enforcement of                                                                                                  | 44  | 17.5 | 69  | 27.4 | 107 | 42.5                | 30 | 11.9 | 2   | 0.8  | 2.511 | 0.942 |
|    | renewable                                                                                                       |     |      |     |      |     |                     |    |      |     |      | 9     | 5     |
|    | purchase                                                                                                        |     |      |     |      |     |                     |    |      |     |      |       |       |
|    | Obligation                                                                                                      |     |      |     |      |     |                     |    |      |     |      |       |       |
| 19 | Hybrid solar wind                                                                                               | 35  | 13.9 | 70  | 27.8 | 97  | 38.5                | 44 | 17.5 | 6   | 2.4  | 2.666 | 0.998 |
|    | policy                                                                                                          |     |      |     |      |     |                     |    |      |     |      | 7     | 0     |
| 20 | Policy for                                                                                                      | 31  | 12.3 | 52  | 20.6 | 71  | 28.2                | 86 | 34.1 | 12  | 4.8  | 2.984 | 1.111 |
|    | revamping of                                                                                                    |     |      |     |      |     |                     |    |      |     |      | 1     | 2     |
|    | existing solar-wind                                                                                             |     |      |     |      |     |                     |    |      |     |      |       |       |
| 21 | Payment Security                                                                                                | 111 | 44.0 | 99  | 39.3 | 34  | 13.5                | 7  | 2.8  | 1   | 0.4  | 1.761 | 0.817 |
|    | mechanism                                                                                                       |     |      |     |      |     |                     |    |      |     |      | 9     | 4     |
| 22 | Off-takers- Power                                                                                               | 69  | 27.4 | 75  | 29.8 | 66  | 26.2                | 40 | 15.9 | 2   | 0.8  | 2.329 | 1.066 |
|    | Purchase                                                                                                        |     |      |     |      |     |                     |    |      | _   |      | 4     | 8     |
|    | Agreement                                                                                                       |     |      |     |      |     |                     |    |      |     |      | -     | -     |
| l  | 0                                                                                                               |     | 1    |     |      |     |                     |    |      |     |      |       |       |

(Source: Computed from Primary Data)





**Interpretation** for the perception of various respondent/stake holders regarding various policies identified to help to promote the government target for development of renewable energy projects:

Policy 1: Accelerated Depreciation – Majority of respondents i.e. 75.00% show positive response for the policy of acceleration depreciation that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 50 (19.8%) respondent are agree that the given policy supports to a very great extent, 65 (25.8%) agree to a great extent, 74 (29.4%) to a moderate extent, 57 (22.6%) to some extent and 6 (2.6%) respondent not at all agree, the mean of this variable is 2.6190 and standard deviation is 1.1103.

Policy 2: Feed in Tariff – Majority of respondents i.e. 94.5% show positive response for the policy of Feed in Tariff that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 75 (29.8%) respondent are strongly agree that the given policy supports to a very great extent, 93 (36.9%) agree to a great extent, 70 (27.8%) to a moderate extent. However, 12 (4.8%) to some extent and 2 (0.8%) respondent not at all agree, the mean of this variable is 2.0992 and standard deviation is 0.9115.

Policy 3: Preferential Tariffs – Majority of respondents i.e. 96.4% show positive response for the policy of Preferential Tariffs that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 100 (39.7%) respondent are strongly agree that the given policy supports to a very great extent, 90 (35.7%) agree to a great extent, 53 (21.0%) to a moderate extent. However, 7 (2.8%) to some extent and 2 (0.8%) respondent not at all agree, the mean of this variable is 1.8929 and standard deviation is 0.8839.

Policy 4: Generation Based Incentives (GBI)– Majority of respondents i.e. 65.5% show positive response for the policy of GBI that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 40 (15.9%) respondent are strongly agree that

the given policy supports to a very great extent, 67 (26.6%) agree to a great extent, 58 (23.0%) to a moderate extent. However, 66 (26.2%) to some extent and 21 (8.3%) respondent not at all agree, the mean of this variable is 2.8452 and standard deviation is 1.2157.

Policy 5: Exemption from custom duty– Majority of respondents i.e. 98.8% show positive response for the policy of Exemption from custom duty that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 137 (54.4%) respondent are strongly agree that the given policy supports to a very great extent, 94 (37.3%) agree to a great extent. However, only 18 (7.10%) to a moderate extent, 3 (1.20%) to some extent and none of the respondent not at all agree, the mean of this variable is 1.5516 and standard deviation is 0.6808.

Policy 6: Renewable Energy Certificates (REC) – Majority of respondents i.e. 54.8% show positive response for the policy of REC that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 32 (12.7%) respondent are strongly agree that the given policy supports to a very great extent, 46 (18.3%) agree to a great extent, 60 (23.8%) to a moderate extent. However, 88 (34.9%) to some extent and 26 (10.3%) respondent not at all agree, the mean of this variable is 3.1190 and standard deviation is 1.2016.

Policy 7: Renewable Generation Obligation (RGO) – Majority of respondents i.e. 87.8% show positive response for the policy of RGO that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 40 (15.9%) respondent are strongly agree that the given policy supports to a very great extent, 75 (28.8%) agree to a great extent, 106 (42.1%) to a moderate extent. However, 30 (11.9%) to some extent and 1 (0.4%) respondent not at all agree, the mean of this variable is 2.5119 and standard deviation is 0.9124.

Policy 8: No inter-state transmission charges – Majority of respondents i.e. 94.50% show positive response for the policy of No inter-state transmission charges that helps

to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 77 (30.6%) respondent are strongly agree that the given policy supports to a very great extent, 110 (43.7%) agree to a great extent, 51 (20.2%) to a moderate extent. However, 13 (5.2%) to some extent and 1 (0.4%) respondent not at all agree, the mean of this variable is 2.0119 and standard deviation is 0.8677.

Policy 9: Viability Gap Funding (VGF) – Majority of respondents i.e. 56.4% show positive response for the policy of VGF that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 38 (15.1%) respondent are strongly agree that the given policy supports to a very great extent, 64 (25.4%) agree to a great extent, 40 (15.9%) to a moderate extent. However, 70 (27.8%) to some extent and 40 (15.9%) respondent not at all agree, the mean of this variable is 3.0397 and standard deviation is 1.3324.

Policy 10: Central Financial Assistance (CFA) – Majority of respondents i.e. 66.2% show positive response for the policy of CFA that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 56 (22.2%) respondent are strongly agree that the given policy supports to a very great extent, 58 (23.0%) agree to a great extent, 53 (21.0%) to a moderate extent. However, 75 (29.8%) to some extent and 10 (4.0%) respondent not at all agree, the mean of this variable is 2.7024 and standard deviation is 1.2218.

Policy 11: Imposition of Safeguard duty (SGD) – lesser nos. of respondents i.e. only 40.4% show positive response for the policy of SGD that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 30 (11.9%) respondent are strongly agree that the given policy supports to a very great extent, 49 (19.4%) agree to a great extent, 23 (9.1%) to a moderate extent. However, 38 (15.1%) to some extent and more of the respondent 112 (44.4%) not at all agree, the mean of this variable is 3.6071 and standard deviation is 1.4965.

Policy 12: Budgetary support for R&D and demonstration of technology – Majority of respondents i.e. 82.6% show positive response for this policy of support that helps to

promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 34 (13.5%) respondent are strongly agree that the given policy supports to a very great extent, 74 (20.4%) agree to a great extent, 100 (39.7%) to a moderate extent. However, 41 (16.3%) to some extent and 3 (1.2%) respondent not at all agree, the mean of this variable is 2.6230 and standard deviation is 0.9514.

Policy 13: Income tax holidays – Majority of respondents i.e. 90.4% show positive response for the policy of Income tax holidays that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 141 (56.0%) respondent are strongly agree that the given policy supports to a very great extent, 82 (32.5%) agree to a great extent, 25 (9.9%) to a moderate extent. However, 4 (16.0%) to some extent and none of the respondent not at all agree, the mean of this variable is 1.5714 and standard deviation is 0.7353.

Policy 14: Competitive bidding process – Majority of respondents i.e. 57.2% show positive response for the policy of Competitive bidding process that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 28 (11.1%) respondent are strongly agree that the given policy supports to a very great extent, 46 (183%) agree to a great extent, 70 (27.8%) to a moderate extent. However, more of the respondents i.e. 85 (33.7%) to some extent and 23 (9.1%) respondent not at all agree, the mean of this variable is 3.1151 and standard deviation is 1.1495.

Policy 15: Foreign Direct Investment (FDI) – Majority of respondents i.e. 93.3% show positive response for the policy of FDI that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 68 (27.0%) respondent are strongly agree that the given policy supports to a very great extent, 109 (43.3%) agree to a great extent, 58 (23.0%) to a moderate extent. However, 15 (6.9%) to some extent and 2 (0.8%) respondent not at all agree, the mean of this variable is 2.1032 and standard deviation is 0.8956.

Policy 16: Foreign Direct Investment (FDI) – Majority of respondents i.e. 80.2% show positive response for the policy of FDI that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 76 (30.2%) respondent are strongly agree that the given policy supports to a very great extent, 71 (28.2%) agree to a great extent, 55 (21.8%) to a moderate extent. However, 42 (16.7%) to some extent and 8 (3.2%) respondent not at all agree, the mean of this variable is 2.3452 and standard deviation is 1.1655.

Policy 17: Introduction/revision of solar policy – Majority of respondents i.e. 70.5% show positive response for the policy of Introduction/revision of solar policy that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 37 (14.7%) respondent are strongly agree that the given policy supports to a very great extent, 56 (22.2%) agree to a great extent, 62 (24.6%) to a moderate extent. However, 83 (32.9%) to some extent and 14 (5.6%) respondent not at all agree, the mean of this variable is 2.9246 and standard deviation is 1.1665.

Policy 18: Enforcement of renewable purchase Obligation (RPO) – Majority of respondents i.e. 87.4% show positive response for the policy of RPO that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 44 (17.5%) respondent are strongly agree that the given policy supports to a very great extent, 68 (27.4%) agree to a great extent, 107 (42.5%) to a moderate extent. However, 30 (11.9%) to some extent and 2 (0.8%) respondent not at all agree, the mean of this variable is 2.5119 and standard deviation is 0.9425.

Policy 19: Hybrid solar wind policy – Majority of respondents i.e. 80.2% show positive response for the policy of Hybrid solar wind policy that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 35 (13.9%) respondent are strongly agree that the given policy supports to a very great extent, 70 (27.8%) agree to a great extent, 97 (38.5%) to a moderate extent. However, 44 (17.5%) to some extent and 6

(2.4%) respondent not at all agree, the mean of this variable is 2.6667 and standard deviation is 0.9980.

Policy 20: Policy for revamping of existing solar-wind – Majority of respondents i.e. 61.1% show positive response for the policy of Hybrid solar wind policy that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 31 (12.3%) respondent are strongly agree that the given policy supports to a very great extent, 52 (20.6%) agree to a great extent, 71 (28.2%) to a moderate extent. However, 86 (34.1%) to some extent and 12 (4.8%) respondent not at all agree, the mean of this variable is 2.9841 and standard deviation is 1.1112.

Policy 21: Payment Security mechanism – Majority of respondents i.e. 96.8% show positive response for the policy of Payment Security mechanism that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 111 (44.0%) respondent are strongly agree that the given policy supports to a very great extent, 99 (39.3%) agree to a great extent, 34 (13.5%) to a moderate extent. However, 7 (2.8%) to some extent and 1 (0.4%) respondent not at all agree, the mean of this variable is 1.7619 and standard deviation is 0.8174.

Policy 22: Off-takers- Power Purchase Agreement – Majority of respondents i.e. 83.4% show positive response for the policy of Off-takers- Power Purchase Agreement that helps to promote the government target for development of renewable energy projects, which motivates for renewable energy project developments, Where, 69 (27.4%) respondent are strongly agree that the given policy supports to a very great extent, 75 (29.8%) agree to a great extent, 6 (26.2%) to a moderate extent. However, 40 (15.9%) to some extent and 2 (0.8%) respondent not at all agree, the mean of this variable is 2.3294 and standard deviation is 1.0668.

# **Table 5.9: Frequency Distribution and Descriptive Statistics with**

# respect to factors influencing the decision of installation of renewable

|           | Factors                                                       | gr        | Very<br>eat<br>ent |           | Great      | Mod       | o a<br>erate<br>tent |           | Some<br>tent | Not       | at all     | Mean       | Standa<br>rd<br>deviati |
|-----------|---------------------------------------------------------------|-----------|--------------------|-----------|------------|-----------|----------------------|-----------|--------------|-----------|------------|------------|-------------------------|
| Sr<br>No. | influencing the<br>decision of RE<br>projects                 | Frequency | Percentage         | Frequency | Percentage | Frequency | Percentage           | Frequency | Percentage   | Frequency | Percentage |            | on                      |
| 1         | Payment security mechanism                                    | 127       | 50.4               | 98        | 38.9       | 23        | 9.1                  | 4         | 1.6          | 4         | 1.6        | 1.619<br>0 | 0.7181                  |
| 2         | Centre level policy supports                                  | 69        | 27.4               | 65        | 25.8       | 78        | 31.0                 | 37        | 14.7         | 3         | 1.2        | 2.365<br>1 | 1.0719                  |
| 3         | State level policy support                                    | 64        | 25.4               | 90        | 35.70      | 71        | 28.2                 | 27        | 10.7         | 0         | 0          | 2.242<br>1 | 0.9536                  |
| 4         | Easy of<br>procedure for RE<br>project                        | 50        | 19.8               | 89        | 35.3       | 64        | 25.4                 | 46        | 18.3         | 3         | 1.2        | 2.456<br>3 | 1.0420                  |
| 5         | Land policies                                                 | 164       | 65.1               | 66        | 26.2       | 17        | 6.7                  | 5         | 2.0          | 0         | 0          | 1.456<br>3 | 0.7100                  |
| 6         | Low cost<br>funding from<br>Government<br>institutions        | 75        | 29.8               | 73        | 29.0       | 62        | 24.6                 | 37        | 14.7         | 5         | 2.0        | 2.301<br>6 | 1.1061                  |
| 7         | Low cost<br>funding from<br>Private Banks<br>and Institutions | 70        | 27.8               | 72        | 28.6       | 61        | 24.2                 | 44        | 17.5         | 5         | 2.0        | 2.373<br>0 | 1.1237                  |
| 8         | Policy for<br>disposal of solar<br>panels                     | 22        | 8.7                | 43        | 17.1       | 50        | 19.8                 | 81        | 32.1         | 56        | 22.2       | 3.420<br>6 | 1.2488                  |
| 9         | Availability of<br>facility for<br>disposal of solar<br>panel | 25        | 9.9                | 41        | 16.3       | 47        | 18.7                 | 79        | 31.3         | 60        | 23.8       | 3.428<br>6 | 1.2839                  |
| 10        | Development of<br>Solar Parks at<br>different states          | 91        | 36.1               | 88        | 34.9       | 48        | 19.0                 | 19        | 7.5          | 6         | 2.4        | 2.051<br>6 | 1.0340                  |
| 11        | Waiver of<br>transmission &<br>wheeling charges               | 116       | 46.0               | 98        | 38.9       | 31        | 12.3                 | 6         | 2.4          | 1         | 0.4        | 1.722<br>2 | 0.7998                  |
| 12        | Renewable<br>Purchase<br>Obligation<br>(RPO)                  | 61        | 24.2               | 85        | 33.7       | 73        | 29.0                 | 32        | 12.7         | 1         | 0.4        | 2.313<br>5 | 0.9905                  |
| 13        | Exemption of custom duties                                    | 166       | 65.6               | 66        | 26.2       | 15        | 6.9                  | 5         | 2.0          | 0         | 0          | 1.440<br>5 | 0.6975                  |
| 14        | Imposition of<br>safeguard duty                               | 93        | 36.9               | 73        | 29.0       | 39        | 15.5                 | 17        | 6.7          | 30        | 11.9       | 2.277<br>8 | 1.3398                  |
| 15        | Availability of<br>renewable<br>energy resources              | 184       | 73.0               | 58        | 23.0       | 9         | 3.6                  | 0         | 0            | 1         | 0.4        | 1.317<br>5 | 0.5806                  |
| 16        | Availability of off takers                                    | 95        | 37.7               | 76        | 30.2       | 67        | 26.6                 | 14        | 5.6          | 0         | 0          | 2.000<br>0 | 0.9320                  |

# energy projects:

| 17 | Availability of evacuation              | 139 | 55.2 | 91          | 36.1 | 18   | 7.1  | 3   | 1.2  | 1   | 0.4 | 1.555      | 0.7147 |
|----|-----------------------------------------|-----|------|-------------|------|------|------|-----|------|-----|-----|------------|--------|
|    | facility                                |     |      |             |      |      |      |     |      |     |     | 6          |        |
| 18 | Market<br>competition                   | 66  | 26.2 | 102         | 40.5 | 69   | 27.4 | 15  | 6.0  | 0   | 0   | 2.131<br>0 | 0.8716 |
| 19 | Government<br>target for RE<br>capacity | 149 | 59.1 | 71.2<br>8.2 | 26   | 10.3 | 4    | 1.6 | 2    | 0.8 |     | 1.567<br>5 | 0.8030 |
| 20 | Supply chain network                    | 51  | 20.2 | 79          | 31.3 | 87   | 34.5 | 35  | 13.9 | 0   | 0   | 2.420<br>6 | 0.9643 |

#### Interpretation:

Variable 1: Payment security mechanism – Majority of respondents i.e. 98.40 % show positive response to variable of payment security mechanism under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 127 (50.4%) respondent are strongly agree that the given variable influence to a very great extent, 98 (38.9%) agree to a great extent, 23 (9.1%) to a moderate extent, 4 (1.6%) to some extent and not a single respondent not agree, the mean of this variable i.e. payment security mechanism is 1.6190 and standard deviation is 0.7181.

Variable 2: Central level policy support – Majority of respondents i.e. 84.10 % show positive response to variable of central level policy support under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 69 (27.4%) respondent are strongly agree that the given variable influence to a very great extent, 65 (25.8%) agree to a great extent, 78 (31.0%) to a moderate extent, 37 (14.7%) to some extent and 3 (1.2%) not at all, the mean of this variable i.e. Central level policy support is 2.3651 and standard deviation is 1.0719

Variable 3: State level policy support – Majority of respondents i.e. 89.30 % show positive response to variable of state level policy support under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 64 (25.4%) respondent are strongly agree that the given variable influence to a very great extent, 90 (35.7%) agree to a great extent, 71 (28.2%) to a moderate extent, 27 (10.7%) to some extent and not a single respondent not agree, the mean of this variable i.e. State level policy support is 2.2421 and standard deviation is 0.9536.

Variable 4: Easy of procedure for RE projects – Majority of respondents i.e. 80.60 % show positive response to variable of Easy of procedure for RE projects under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 50 (19.8%) respondent are strongly agree that the given variable influence to a very great extent, 89 (35.3%) agree to a great extent, 64 (25.4%) to a moderate extent, 46 (18.3%) to some extent and 3 (1.2%) not at all, the mean of this variable i.e. Easy of procedure for RE projects is 2.4563 and standard deviation is 1.0420.

Variable 5: Land policies – Majority of respondents i.e. 98.00 % show positive response to variable of land policies under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 164 (65.1%) respondent are strongly agree that the given variable influence to a very great extent, 66 (26.2%) agree to a great extent, 17 (6.7%) to a moderate extent, 5 (2.0%) to some extent and not a single respondent not agree, the mean of this variable i.e. Land policies is 1.4563 and standard deviation is 0.71.

Variable 6: Low cost funding from Government institutions – Majority of respondents i.e. 83.30 % show positive response to variable oflow cost funding from Government institutions under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 75 (29.8%) respondent are strongly agree that the given variable influence to a very great extent, 73 (23.0%) agree to a great extent, 62 (24.60%) to a moderate extent, 37 (14.7%) to some extent and 5 (2.0%) not at all, the mean of this variable i.e. Low cost funding from Government institutions is 2.3016 and standard deviation is 1.1061.

Variable 7: Low cost funding from Private Banks and Institutions – Majority of respondents i.e. 80.60 % show positive response to variable of Low cost funding from Private Banks and Institutions under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 70 (27.8%) respondent are strongly agree that the given variable influence to a very great extent, 72 (28.6%) agree to a great extent, 61

(24.2%) to a moderate extent, 44 (17.5%) to some extent and 5 (2.0%) not at all, the mean of this variable i.e. Low cost funding from Private Banks and Institutions is 2.3730 and standard deviation is 1.1237.

Variable 8: Policy for disposal of solar panels – As far as the variable is concern, at present situation the policy for disposal of solar panel is not influencing the development of the renewable energy projects hence 45.60 % of the respondents response is very positive to this variable under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 22 (8.7%) respondent are strongly agree that the given variable influence to a very great extent, 43 (17.1%) agree to a great extent, 50 (19.8%) to a moderate extent, 81 (32.1%) to some extent and 56 (22.2%) not at all, the mean of this variable i.e. policy for disposal of solar panels is 3.4206 and standard deviation is 1.2488.

Variable 9: Availability of facility for disposal of solar panel – As far as the variable is concern, at present situation the Availability of facility for disposal of solar panel is not influencing the development of the renewable energy projects hence 44.80 % of the respondents response is very positive to this variable under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 25 (9.9%) respondent are strongly agree that the given variable influence to a very great extent, 41 (16.3%) agree to a great extent, 47 (18.7%) to a moderate extent, 79 (31.3%) to some extent and 60 (23.8%) not at all, the mean of this variable i.e. Availability of facility for disposal of solar panel is 3.4286 and standard deviation is 1.2839.

Variable 10: Development of Solar Parks at different states – Majority of respondents i.e. 90.10 % show positive response to variable of Development of Solar Parks at different states under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 91 (36.1%) respondent are strongly agree that the given variable influence to a very great extent, 88 (34.9%) agree to a great extent, 48 (19.0%) to a moderate extent, 19 (7.5%) to some extent and 6 (2.4%) not at all, the

137

mean of this variable i.e. Development of Solar Parks at different states is 2.0516 and standard deviation is 1.0340.

Variable 11: Waiver of transmission & wheeling charges – Majority of respondents i.e. 97.20 % show positive response to variable of Waiver of transmission & wheeling charges support under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 116 (46.0%) respondent are strongly agree that the given variable influence to a very great extent, 98 (38.9%) agree to a great extent, 31 (12.3%) to a moderate extent, 6 (2.4%) to some extent and 1 (0.40%) not at all, the mean of this variable i.e. Waiver of transmission & wheeling charges is 1.7222 and standard deviation is 0.7998.

Variable 12: Renewable Purchase Obligation (RPO) – Majority of respondents i.e. 86.90 % show positive response to variable of Renewable Purchase Obligation (RPO) under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 61 (24.2%) respondent are strongly agree that the given variable influence to a very great extent, 85 (33.7%) agree to a great extent, 73 (29.0%) to a moderate extent, 32 (12.7%) to some extent and 1 (0.40%) not at all, the mean of this variable i.e. Renewable Purchase Obligation (RPO) is 2.3135 and standard deviation is 0.9905.

Variable 13: Exemption of custom duties – Majority of respondents i.e. 98.00 % show positive response to variable of exemption of custom duties under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 166 (65.9%) respondent are strongly agree that the given variable influence to a very great extent, 66 (26.2%) agree to a great extent, 15 (6.0%) to a moderate extent, 5 (2.0 %) to some extent, the mean of this variable i.e. exemption of custom duties is 1.4405 and standard deviation is 0.6975.

Variable 14: Imposition of safeguard duty – Majority of respondents i.e. 81.30 % show positive response to variable of Imposition of safeguard duty under the factors that influence the decision of installation of renewable energy projects, which

motivates for renewable energy project developments. Where, 93 (36.9%) respondent are strongly agree that the given variable influence to a very great extent, 73 (29.0%) agree to a great extent, 39 (15.5%) to a moderate extent, 17 (6.7%) to some extent and 30 (11.90%) not at all, the mean of this variable i.e. Imposition of safeguard duty is 2.2778 and standard deviation is 1.3398.

Variable 15: Availability of renewable energy resources – Majority of respondents i.e. 99.60 % show positive response to variable of Availability of renewable energy resources under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 184 (73.0%) respondent are strongly agree that the given variable influence to a very great extent, 58 (23.0%) agree to a great extent, 9 (3.6%) to a moderate extent and 1 (0.40%) not at all, the mean of this variable i.e. Availability of renewable energy resources is 1.3175 and standard deviation is 0.5806.

Variable 16: Availability of off takers – Majority of respondents i.e. 94.40 % show positive response to variable of availability of off takers under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 95 (37.7%) respondent are strongly agree that the given variable influence to a very great extent, 76 (30.2%) agree to a great extent, 67 (26.6%) to a moderate extent and 14 (5.6%) to some extent, the mean of this variable i.e. Availability of off takers is 2.0000 and standard deviation is 0.9320.

Variable 17: Availability of evacuation facility – Majority of respondents i.e. 86.90 % show positive response to variable of Availability of evacuation facility under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 139 (55.2%) respondent are strongly agree that the given variable influence to a very great extent, 91 (36.1%) agree to a great extent, 18 (7.1%) to a moderate extent, 3 (1.2%) to some extent and 1 (0.40%) not at all, the mean of this variable i.e. Availability of evacuation facility is 1.5556 and standard deviation is 0.7147.

Variable 18: Market competition – Majority of respondents i.e. 94.00 % show positive response to variable of Market competition under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 66 (26.2%) respondent are strongly agree that the given variable influence to a very great extent, 102 (40.5%) agree to a great extent, 69 (27.4%) to a moderate extent and 15 (6.0%) to some extent, the mean of this variable i.e. Market competition is 2.1310 and standard deviation is 0.8716.

Variable 19: Government target for RE capacity – Majority of respondents i.e. 97.60 % show positive response to variable of Government target for RE capacity under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 149 (59.1%) respondent are strongly agree that the given variable influence to a very great extent, 71 (28.3%) agree to a great extent, 26 (10.3%) to a moderate extent, 4 (1.6%) to some extent and 2 (0.80%) not at all, the mean of this variable i.e. Government target for RE capacity is 1.5675 and standard deviation is 0.8030.

Variable 20: Supply chain network – Majority of respondents i.e. 86.90 % show positive response to variable of Supply chain network under the factors that influence the decision of installation of renewable energy projects, which motivates for renewable energy project developments. Where, 51 (20.2%) respondent are strongly agree that the given variable influence to a very great extent, 79 (31.3%) agree to a great extent, 87 (34.5%) to a moderate extent and 35 (13.9%) to some extent, the mean of this variable i.e. Supply chain network is 2.4206 and standard deviation is 0.9643.

Table 5.10 : Frequency Distribution and Descriptive Statistics with respect to adequacy of manufacturing capacity in India for major/main component of the utility scale renewable power projects to meet the increasing demand/ target set by government of India.

| Sr     |                            | Mo<br>th<br>suffi |            |           | icien<br>t | Le<br>suffi | ess        | •         | v less<br>cient | Not       | cient      | Mea<br>n   | Standa<br>rd<br>deviati<br>on |
|--------|----------------------------|-------------------|------------|-----------|------------|-------------|------------|-----------|-----------------|-----------|------------|------------|-------------------------------|
| N<br>o | Statistics                 | Frequency         | Percentage | Frequency | Percentage | Frequency   | Percentage | Frequency | Percentage      | Frequency | Percentage |            |                               |
| 1      | Manufacturin<br>g Capacity | 10                | 4.0        | 53        | 21.<br>0   | 47          | 18.<br>7   | 51        | 20.<br>2        | 91        | 36.<br>1   | 3.63<br>49 | 1.2725                        |

Very less percentage of respondents i.e. 25.00 % show positive response to adequacy of manufacturing facility in India for major/main component of the utility scale renewable power projects to meet the increasing demand/ target set by government of India which de-motivates for renewable energy project developments. Where, 91 (36.1%) respondent perceived that the manufacturing capacity is not sufficient, 51 (20.2%) agree to a very less sufficient manufacturing capacity and 47 (18.7%) to a less sufficient manufacturing capacity while only 10 (4.0%) respondent perceived that the manufacturing capacity and 53 (21.0%) opine sufficient capacity. The mean value being 3.6349 and standard deviation is 1.2725.

Descriptive statistics on the perception of stake holders regarding "motivation support behind the decision on investing in utility scale renewable energy projects":

| Sr<br>No | Motivation supports             | Ν   | Range | Minimum | Maximum | Mean   | Std.      |
|----------|---------------------------------|-----|-------|---------|---------|--------|-----------|
| 110      |                                 |     |       |         |         |        | Deviation |
| 1        | Renewable power are the future  | 252 | 3.00  | 1.00    | 4.00    | 1.2460 | 0.52334   |
| 2        | Returns on generations          | 252 | 4.00  | 1.00    | 5.00    | 2.6230 | 0.98835   |
| 3        | Congenial policies in renewable | 252 | 4.00  | 1.00    | 5.00    | 2.5437 | 1.01094   |
|          | energy at state level           |     |       |         |         |        |           |
| 4        | High tariff rates               | 252 | 4.00  | 1.00    | 5.00    | 3.0119 | 1.21571   |
| 5        | Provision of Renewable Energy   | 252 | 4.00  | 1.00    | 5.00    | 3.2262 | 1.20442   |
|          | Certification                   |     |       |         |         |        |           |

 Table 5.11
 : Descriptive statistics

| 6  | Government targets for renewable  | 252 | 3.00 | 1.00 | 4.00 | 1.4921 | 0.75476 |
|----|-----------------------------------|-----|------|------|------|--------|---------|
|    | energy development                |     |      |      |      |        |         |
| 7  | Lower operating cost              | 252 | 4.00 | 1.00 | 5.00 | 2.7579 | 0.99847 |
| 8  | Secured payment mechanism         | 252 | 4.00 | 1.00 | 5.00 | 1.9484 | 0.98662 |
| 9  | Availability of renewable energy  | 252 | 3.00 | 1.00 | 4.00 | 1.3651 | 0.66324 |
|    | resources                         |     |      |      |      |        |         |
| 10 | Open access / third party sale of | 252 | 3.00 | 1.00 | 4.00 | 2.3770 | 0.98026 |
|    | power                             |     |      |      |      |        |         |
|    | Valid N (list wise)               | 252 |      |      |      |        |         |

Note: Likert scale: 1-To a very great extent, 2- To a great extent, 3- To a moderate extent, 4- To some extent and 5 – Not at all (1 being the highest scale) Source: Computed from Primary Data

The five point likert scale is considered an interval scale. The mean is very significant. Here the mean from range 1 to 1.8 means strongly agree/To a very great extent, the mean from range 1.81 to 2.60 means agree/ to a great extent, 2.61 to 3.40 means agree /to a moderate extent, from 3.41 to 4.20 means to some extent and from 4.21 to 5 means strongly disagree/ not at all.

In the first statement, the mean is 1.2460 which revealed that most of the stake holders are strongly agree to a very great extent that ` Renewable power are the future `. The mean of the second statement is 2.6230 which revealed that again the majority of stake holders are agree to moderate extent for the motivation support that `Returns on generations `. The third statement about ` Congenial policies in renewable energy at state level `, the majority of stake holders are agree to a great extent as the mean is of 2.5437. The mean of the fourth statement is 3.0119 revealed that the majority of stake holders agree to a moderate extent that ` High tariff rates `. The mean of the fifth statement is 3.2262 revealed that the majority of stake holders agree to a moderate extent that `Provision of renewable energy certificates `. The mean of the sixth statement is 1.4921 revealed that the majority of stake holders are strongly agree to a very great extent that ` Government targets for renewable energy development `. The mean of the seventh statement is 2.7579 revealed that the majority of stake holders agree to a moderate extent that ` Lower operating cost `. The mean of the eighth statement is 1.9484 revealed that the majority of stake holders agree to a great extent that ` Secured payment mechanism `. The mean of the ninth statement is 1.3651 revealed that the majority of stake holders strongly agree to a very great extent that `

Availability of renewable energy resources `. The tenth last statement revealed that majority of the stake holders agree to a great extent for the motivation support that ` Open access / third party sale of power ` as seen from the mean of 2.3770.

Here, the Researcher has attempted to assess the evaluation of perception of various respondent/stockholders regarding various "motivation support behind the decision on investing in utility scale renewable energy projects" in five point scale.

Descriptive statistics on the perception of stake holders regarding "points contribute to make utility scale renewable energy project more affordable and viable":

| Sr | Points contributed for         | Ν   | Range | Minimum | Maximum | Mean   | Std.      |
|----|--------------------------------|-----|-------|---------|---------|--------|-----------|
| No | viability                      |     |       |         |         |        | Deviation |
| 1  | Government should provide      | 252 | 4.00  | 1.00    | 5.00    | 1.9762 | 0.96937   |
|    | more subsidy                   |     |       |         |         |        |           |
| 2  | Invest more in R&D for         | 252 | 3.00  | 1.00    | 4.00    | 2.3611 | 0.89740   |
|    | technology development         |     |       |         |         |        |           |
| 3  | Promote domestic               | 252 | 4.00  | 1.00    | 5.00    | 1.6032 | 0.83336   |
|    | manufacturing capacity         |     |       |         |         |        |           |
| 4  | Implementation of policies     | 252 | 3.00  | 1.00    | 4.00    | 2.2460 | 0.97936   |
| 5  | Secured payment mechanism      | 252 | 3.00  | 1.00    | 4.00    | 1.5000 | 0.70570   |
| 6  | Power Purchase Agreement       | 252 | 3.00  | 1.00    | 4.00    | 2.0397 | 1.05544   |
|    | with Off takers/DISCOM         |     |       |         |         |        |           |
| 7  | Waival of inter-state          | 252 | 3.00  | 1.00    | 4.00    | 1.5952 | 0.69921   |
|    | transmission charges           |     |       |         |         |        |           |
| 8  | Facilitate international trade | 252 | 4.00  | 1.00    | 5.00    | 1.8165 | 0.95643   |
| 9  | Facilitate supply chain        | 252 | 4.00  | 1.00    | 5.00    | 2.1865 | 0.98643   |
|    | management                     |     |       |         |         |        |           |
| 10 | Must Run status to RE power    | 252 | 4.00  | 1.00    | 5.00    | 1.3889 | 0.63084   |
| 11 | Waival of taxes & duties       | 252 | 4.00  | 1.00    | 5.00    | 1.4206 | 0.70120   |
| 12 | Awareness and capacity         | 252 | 4.00  | 1.00    | 5.00    | 2.8532 | 1.11056   |
|    | building                       |     |       |         |         |        |           |
|    | Valid N (list wise)            | 252 |       |         |         |        |           |

 Table 5.12
 : Descriptive statistics

Note: Likert scale: 1-To a very great extent, 2- To a great extent, 3- To a moderate extent, 4- To some extent and 5 - Not at all (1 being the highest scale)

The five point likert scale is considered an interval scale. The mean is very significant. Here the mean from range 1 to 1.8 means strongly agree/To a very great extent, the mean from range 1.81 to 2.60 means agree/ to a great extent, 2.61 to 3.40 means agree /to a moderate extent, from 3.41 to 4.20 means to some extent and from 4.21 to 5 means strongly disagree/ not at all.

In the first statement, the mean is 1.9762 which revealed that most of the stake holders are strongly agree to a very great extent that ` Government should provide more subsidy `. The mean of the second statement is 2.3611 which revealed that again the majority of stake holders are agree to moderate extent for the motivation support that `Invest more in R&D for technology development `. The third statement about ` Promote domestic manufacturing capacity `, the majority of stake holders are strongly agree to a very great extent as the mean is of 1.6032. The mean of the fourth statement is 2.2460 revealed that the majority of stake holders agree to a moderate extent that ` Implementation of policies `. The mean of the fifth statement is 1.5000 revealed that the majority of stake holders strongly agree to a very great extent that ` Secured payment mechanism `. The mean of the sixth statement is 2.0397 revealed that the majority of stake holders are agree to a great extent that ` Power Purchase Agreement with Off takers/DISCOM `. The mean of the seventh statement is 1.5957 revealed that the majority of stake holders strongly agree to a very great extent that ` Waival of inter-state transmission charges `. The mean of the eighth statement is 1.8165 revealed that the majority of stake holders agree to a great extent that ` Facilitate international trade `. The mean of the ninth statement is 2.1865 revealed that the majority of stake holders agree to a great extent that ` Facilitate supply chain management `. The tenth statement revealed that majority of the stake holders strongly agree to a very great extent for the motivation support that `Must Run status to RE power ` as seen from the mean of 1.3889. The eleventh statement revealed that majority of the stake holders again strongly agree to a very great extent for the motivation support that `Waival of taxes & duties ` as seen from the mean of 1.4206. The last twelfth statement revealed that majority of the stake holders agree to a moderate extent for the motivation support that ` Awareness and capacity building ` as seen from the mean of 2.8532

Here, the Researcher has attempted to assess the evaluation of perception of various respondent/stockholders regarding various "contribute to make utility scale renewable energy project more affordable and viable" in five point scale.

# 5.3 Reliability and Validity of questionnaire:

This research study is ground on questionnaire, hence it is highly essential to test the reliability as well as validity of the surveyed questionnaire. In order to test the validity of the questionnaire, factor analysis method is to be utilized.

# Reliability Analysis of questionnaire for the study on ``SWOT Analysis of renewable energy projects``:

The reliability of questionnaire that were utilized for collection of data as primary source of data collection is formulated suitably in order to understand the perception of various stake holders in the field of renewable energy projects. Moreover, the questionnaire formed for research study shall be reliable in order to provide effective and clear information which needs to be ascertain by respondents so that effective conclusion can be derived from the research study. The reliability of questionnaire is ascertained by the way that if the same particular questionnaire is utilized for collection of information from other respondent from different states or region it could have furnish credible information which are consistent from one respondent to other for different states or region. The research rere, uses the Statistical Package for Social Science (SPSS) for reliability statistical analysis with the help of Cronbach Alpha also well known as Coefficient Alfa and is well known method of measurement of reliability, which normally varies between 0 to 1.

The **Cronbach's Alfa** of 268 no's of items is 0.975 which is between 0 to 1 and nearer to almost 1, which indicates that all the 268 items of the questionnaires were **97.5%** which concludes that **overall information is credible** and have best **internal consistency** of reliability between the variables, as per the thumb rules for research that is greater than 0.9 – excellent and a value higher than 0.5 is sufficient. In this research it is 97.5% which considered being the excellent reliability. Even researcher analyzed Cronbach Alfa if item deleted and the conclusion is that by deleting only one item the Cronbach Alfa increases only by 0.1 % i.e. 97.6% over 97.5%

| Tuble 110 cilet Renubling Blutblieb |            |  |  |  |  |  |  |  |  |
|-------------------------------------|------------|--|--|--|--|--|--|--|--|
| Cronbach's Alpha                    | N of Items |  |  |  |  |  |  |  |  |
| .975                                | 268        |  |  |  |  |  |  |  |  |
| Source: Computed from Drimony Data  |            |  |  |  |  |  |  |  |  |

 Table No 5.13:
 Reliability Statistics

Source: Computed from Primary Data

#### 5.4 Factor Analysis:

Factor analysis is a statistical tool that applied mainly for the purpose of reducing large number of variable data into a small set of summarized variables referred to as factors mainly to interpret the results. In the present research study the analysis is to be done to summarize various factors related to the utility scale renewable energy projects, both solar and wind energy projects. The factor analysis helps us to identify the factor which explains the relationship among set of variables. Hence, the factor analysis is used for checking the validity of the questionnaire. The validity comprises of convergent and discriminant validity, which has been checked by means of Principal Component Analysis (PCA). The statistical analysis is being carried out on each of the question as narrated here under consisting of various factors through the PCA statistical analysis. The principal component factor analysis had been carried out to verify the validity of the questionnaire.

The factor analysis is categorized into two main categories namely Confirmatory Factor Analysis (CFA) and Exploratory Factor Analysis (EFA). The exploratory factor analysis is generally utilized to identify the underlying factor structure of a set of identified variables and is used for scales that have not been tested earlier for their reliability or validity, While Confirmatory factor analysis is a statistical technique that have been used to verify the factor structure for scales that have been tested earlier for their validity or reliability.

#### 5.4.1 Exploratory Factor Analysis:

This research study consists of effect of different factors related to the development of renewable energy projects in various states of India. The different factors effecting the development of renewable energy projects are considered in various questions of the questionnaires like question no. 17 related to the factors influencing the decision of installation of renewable energy (Solar & Wind) projects. While, question no.19 focuses on constraints for Renewable Energy project capacity development with

respect to available RE potential. Whereas question no. 26 related to the challenges / barriers affect for the developments of utility scale renewable energy projects. Moreover, question no. 28 focuses on the government policies that are supportive for the investment in the utility scale renewable energy projects. Further, question no. 42 focuses on the factors that contribute to make utility scale renewable energy (solar & wind power) project more affordable and viable. All these questions focuses on the various variable factors are the subject matter of research study identified by the researcher. Hence the entire above individual factor analysis is to be studied by the researcher. The factors effecting to a very great extent to not at all to each of the given statement. Hence in order to analyze such statements exploratory factor analysis method of statistical technique seems to be more appropriate and suitable because it considered every variable as interdependent as well as independent variables.

In order to conduct above study, the selected respondents from various stakeholders group were pursued for filling the questionnaire containing said questions which are formed on the ground of five point likert scale that is `to a very great extent` to some extent and `not at all` to every questions.

# Exploratory Factor Analysis (EFA) for statement related to the factors influencing the decision of installation of renewable energy projects:

In this research study, the statistical analysis technique of exploratory factor analysis has been adopted for question no. 17 related to the factors influencing the decision of installation of renewable energy projects. The statement consists of 20 factors and analysis is to be carried out through the `PCA` technique, in which the total variance of the collected data is to be considered. For which `Varimax` option in SPSS was utilized. The respondent i.e. various stake holders related to the field of renewable energy projects were pursue to obtain valuable responses towards the different variables related to the factors influencing the decision of installation of renewable energy projects. Accordingly all the 252 nos of stake holders had responded for the said statements.

#### 5.4.2 Appropriateness in Factor Analysis (EFA):

The appropriateness of factor analysis is identified by examining the correlations that exists between all the pairs of variables which are included in the in the factor analysis study. If the correlation between the variables seems to be smaller, which conclude that the factor analysis is not appropriate. Hence in order to apply factor analysis techniques most of the variable under analysis is to be correlated with each other. The sphericity test under the Bartlett's is a statistical technique that is being used for examining whether the variables are correlated with each other or not. The interpretation of assumed null hypothesis indicates that the variables among the population are uncorrelated or correlated with each other in the given population.

The other statistical technique which is used for factor analysis calculation is Kaiser-Meyer – Olkin well known as KMO technique which is measure of sampling adequacy. In KMO statistics, the index is used to conclude the appropriateness of factor analysis. The researcher concludes that the factor analysis is appropriate if the value of index should be between 0.5 to 1. If the value of index is below the 0.5 than factor analysis is in appropriate statistical technique for this research study.

#### Table No 5.14: KMO and Bartlett`s test of Sphericity

(Question No: 17 - related to the factors influencing the decision of installation of

| Kaiser Meyer Olkin Measure and Bartlett's Test |                    |                               |       |  |  |  |  |  |  |  |
|------------------------------------------------|--------------------|-------------------------------|-------|--|--|--|--|--|--|--|
| Sampling Adequacy                              | Bartlet            | Bartlett's test of Sphericity |       |  |  |  |  |  |  |  |
| as per Kaiser Meyer                            |                    |                               |       |  |  |  |  |  |  |  |
| Olkin Measure                                  |                    |                               |       |  |  |  |  |  |  |  |
| 0.772                                          | Approx. Chi-Square | df                            | Sig   |  |  |  |  |  |  |  |
|                                                | 2383.191           | 190                           | 0.000 |  |  |  |  |  |  |  |

renewable energy projects)

Source: Computed from Primary Data

The above data revealed that the approximate Chi-square value of 2383.191 at degree of freedom 190 under the Bartlett's test of Sphericity, the significance value (p-value) is 0.000. The researcher analyzes the Bartlett's test of Sphericity, considering significance level (P-value) of 0.05. In case if significance value is less than 0.05, Researcher will reject the  $H_0$  On the contrary, if the significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject.

In this case, the significance value (p-value) is 0.000 of test which is less than p value of 0.05, hence null hypothesis is rejected, which indicates that the selected variables in the population are also not correlated. Hence it indicates that the given data's are suitable for Factor Analysis testing.

The KMO measure was 0.772, this is adequately larger than 0.5. Hence, in view of data analysis such factor analysis is seems to be appropriate.

| KMO ranges Communaliti                               | es            |            |
|------------------------------------------------------|---------------|------------|
|                                                      | Initial       | Extraction |
| Payment security mechanism                           | 1.000         | .542       |
| Centre level policy supports                         | 1.000         | .730       |
| State level policy support                           | 1.000         | .638       |
| Easy of procedure for RE project                     | 1.000         | .558       |
| Land policies                                        | 1.000         | .495       |
| Low cost funding from Government institutions        | 1.000         | .809       |
| Low cost funding from 1 Banks and Institutions       | 1.000         | .779       |
| Policy for disposal of solar panels                  | 1.000         | .807       |
| Development of Solar Parks at different states       | 1.000         | .511       |
| Waiver of transmission & wheeling charges            | 1.000         | .554       |
| Renewable Purchase Obligation (RPO)                  | 1.000         | .603       |
| Exemption of custom duties                           | 1.000         | .638       |
| Availability of facility for disposal of solar panel | 1.000         | .788       |
| Imposition of safeguard duty                         | 1.000         | .527       |
| Availability of renewable energy resources           | 1.000         | .558       |
| Availability of off takers                           | 1.000         | .671       |
| Availability of evacuation facility                  | 1.000         | .614       |
| Market competition                                   | 1.000         | .439       |
| Government target for RE capacity                    | 1.000         | .668       |
| Supply chain network                                 | 1.000         | .509       |
| Extraction Method: Principal Compor                  | nent Analysis |            |

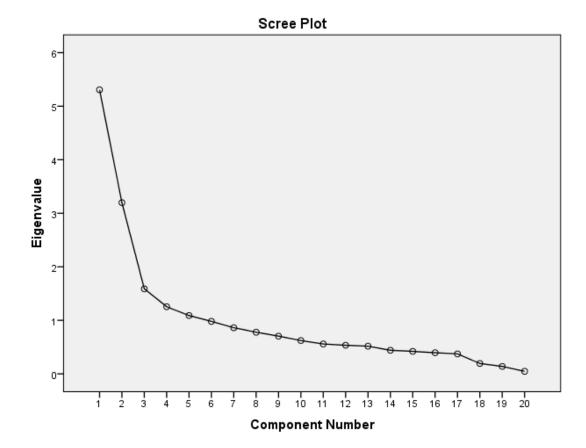
Table No.5.15 KMO ranges Communalities

All the statements are fall under the communalities ranges almost more than 0.500, hence all statements are taken into consideration for these factor analyses as these statements contributing for the factor analysis except the statement market competition.

### 5.4.3 Identifying the method of Factor Analysis (EFA):

Once the appropriateness of factor analysis is finalized with the testing of given relevant data through appropriate method of KMO as well as Bartlett's test of Sphericity, next step is to utilize two basic approaches for factor analysis i.e. first is Principal Component Analysis (PCA) and second one is Confirmatory Factor Analysis (CFA). However in order to analyze 20 selected variables, PCA analysis methodology is useful for factor analysis as described earlier. Moreover, it is further advisable in case that the major issue is to identify the smallest number of factors, it needs to take into consideration for variance in the given data utilized for multivariate study and such factors is considered as principal mechanism.

#### 5.5 Principal Component Analysis (PCA):


#### Table 5.16 : Total Variance Explained

(Question No: 17 - related to the factors influencing the decision of installation of

| Total Variance Explained |       |             |          |                  |                    |          |          |                                 |          |  |
|--------------------------|-------|-------------|----------|------------------|--------------------|----------|----------|---------------------------------|----------|--|
| Compo                    | Ini   | tial Eigenv | values   | Ex               | Extraction Sums of |          |          | <b>Rotation Sums of Squared</b> |          |  |
| nent                     |       | _           |          | Squared Loadings |                    |          | Loadings |                                 |          |  |
|                          | Total | % of        | Cumulati | Total            | % of               | Cumulati | Total    | % of                            | Cumulati |  |
|                          |       | Variance    | ve %     |                  | Variance           | ve %     |          | Variance                        | ve %     |  |
| 1                        | 5.306 | 26.531      | 26.531   | 5.306            | 26.531             | 26.531   | 4.062    | 20.308                          | 20.308   |  |
| 2                        | 3.198 | 15.991      | 42.522   | 3.198            | 15.991             | 42.522   | 2.426    | 12.131                          | 32.440   |  |
| 3                        | 1.589 | 7.945       | 50.467   | 1.589            | 7.945              | 50.467   | 2.354    | 11.772                          | 44.211   |  |
| 4                        | 1.254 | 6.270       | 56.738   | 1.254            | 6.270              | 56.738   | 1.803    | 9.013                           | 53.224   |  |
| 5                        | 1.090 | 5.449       | 62.187   | 1.090            | 5.449              | 62.187   | 1.793    | 8.963                           | 62.187   |  |
| 6                        | .980  | 4.902       | 67.089   |                  |                    |          |          |                                 |          |  |
| 7                        | .862  | 4.309       | 71.397   |                  |                    |          |          |                                 |          |  |
| 8                        | .777  | 3.887       | 75.285   |                  |                    |          |          |                                 |          |  |
| 9                        | .705  | 3.523       | 78.807   |                  |                    |          |          |                                 |          |  |
| 10                       | .622  | 3.109       | 81.916   |                  |                    |          |          |                                 |          |  |
| 11                       | .558  | 2.789       | 84.705   |                  |                    |          |          |                                 |          |  |
| 12                       | .535  | 2.673       | 87.379   |                  |                    |          |          |                                 |          |  |
| 13                       | .517  | 2.585       | 89.963   |                  |                    |          |          |                                 |          |  |
| 14                       | .440  | 2.200       | 92.164   |                  |                    |          |          |                                 |          |  |
| 15                       | .420  | 2.100       | 94.264   |                  |                    |          |          |                                 |          |  |
| 16                       | .395  | 1.973       | 96.237   |                  |                    |          |          |                                 |          |  |
| 17                       | .373  | 1.864       | 98.101   |                  |                    |          |          |                                 |          |  |
| 18                       | .194  | .970        | 99.071   |                  |                    |          |          |                                 |          |  |
| 19                       | .139  | .695        | 99.766   |                  |                    |          |          |                                 |          |  |
| 20                       | .047  | .234        | 100.000  |                  |                    |          |          |                                 |          |  |
| Extraction               |       |             | pal Comp | onent A          | nalysis.           | 1        |          | 1                               |          |  |

renewable energy projects)

Fig : 5.6 Scree Plot for factors influencing the decision of installation of renewable energy projects



The captioned table concludes the inferences revealed from the analysis of PCA with Varimax rotation. The table indicates that total five different factors were extracted based on the total variance analyzed. The fifth components in the initial solution have an Eigen values over 1 and the cumulative variance explained for about 62.187% of the total variables in the unique 20 variables influencing the decision of installation of renewable energy projects . Hence it shows that the analysis has drastically condensed the intricacy of the larger numbers of data set by using of such components, with loss of information about 37.813% i.e. (100-62.187). Here the sample size selected for this factor analysis was 252 stake holder respondents from various regions of India. Further, it is revealed that personal five factors based on percentage of variance explained in the given table works out to 26.531, 42.522, 50.467, 56.738 and 62.187

# Table 5.17 : Rotated Factor Loading Matrix <sup>a</sup>

(Question No: 17 - related to the factors influencing the decision of installation of

| Rotated Con                                                | nponent/ fa       | actor loading     | g Matrix <sup>a</sup> |                   |                   |
|------------------------------------------------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|
| Factors influencing the decisionComponent / Factor loading |                   |                   |                       |                   |                   |
| of installation of renewable                               | 1                 | 2                 | 3                     | 4                 | 5                 |
| energy projects                                            |                   |                   |                       |                   |                   |
| Payment security mechanism                                 |                   |                   |                       | <mark>.671</mark> |                   |
| Centre level policy supports                               | <mark>.624</mark> |                   |                       |                   |                   |
| State level policy support                                 | <mark>.605</mark> |                   |                       |                   |                   |
| Easy of procedure for RE project                           | <mark>.643</mark> |                   |                       |                   |                   |
| Land policies                                              |                   | <mark>.460</mark> |                       |                   |                   |
| Low cost funding from                                      |                   | <mark>.832</mark> |                       |                   |                   |
| Government institutions                                    |                   |                   |                       |                   |                   |
| Low cost funding from 1 Banks                              |                   | <mark>.804</mark> |                       |                   |                   |
| and Institutions                                           |                   |                   |                       |                   |                   |
| Policy for disposal of solar panels                        | <mark>.875</mark> |                   |                       |                   |                   |
| Development of Solar Parks at                              |                   |                   |                       |                   | <mark>.557</mark> |
| different states                                           |                   |                   |                       |                   |                   |
| Waiver of transmission &                                   |                   |                   | <mark>.545</mark>     |                   |                   |
| wheeling charges                                           |                   |                   |                       |                   |                   |
| Renewable Purchase Obligation                              | <mark>.657</mark> |                   |                       |                   |                   |
| (RPO)                                                      |                   |                   |                       |                   |                   |
| Exemption of custom duties                                 |                   |                   | <mark>.749</mark>     |                   |                   |
| Availability of facility for                               | <mark>.866</mark> |                   |                       |                   |                   |
| disposal of solar panel                                    |                   |                   |                       |                   |                   |
| Imposition of safeguard duty                               |                   |                   |                       |                   | <mark>.530</mark> |
| Availability of renewable energy                           |                   |                   | <mark>.579</mark>     |                   |                   |
| resources                                                  |                   |                   |                       |                   |                   |
| Availability of off takers                                 |                   |                   |                       | <mark>.728</mark> |                   |
| Availability of evacuation facility                        |                   |                   | <mark>.763</mark>     |                   |                   |
| Market competition                                         |                   |                   |                       |                   | <mark>.618</mark> |
| Government target for RE                                   |                   |                   |                       |                   | <mark>.695</mark> |
| capacity                                                   |                   |                   |                       |                   |                   |
| Supply chain network                                       | <mark>.617</mark> |                   |                       |                   |                   |
| Extraction Method: Principal Comp                          | onent Anal        | ysis.             | •                     | •                 | -                 |
| Rotation Method: Varimax with Ka                           | uiser Norma       | lization.         |                       |                   |                   |
| a. Rotation converged in 11 iteration                      | 18.               |                   |                       |                   |                   |

#### renewable energy projects)

Source: Computed from Primary Data

The captioned table shows the result of rotation component matrix method utilized for factor analysis by suppressing small coefficient by absolute value 0.4. The various factors were rotated with Varimax method with Kaiser Normalization. The extraction method employed for the analysis was principal component analysis. The table revealed that the factors that differs from one other and supports to understand the

factor by setting every variables primarily on any one of the factors. The rotation solution suggest researcher towards load factors for every variables in a set of data, this data sets are used to know the unusual variables. The loading values of the factors are above 0.4. Hence, none of the statements out of 20 needs to be excluded from the factor analysis.

| Factor<br>Number | Statements as per the questionnaire                                                                                                                                                                                                                                                     | Factor Name               |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Factor :1        | Q 17_2 Centre level policy supportsQ 17_3 State level policy supportQ 17_4 Easy of procedure for RE projectQ 17_8 Policy for disposal of solar panelsQ 17_11 Renewable Purchase Obligation(RPO)Q 17_13 Availability of facility for disposal of solar panelQ 17_20 Supply chain network | Policy & procedure        |
| Factor : 2       | Q 17_5 Land policiesQ 17_6 Low cost funding from GovernmentinstitutionsQ 17_7 Low cost funding from Private Banksand Institutions                                                                                                                                                       | Funding & Charges         |
| Factor: 3        | Q 17_10 Waiver of transmission & wheeling<br>chargesQ 17_12 Exemption of custom dutiesQ 17_15 Availability of renewable energy<br>resourcesQ 17_17 Availability of evacuation facility                                                                                                  | Exemption &<br>waiver     |
| Factor: 4        | Q 17_1 Payment security mechanismQ 17_16 Availability of off takers                                                                                                                                                                                                                     | Off taker & payment       |
| Factor: 5        | <ul> <li>Q 17_9 Development of Solar Parks at different states</li> <li>Q 17_14 Imposition of safeguard duty</li> <li>Q 17_18 Market competition</li> <li>Q 17_19 Government target for RE capacity</li> </ul>                                                                          | Development & competition |

# Table 5.18 : Naming of Group of statements(Statements from Question no.17)

| Name of Factors           | Factors<br>Number |    |    | Staten | nent Nu | ımber |    |    |
|---------------------------|-------------------|----|----|--------|---------|-------|----|----|
| Policy & procedure        | 1                 | 2  | 3  | 4      | 8       | 11    | 13 | 20 |
| Funding & Charges         | 2                 | 5  | 6  | 7      |         |       |    |    |
| Exemption & waiver        | 3                 | 10 | 12 | 15     | 17      |       |    |    |
| Off taker & payment       | 4                 | 1  | 16 |        |         |       |    |    |
| Development & competition | 5                 | 9  | 14 | 18     | 19      |       |    |    |

 Table 5.19 : Distribution of Statements of (Question no.17\_1 to

| 17 20 | ) |
|-------|---|
|       |   |

Source: Computed from Primary Data

**Factor No. 1:** The captioned table of rotated factor loading matrix inferred that the first component comprises for seven variables. The variables like Centre level policy supports, State level policy support, Easy of procedure for RE project, Policy for disposal of solar panels, Renewable Purchase Obligation (RPO), Availability of facility for disposal of solar panel and Supply chain network indicates factor loading of .624, .605, .643, .875, .657, .866, and .617 respectively. Consequently, the appropriate names referred as `Policy & procedure`. The **Cronbach`s Alfa** of 7 no's of statements is 0.873 which is nearer to almost 1, which considered being the excellent reliability.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |  |
|------------------|------------|--|
| .873             | 7          |  |

**Factor No. 2:** The captioned table of rotated factor loading matrix inferred that the second components comprises for three variables. The variables like Land policies, Low cost funding from Government institutions and Low cost funding from Private Banks & Institutions indicates factor loading of .460, .832 and .804 respectively. Consequently, the appropriate names referred as `` Funding & Charges `` The **Cronbach`s Alfa** of 3 no's of statements is 0.785 which is nearer to almost 1, which considered being the excellent reliability.

**Reliability Statistics** 

| Cronbach's Alpha | No of Items |
|------------------|-------------|
| .785             | 3           |

**Factor No. 3:** The captioned table of rotated factor loading matrix inferred that the third components comprises for four variables. The variables like Waiver of transmission & wheeling charges, Exemption of custom duties, Availability of renewable energy resources, Availability of evacuation facility indicates factor loading of .545, .749, .579 and .763 respectively. Consequently, the appropriate names referred as `` Exemption & waiver `` The **Cronbach`s Alfa** of 4 no's of statements is 0.661 which is nearer to almost 1, which considered being the excellent reliability.

#### **Reliability Statistics**

| Cronbach's Alpha | No of Items |
|------------------|-------------|
| .661             | 4           |

**Factor No. 4:** The captioned table of rotated factor loading matrix inferred that the forth components comprises for two variables. The variables like Payment security mechanism

And Availability of off takers indicates factor loading of .671 and .728 respectively. Consequently, the appropriate names referred as `` off taker & payment `` The **Cronbach`s Alfa** of 2 no's of statements is 0.586 which is more than 0.5, which considered being the excellent reliability.

#### **Reliability Statistics**

| Cronbach's Alpha | No of Items |  |
|------------------|-------------|--|
| .586             | 2           |  |

**Factor No. 5:** The captioned table of rotated factor loading matrix inferred that the fifth components comprises for four variables. The variables like Development of Solar Parks at different states, Imposition of safeguard duty, Market competition, Government target for RE capacity indicates factor loading of .557, .530, .618 and .695respectively. Consequently, the appropriate names referred as `` Development & competition `` The **Cronbach`s Alfa** of 4 no's of statements is 0.500 which is nearer to almost 0.5, which considered being the goog reliability.

#### **Reliability Statistics**

| Cronbach's Alpha | No of Items |
|------------------|-------------|
| .500             | 4           |

# Principal Component Analysis (PCA) for statement related to the factors on constraints for Renewable Energy project capacity development with respect to available RE potential.

In this study, the statistical analysis technique of exploratory factor analysis has been adopted for question no. 19 related to the factors on constraints for Renewable Energy project capacity development with respect to available RE potential. The statement consists of 10 factors and analysis is to be carried out through the `PCA` technique, in which the total variance of the collected data is to be considered. For which `Varimax` option in SPSS was utilized. The respondent i.e. various stake holders related to the field of renewable energy projects were pursue to obtain valuable responses towards the different variables related to the factors influencing the decision of installation of renewable energy projects. Accordingly all the 252 nos of stake holders had responded for the said statements.

## 5.5.1 Appropriateness in Factor Analysis:

The appropriateness of factor analysis is identified by examining the correlations that exists between all the pairs of variables which are included in the in the factor analysis study. If the correlation between the variables seems to be smaller, which conclude that the factor analysis is not appropriate. Hence in order to apply factor analysis techniques most of the variable under analysis is to be correlated with each other. The sphericity test under the Bartlett's is a statistical technique that is being used for examining whether the variables are correlated with each other or not. The interpretation of assumed null hypothesis indicates that the variables among the population are uncorrelated or correlated with each other in the given population.

The other statistical technique which is used for factor analysis calculation is Kaiser- Meyer – Olkin well known as KMO technique which is measure of sampling adequacy. In KMO statistics, the index is used to conclude the appropriateness of factor analysis. The researcher concludes that the factor analysis is appropriate if the value of index should be between 0.5 to 1. If the value of index is below the 0.5 than factor analysis is in appropriate statistical technique for this research study.

#### Table No 5.20: KMO and Bartlett's test of Sphericity

(Question No: 19 - related to the factors on constraints for Renewable Energy project capacity development with respect to available RE potential.)

| Kaiser Meyer Olkin Measure and Bartlett's Test |                               |    |       |  |  |
|------------------------------------------------|-------------------------------|----|-------|--|--|
| Sampling Adequacy                              | Bartlett's test of Sphericity |    |       |  |  |
| as per Kaiser Meyer                            |                               |    |       |  |  |
| Olkin Measure                                  |                               |    |       |  |  |
| 0.712                                          | Approx. Chi-Square            | df | Sig   |  |  |
|                                                | 584.666                       | 45 | 0.000 |  |  |

Source: Computed from Primary Data

The above data revealed that the approximate Chi-square value of 584.666 at degree of freedom 45 under the Bartlett's test of Sphericity, the significance value (p-value) is 0.000. The researcher analyzes the Bartlett's test of Sphericity, considering significance level (P-value) of 0.05. In case if significance value is less than 0.05, Researcher will reject the  $H_0$ . On the contrary, if the significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject.

In this case, the significance value (p-value) is 0.000 of test which is less than p value of 0.05, hence null hypothesis is rejected, which indicates that the selected variables in the population are also not correlated. Hence it indicates that the given data's are suitable for Factor Analysis testing.

The KMO measure was 0.712, this is adequately larger than 0.5. Hence, in view of data analysis such factor analysis is seems to be appropriate.

| KMO ranges Communalities                              |         |            |  |  |  |
|-------------------------------------------------------|---------|------------|--|--|--|
| Statements                                            | Initial | Extraction |  |  |  |
| Land acquisition                                      | 1.000   | .472       |  |  |  |
| State Development Energy Authority registration,      | 1.000   | .701       |  |  |  |
| Approval and inspection of project.                   |         |            |  |  |  |
| Supply chain issues                                   | 1.000   | .663       |  |  |  |
| Transmission infrastructure availability & Evacuation | 1.000   | .633       |  |  |  |
| facility                                              |         |            |  |  |  |
| Taxes and duties like Custom duty, safeguard duty,    | 1.000   | .554       |  |  |  |
| variable taxes                                        |         |            |  |  |  |
| DISCOM Payment issues                                 | 1.000   | .498       |  |  |  |
| Financing issues                                      | 1.000   | .599       |  |  |  |
| Non availability of solar parks                       | 1.000   | .568       |  |  |  |
| Off-takers issue                                      | 1.000   | .538       |  |  |  |
| General issues                                        | 1.000   | .714       |  |  |  |
| Extraction Method: Principal Component Analysis.      | 1       |            |  |  |  |

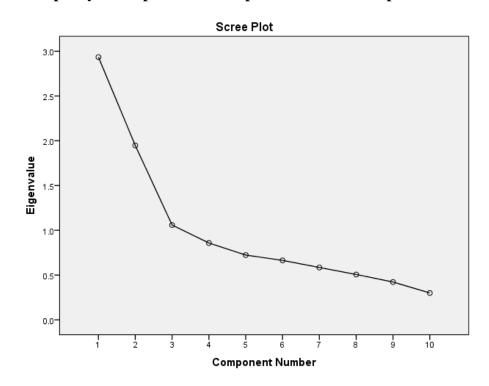
## **Table: 5.21 KMO ranges Communalities**

All the statements are fall under the communalities ranges almost more than 0.50, hence all statements are taken into consideration for these factor analyses as these statements contributing for the factor analysis except the statement Land acquisition.

## 5.5.2 Identifying the method of Factor Analysis:

Once the appropriateness of factor analysis is finalized with the testing of given relevant data through appropriate method of KMO as well as Bartlett's test of Sphericity, next step is to utilize two basic approaches for factor analysis i.e. first is Principal Component Analysis (PCA) and second one is Confirmatory Factor Analysis (CFA). However in order to analyze 10 selected variables, PCA analysis methodology is useful for factor analysis as described earlier. Moreover, it is further advisable in case that the major issue is to identify the smallest number of factors, it needs to take into consideration for variance in the given data utilized for multivariate study and such factors is considered as principal mechanism.

# Principal Component Analysis (PCA):


# **Table 5.22: Total Variance Explained**

(Question No: 19 - related to the factors on constraints for Renewable Energy project capacity development with respect to available RE potential.)

| Total Variance Explained                         |                     |          |          |                       |           |          |                                 |          |          |
|--------------------------------------------------|---------------------|----------|----------|-----------------------|-----------|----------|---------------------------------|----------|----------|
| Compo                                            | Initial Eigenvalues |          |          | es Extraction Sums of |           |          | <b>Rotation Sums of Squared</b> |          |          |
| nent                                             |                     |          |          | Sq                    | uared Loa | dings    | Loadings                        |          |          |
|                                                  | Total               | % of     | Cumulati | Total                 | % of      | Cumulati | Total                           | % of     | Cumulati |
|                                                  |                     | Variance | ve %     |                       | Variance  | ve %     |                                 | Variance | ve %     |
| 1                                                | 2.934               | 29.344   | 29.344   | 2.934                 | 29.344    | 29.344   | 2.314                           | 23.143   | 23.143   |
| 2                                                | 1.948               | 19.478   | 48.821   | 1.948                 | 19.478    | 48.821   | 1.974                           | 19.742   | 42.885   |
| 3                                                | 1.059               | 10.588   | 59.409   | 1.059                 | 10.588    | 59.409   | 1.652                           | 16.524   | 59.409   |
| 4                                                | .858                | 8.582    | 67.991   |                       |           |          |                                 |          |          |
| 5                                                | .724                | 7.235    | 75.226   |                       |           |          |                                 |          |          |
| 6                                                | .664                | 6.641    | 81.867   |                       |           |          |                                 |          |          |
| 7                                                | .585                | 5.846    | 87.713   |                       |           |          |                                 |          |          |
| 8                                                | .506                | 5.064    | 92.776   |                       |           |          |                                 |          |          |
| 9                                                | .422                | 4.222    | 96.998   |                       |           |          |                                 |          |          |
| 10                                               | .300                | 3.002    | 100.000  |                       |           |          |                                 |          |          |
| Extraction Method: Principal Component Analysis. |                     |          |          |                       |           |          |                                 |          |          |

Source: Computed from Primary Data

# Fig: 5.7 Scree Plot for the factors on constraints for Renewable Energy project capacity development with respect to available RE potential



The captioned table concludes the inferences revealed from the analysis of PCA with Varimax rotation. The table indicates that total three different factors were extracted based on the total variance analyzed. The third components in the initial solution have an Eigen values over 1 and the cumulative variance explained for about 59.409% of the total variables in the unique 10 variables related to the factors on constraints for Renewable Energy project capacity development with respect to available RE potential. Hence it shows that the analysis has drastically condensed the intricacy of the larger numbers of data set by using of such components, with loss of information about 40.591% i.e. (100-62.187). Here the sample size selected for this factor analysis was 252 stake holder respondents from various regions of India. Further, it is revealed that personal three factors based on percentage of variance explained in the given table works out to 29.344, 48.821and 59.409 respectively.

# Table 5.23: Rotated Factor Loading Matrix <sup>a</sup>

(Question No: 19 - related to the factors on constraints for Renewable Energy project capacity development with respect to available RE potential.)

| ing Matrix                        | Rotated Component/ factor loading Matrix <sup>a</sup> |                                                                                                                                                                                   |  |  |  |  |  |
|-----------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <b>Component / Factor loading</b> |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
| 1                                 | 2                                                     | 3                                                                                                                                                                                 |  |  |  |  |  |
|                                   |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
|                                   | <mark>.632</mark>                                     |                                                                                                                                                                                   |  |  |  |  |  |
| <mark>.826</mark>                 |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
|                                   |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
| <mark>.786</mark>                 |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
|                                   | <mark>.622</mark>                                     |                                                                                                                                                                                   |  |  |  |  |  |
|                                   |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
|                                   | <mark>.723</mark>                                     |                                                                                                                                                                                   |  |  |  |  |  |
|                                   |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
|                                   | <mark>.624</mark>                                     |                                                                                                                                                                                   |  |  |  |  |  |
|                                   |                                                       | <mark>.657</mark>                                                                                                                                                                 |  |  |  |  |  |
|                                   |                                                       | <mark>.732</mark>                                                                                                                                                                 |  |  |  |  |  |
|                                   |                                                       | <mark>.636</mark>                                                                                                                                                                 |  |  |  |  |  |
| <mark>.804</mark>                 |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
| L                                 | 1                                                     | 1                                                                                                                                                                                 |  |  |  |  |  |
| 1.                                |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
|                                   |                                                       |                                                                                                                                                                                   |  |  |  |  |  |
|                                   | Compon<br>1<br>.826<br>.786<br>.786<br>.804<br>.804   | Component / Facto         1       2         .632       .632         .826       .622         .786       .622         .786       .622         .624       .624         .804       .9 |  |  |  |  |  |

The captioned table shows the result of rotation component matrix method utilized for factor analysis by suppressing small coefficient by absolute value 0.4. The various factors were rotated with Varimax method with Kaiser Normalization. The extraction method employed for the analysis was principal component analysis. The table revealed that the factors that differs from one other and supports to understand the factor by setting every variables primarily on any one of the factors. The rotation solution suggest researcher towards load factors for every variables in a set of data, this data sets are used to know the unusual variables. The loading values of the factors are above 0.4. Hence, none of the statements out of 10 needs to be excluded from the factor analysis.

| Factor<br>Number | Statements as per the questionnaire      | Factor Name       |
|------------------|------------------------------------------|-------------------|
|                  | Q19_2 State Development Energy Authority | General &         |
| Factor :1        | registration, Approval and inspection of | approvals         |
|                  | project.                                 |                   |
|                  | Q19_3 Supply chain issues                | -                 |
|                  | Q19_10 General issues                    |                   |
|                  | Q19_1 Land acquisition                   | -                 |
| Factor: 2        | Q19_4 Transmission infrastructure        |                   |
|                  | availability & Evacuation facility       | Payment & taxes   |
|                  | Q19_5 Taxes and duties like Custom duty, | -                 |
|                  | safeguard duty, variable taxes           |                   |
|                  | Q19_6 DISCOM Payment issues              |                   |
|                  | Q19_7 Financing issues                   |                   |
| Factor: 3        | Q19_8 Non availability of solar parks    | Financing & parks |
|                  | Q19_9 Off-takers issue                   | 1                 |

Table 5.24: Naming of Group of statements(Statements from Question no.19)

| Name of Factors     | Factors<br>Number |   | Statemen | t Number |   |
|---------------------|-------------------|---|----------|----------|---|
| General & approvals | 1                 | 2 | 3        | 10       |   |
| Payment & taxes     | 2                 | 1 | 4        | 5        | 6 |
| Financing & parks   | 3                 | 7 | 8        | 9        |   |

 Table 5.25: Distribution of Statements of (Question no.19\_1 to 19\_10)

(Source: Computed from Primary Data)

**Factor No. 1:** The captioned table of rotated factor loading matrix inferred that the first component comprises for four variables. The variables like State Development Energy Authority registration, Approval and inspection of project, Supply chain issues and General issues indicates factor loading of .826, .786 and .804 respectively. Consequently, the appropriate names referred as `` General & approvals `` The **Cronbach`s Alfa** of 3 no's of statements is 0.791 which is nearer to almost 1, which considered being the excellent reliability.

#### **Reliability Statistics**

| Cronbach's Alpha | N of Items |  |  |
|------------------|------------|--|--|
| .791             | 3          |  |  |

**Factor No. 2:** The captioned table of rotated factor loading matrix inferred that the second components comprises for three variables. The variables likes Land acquisition, Transmission infrastructure availability & Evacuation facility, Taxes and duties like Custom duty, safeguard duty, variable taxes and DISCOM Payment issues indicates factor loading of .632, .622, .723 and .624 respectively. Consequently, the appropriate names referred as `` Payment & taxes `` The **Cronbach`s Alfa** of 4 no's of statements is 0.586 which is more than 0.500, which considered being the excellent reliability.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .587             | 4          |

**Factor No. 3:** The captioned table of rotated factor loading matrix inferred that the third components comprises for three variables. The variables like Financing issues, Non availability of solar parks and Off-takers issue indicates factor loading of .657, .732 and .6363 respectively. Consequently, the appropriate names referred as

Financing & parks `` The Cronbach's Alfa of 3 no's of statements is 0.5723 which is more than 0.500, which considered being the excellent reliability.

| Kenability Statistics |            |  |  |  |  |  |  |
|-----------------------|------------|--|--|--|--|--|--|
| Cronbach's Alpha      | N of Items |  |  |  |  |  |  |
| .572                  | 3          |  |  |  |  |  |  |

Dolighility Statistics

# > Principal Component Analysis (PCA) for statement related to the challenges / barriers affect for the developments of utility scale renewable energy projects.:

In this research study, the statistical analysis technique of exploratory factor analysis has been adopted for question no. 26 related to the challenges / barriers affect for the developments of utility scale renewable energy projects. The statement consists of 14 factors and analysis is to be carried out through the `PCA` technique, in which the total variance of the collected data is to be considered. For which 'Varimax' option in SPSS was utilized. The respondent i.e. various stake holders related to the field of renewable energy projects were pursue to obtain valuable responses towards the different variables related to the factors related to the challenges / barriers affect for the developments of utility scale renewable energy projects. Accordingly all the 252 nos of stake holders had responded for the said statements.

#### **Appropriateness in Factor Analysis:**

The appropriateness of factor analysis is identified by examining the correlations that exists between all the pairs of variables which are included in the in the factor analysis study. If the correlation between the variables seems to be smaller, which conclude that the factor analysis is not appropriate. Hence in order to apply factor analysis techniques most of the variable under analysis is to be correlated with each other. The sphericity test under the Bartlett's is a statistical technique that is being used for examining whether the variables are correlated with each other or not. The interpretation of assumed null hypothesis indicates that the variables among the population are uncorrelated or correlated with each other in the given population.

The other statistical technique which is used for factor analysis calculation is Kaiser- Meyer – Olkin well known as KMO technique which is measure of sampling adequacy. In KMO statistics, the index is used to conclude the appropriateness of factor analysis. The researcher concludes that the factor analysis is appropriate if the value of index should be between 0.5 to 1. If the value of index is below the 0.5 than factor analysis is in appropriate statistical technique for this research study.

#### Table No 5.26: KMO and Bartlett's test of Sphericity

(Question No: 26 - related to the challenges / barriers affect for the developments of utility scale renewable energy projects)

| Kaiser Meyer Olkin Measure and Bartlett's Test |                        |    |       |  |  |  |  |  |
|------------------------------------------------|------------------------|----|-------|--|--|--|--|--|
| Sampling Adequacy as per Kaiser Meyer Olkin    |                        |    |       |  |  |  |  |  |
| Measure                                        |                        |    |       |  |  |  |  |  |
| 0.867                                          | Approx. Chi-<br>Square | df | Sig   |  |  |  |  |  |
|                                                | 2083.746               | 91 | 0.000 |  |  |  |  |  |

Source: Computed from Primary Data

The above data revealed that the approximate Chi-square value of 2083.746 at degree of freedom 91 under the Bartlett's test of Sphericity, the significance value (p-value) is 0.000. The researcher analyzes the Bartlett's test of Sphericity, considering significance level (P-value) of 0.05. In case if significance value is less than 0.05, Researcher will reject the  $H_0$ . On the contrary, if the significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject.

In this case, the significance value (p-value) is 0.000 of test which is less than p value of 0.05, hence null hypothesis is rejected, which indicates that the selected variables in the population are also not correlated. Hence it indicates that the given data's are suitable for Factor Analysis testing.

The KMO measure was 0.867, this is adequately larger than 0.5. Hence, in view of data analysis such factor analysis is seems to be appropriate.

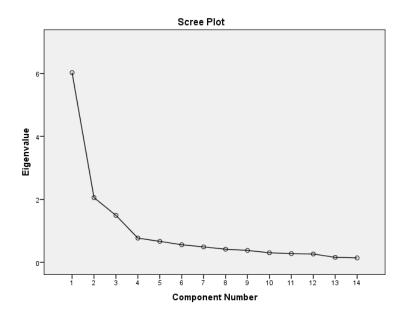
| KMO ranges Communalities                                    |         |            |  |  |  |  |
|-------------------------------------------------------------|---------|------------|--|--|--|--|
| Statements                                                  | Initial | Extraction |  |  |  |  |
| Technology Development                                      | 1.000   | .692       |  |  |  |  |
| Supply chain issue                                          | 1.000   | .539       |  |  |  |  |
| Taxes and duties                                            | 1.000   | .742       |  |  |  |  |
| General Infrastructure development                          | 1.000   | .716       |  |  |  |  |
| Geographical and ecological barriers                        | 1.000   | .784       |  |  |  |  |
| Lack of knowledge and awareness of technologies barriers    | 1.000   | .804       |  |  |  |  |
| Financial and economical barriers                           | 1.000   | .575       |  |  |  |  |
| Policy & regulatory barriers                                | 1.000   | .723       |  |  |  |  |
| Market related barriers say lack of business model, Lack of | 1.000   | .744       |  |  |  |  |
| defined market                                              |         |            |  |  |  |  |
| Initial investment / upfront cost                           | 1.000   | .728       |  |  |  |  |
| Transmission infrastructures development                    | 1.000   | .476       |  |  |  |  |
| Land acquisition issues                                     | 1.000   | .638       |  |  |  |  |
| Political issues                                            | 1.000   | .740       |  |  |  |  |
| Forecasting & Scheduling / DSM                              | 1.000   | .671       |  |  |  |  |
| Extraction Method: Principal Component Analysis.            |         |            |  |  |  |  |

 Table: 5.27. KMO ranges Communalities

All the statements are fall under the communalities ranges almost more than 0.50, hence all statements are taken into consideration for these factor analyses as these statements contributing for the factor analysis except the statement Transmission infrastructures development

## Identifying the method of Factor Analysis:

Once the appropriateness of factor analysis is finalized with the testing of given relevant data through appropriate method of KMO as well as Bartlett's test of Sphericity, next step is to utilize two basic approaches for factor analysis i.e. first is Principal Component Analysis (PCA) and second one is Confirmatory Factor Analysis (CFA). However in order to analyze 14 selected variables, PCA analysis methodology is useful for factor analysis as described earlier. Moreover, it is further advisable in case that the major issue is to identify the smallest number of factors, it needs to take into consideration for variance in the given data utilized for multivariate study and such factors is considered as principal mechanism.


# **Table 5.28: Total Variance Explained**

(Question No: 26 - related to the challenges / barriers affect for the developments of utility scale renewable energy projects)

| Total Variance Explained |                                                 |          |          |                                        |           |          |                                 |          |          |
|--------------------------|-------------------------------------------------|----------|----------|----------------------------------------|-----------|----------|---------------------------------|----------|----------|
| Compo                    | Initial Eigenvalues                             |          |          | Initial Eigenvalues Extraction Sums of |           |          | <b>Rotation Sums of Squared</b> |          |          |
| nent                     |                                                 |          |          | Sq                                     | uared Loa | dings    | Loadings                        |          |          |
|                          | Total                                           | % of     | Cumulati | Total                                  | % of      | Cumulati | Total                           | % of     | Cumulati |
|                          |                                                 | Variance | ve %     |                                        | Variance  | ve %     |                                 | Variance | ve %     |
| 1                        | 6.025                                           | 43.033   | 43.033   | 6.025                                  | 43.033    | 43.033   | 5.090                           | 36.357   | 36.357   |
| 2                        | 2.055                                           | 14.678   | 57.712   | 2.055                                  | 14.678    | 57.712   | 2.848                           | 20.339   | 56.696   |
| 3                        | 1.491                                           | 10.652   | 68.363   | 1.491                                  | 10.652    | 68.363   | 1.633                           | 11.667   | 68.363   |
| 4                        | .770                                            | 5.503    | 73.867   |                                        |           |          |                                 |          |          |
| 5                        | .667                                            | 4.763    | 78.630   |                                        |           |          |                                 |          |          |
| 6                        | .559                                            | 3.994    | 82.623   |                                        |           |          |                                 |          |          |
| 7                        | .490                                            | 3.501    | 86.124   |                                        |           |          |                                 |          |          |
| 8                        | .418                                            | 2.987    | 89.111   |                                        |           |          |                                 |          |          |
| 9                        | .379                                            | 2.705    | 91.816   |                                        |           |          |                                 |          |          |
| 10                       | .304                                            | 2.169    | 93.985   |                                        |           |          |                                 |          |          |
| 11                       | .277                                            | 1.979    | 95.964   |                                        |           |          |                                 |          |          |
| 12                       | .265                                            | 1.891    | 97.856   |                                        |           |          |                                 |          |          |
| 13                       | .159                                            | 1.134    | 98.989   |                                        |           |          |                                 |          |          |
| 14                       | .142                                            | 1.011    | 100.000  |                                        |           |          |                                 |          |          |
| Extracti                 | Extraction Method: Principal Component Analysis |          |          |                                        |           |          |                                 |          |          |

Extraction Method: Principal Component Analysis.

Fig : 5.8: Scree Plot for factors related to the challenges / barriers affect for the developments of utility scale renewable energy projects



The captioned table concludes the inferences revealed from the analysis of PCA with Varimax rotation. The table indicates that total five different factors were extracted based on the total variance analyzed. The third components in the initial solution have an Eigen values over 1 and the cumulative variance explained for about 68.363% of the total variables in the unique 14 variables related to the challenges / barriers affect for the developments of utility scale renewable energy projects. Hence it shows that the analysis has drastically condensed the intricacy of the larger numbers of data set by using of such components, with loss of information about 31.637% i.e. (100-68.363). Here the sample size selected for this factor analysis was 252 stake holder respondents from various regions of India. Further, it is revealed that personal three factors based on percentage of variance explained in the given table works out to 43.033, 57.712 and 68.363 respectively.

# Table 5.29: Rotated Factor Loading Matrix <sup>a</sup>

(Question No: 26 - related to the challenges / barriers affect for the developments of

| Rotated Component/ factor loading Matrix <sup>a</sup> |                                   |                    |                   |  |  |  |
|-------------------------------------------------------|-----------------------------------|--------------------|-------------------|--|--|--|
| Factors related to the challenges / barriers          | <b>Component / Factor loading</b> |                    |                   |  |  |  |
| affect for the developments of utility scale          | 1                                 | 2                  | 3                 |  |  |  |
| renewable energy projects                             |                                   |                    |                   |  |  |  |
| Fechnology Development                                | <mark>.812</mark>                 |                    |                   |  |  |  |
| Supply chain issue                                    | <mark>.704</mark>                 |                    |                   |  |  |  |
| Taxes and duties                                      |                                   | . <mark>861</mark> |                   |  |  |  |
| General Infrastructure development                    | <mark>.741</mark>                 |                    |                   |  |  |  |
| Geographical and ecological barriers                  | <mark>.847</mark>                 |                    |                   |  |  |  |
| Lack of knowledge and awareness of technologies       | <mark>.890</mark>                 |                    |                   |  |  |  |
| parriers                                              |                                   |                    |                   |  |  |  |
| Financial and economical barriers                     |                                   | <mark>.698</mark>  |                   |  |  |  |
| Policy & regulatory barriers                          | <mark>.646</mark>                 |                    |                   |  |  |  |
| Market related barriers say lack of business          | <mark>.856</mark>                 |                    |                   |  |  |  |
| model, Lack of defined market                         |                                   |                    |                   |  |  |  |
| Initial investment / upfront cost                     |                                   |                    | <mark>.851</mark> |  |  |  |
| Fransmission infrastructures development              |                                   |                    | <mark>.513</mark> |  |  |  |
| Land acquisition issues                               |                                   |                    | <mark>.723</mark> |  |  |  |
| Political issues                                      | <mark>.617</mark>                 |                    |                   |  |  |  |
| Forecasting & Scheduling / DSM                        |                                   | <mark>.778</mark>  |                   |  |  |  |
| Extraction Method: Principal Component Analysis.      |                                   |                    | 1                 |  |  |  |
| Rotation Method: Varimax with Kaiser Normalizati      | on.                               |                    |                   |  |  |  |
| a. Rotation converged in 5 iterations.                |                                   |                    |                   |  |  |  |

utility scale renewable energy projects)

The captioned table shows the result of rotation component matrix method utilized for factor analysis by suppressing small coefficient by absolute value 0.4. The various factors were rotated with Varimax method with Kaiser Normalization. The extraction method employed for the analysis was principal component analysis. The table revealed that the factors that differs from one other and supports to understand the factor by setting every variables primarily on any one of the factors. The rotation solution suggest researcher towards load factors for every variables in a set of data, this data sets are used to know the unusual variables. The loading values of the factors are above 0.4. Hence, none of the statements out of 20 needs to be excluded from the factor analysis.

| Factor<br>Number | Statements as per the questionnaire                                                                                                                                                                                                                                                                                                                 | Factor Name                     |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|
| Factor :1        | Q 26_1 Technology DevelopmentQ 26_2 Supply chain issueQ 26_4 General Infrastructure developmentQ 26_5 Geographical and ecological barriersQ 26_6 Lack of knowledge and awareness oftechnologies barriersQ 26_8 Policy & regulatory barriersQ 26_9 Market related barriers say lack ofbusiness model, Lack of defined marketQ 26_13 Political issues | Technology &<br>market          |  |  |  |
| Factor : 2       | Q 26_3 Taxes and dutiesFactor : 2Q 26_7 Financial and economical barriersQ 26_14 Forecasting & Scheduling / DSM                                                                                                                                                                                                                                     |                                 |  |  |  |
| Factor: 3        | Q 26_10 Initial investment / upfront cost<br>Q 26_11 Transmission infrastructures<br>development<br>Q 26_12 Land acquisition issues                                                                                                                                                                                                                 | Investment &<br>Infrastructures |  |  |  |

# Table 5.30: Naming of Group of statements(Statements from Question no.26)

| Name of Factors                 | Factors<br>Number | Statement Number |    |    |   |   |   |   |    |
|---------------------------------|-------------------|------------------|----|----|---|---|---|---|----|
| Technology & market             | 1                 | 1                | 2  | 4  | 5 | 6 | 8 | 9 | 13 |
| Financial & Taxes               | 2                 | 3                | 7  | 14 |   |   |   |   |    |
| Investment &<br>Infrastructures | 3                 | 10               | 11 | 12 |   |   |   |   |    |

Table 5.31: Distribution of Statements of (Question no.26\_1 to 26\_14)

Source: Computed from Primary Data

**Factor No. 1:** The captioned table of rotated factor loading matrix inferred that the first component comprises for eight variables. The variables like Technology Development, Supply chain issue, General Infrastructure development, Geographical and ecological barriers, Lack of knowledge and awareness of technologies barriers, Policy & regulatory barriers, Market related barriers say lack of business model, Lack of defined market and Political issues indicates factor loading of .812, .704, .741, .847, .890, .646 and .856 respectively. Consequently, the appropriate names referred as `` Technology & market `` The **Cronbach`s Alfa** of 8 no's of statements is 0.926 which is nearer to almost 1, which considered being the excellent reliability.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .926             | 8          |

**Factor No. 2:** The captioned table of rotated factor loading matrix inferred that the second components comprises for three variables. The variables like Taxes and duties, Financial and economical barriers and Forecasting & Scheduling / DSM indicates factor loading .861, .698 and .778 respectively. Consequently, the appropriate names referred as `` Financial & Taxes`` The **Cronbach`s Alfa** of 3 no's of statements is 0.766 which is nearer to almost 1, which considered being the excellent reliability.

| Reliability | Statistics |
|-------------|------------|
|-------------|------------|

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .766             | 3          |

**Factor No. 3:** The captioned table of rotated factor loading matrix inferred that the third components comprises for three variables. The variables like Initial investment / upfront cost, Transmission infrastructures development and Land acquisition issues indicates factor loading of .851, .513and .723respectively. Consequently, the appropriate names referred as `` Investment & Infrastructures `` The **Cronbach`s Alfa** of 3 no's of statements is 0.530 which is more than 0.500, which considered being the good reliability.

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .530             | 3          |

# Principal Component Analysis (PCA) for statement related to the government policies that are supportive for the investment in the utility scale renewable energy projects:

In this research study, the statistical analysis technique of exploratory factor analysis has been adopted for question 28 focuses on the government policies that are supportive for the investment in the utility scale renewable energy projects. The statement consists of 12 factors and analysis is to be carried out through the `PCA` technique, in which the total variance of the collected data is to be considered. For which `Varimax` option in SPSS was utilized. The respondent i.e. various stake holders related to the field of renewable energy projects were pursue to obtain valuable responses towards the different variables related to the government policies that are supportive for the investment in the utility scale renewable energy projects. Accordingly all the 252 nos of stake holders had responded for the said statements.

## **Appropriateness in Factor Analysis:**

The appropriateness of factor analysis is identified by examining the correlations that exists between all the pairs of variables which are included in the in the factor analysis study. If the correlation between the variables seems to be smaller, which conclude that the factor analysis is not appropriate. Hence in order to apply factor analysis techniques most of the variable under analysis is to be correlated with each other. The sphericity test under the Bartlett's is a statistical technique that is being used for examining whether the variables are correlated with each other or not. The interpretation of assumed null hypothesis indicates that the variables among the population are uncorrelated or correlated with each other in the given population.

The other statistical technique which is used for factor analysis calculation is Kaiser- Meyer – Olkin well known as KMO technique which is measure of sampling adequacy. In KMO statistics, the index is used to conclude the appropriateness of factor analysis. The researcher concludes that the factor analysis is appropriate if the value of index should be between 0.5 to 1. If the value of index is below the 0.5 than factor analysis is in appropriate statistical technique for this research study.

#### Table No 5.32: KMO and Bartlett's test of Sphericity

(Question no. 28 focuses on the government policies that are supportive for the investment in the utility scale renewable energy projects.)

| Kaiser Meyer Olkin Measure and Bartlett`s Test |                               |    |       |  |
|------------------------------------------------|-------------------------------|----|-------|--|
| Sampling Adequacy as                           | Bartlett's test of Sphericity |    |       |  |
| per Kaiser Meyer Olkin                         |                               |    |       |  |
| Measure                                        |                               |    |       |  |
| 0.855                                          | Approx. Chi-                  | df | Sig   |  |
|                                                | Square                        |    |       |  |
|                                                | 1425.146                      | 66 | 0.000 |  |

Source: Computed from Primary Data

The above data revealed that the approximate Chi-square value of 1425.146 at degree of freedom 66 under the Bartlett's test of Sphericity, the significance value (p-value) is 0.000. The researcher analyzes the Bartlett's test of Sphericity, considering significance level (P-value) of 0.05. In case if significance value is less than 0.05, Researcher will reject the  $H_0$  On the contrary, if the significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject.

In this case, the significance value (p-value) is 0.000 of test which is less than p value of 0.05, hence null hypothesis is rejected, which indicates that the selected variables in the population are also not correlated. Hence it indicates that the given data's are suitable for Factor Analysis testing.

The KMO measure was 0.855, this is adequately larger than 0.5. Hence, in view of data analysis such factor analysis is seems to be appropriate.

| KMO ranges Communalities                                  |         |            |
|-----------------------------------------------------------|---------|------------|
| Statements                                                | Initial | Extraction |
| Amendment in tariff policy 2015(Reduction in tariff cost) | 1.000   | .668       |
| Waiver of transmission charges (Promoting grid            | 1.000   | .263       |
| connectivity)                                             |         |            |
| Financial support from government institutions            | 1.000   | .683       |
| Defined Renewable Purchase obligation (RPO)               | 1.000   | .617       |
| Promoting Research & Development                          | 1.000   | .733       |
| Promoting expansion of market                             | 1.000   | .730       |
| Repowering policy                                         | 1.000   | .703       |
| Import taxes, Custom duties, Safeguard duties             | 1.000   | .737       |
| Financial and Promotional Initiatives                     | 1.000   | .760       |
| Promoting supply chain from other countries               | 1.000   | .589       |
| Removal of feed in tariff                                 | 1.000   | .666       |
| Introduction of competitive bidding                       | 1.000   | .697       |
| Extraction Method: Principal Component Analysis.          |         | 1          |

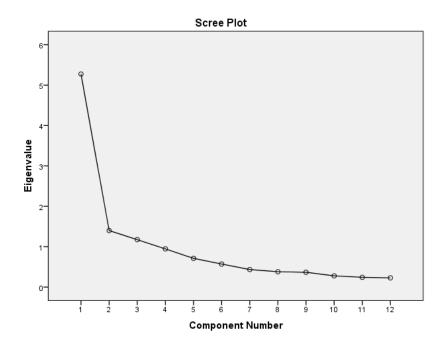
## Table: 5.33 KMO ranges Communalities

All the statements are fall under the communalities ranges almost more than 0.50, hence all statements are taken into consideration for these factor analyses as these statements contributing for the factor analysis except the statement Waiver of transmission charges.

## Identifying the method of Factor Analysis:

Once the appropriateness of factor analysis is finalized with the testing of given relevant data through appropriate method of KMO as well as Bartlett's test of Sphericity, next step is to utilize two basic approaches for factor analysis i.e. first is Principal Component Analysis (PCA) and second one is Confirmatory Factor Analysis (CFA). However in order to analyze 12 selected variables, PCA analysis methodology is useful for factor analysis as described earlier. Moreover, it is further advisable in case that the major issue is to identify the smallest number of factors, it needs to take into consideration for variance in the given data utilized for multivariate study and such factors is considered as principal mechanism.

# **Table 5.34 : Total Variance Explained**


(Question no. 28 focuses on the government policies those are supportive for the investment in the utility scale renewable energy projects.)

| Total Variance Explained |                                                |          |          |                    |                  |          |                                 |          |          |
|--------------------------|------------------------------------------------|----------|----------|--------------------|------------------|----------|---------------------------------|----------|----------|
| Compo                    | Initial Eigenvalues                            |          |          | Extraction Sums of |                  |          | <b>Rotation Sums of Squared</b> |          |          |
| nent                     |                                                |          |          | Sq                 | Squared Loadings |          | Loadings                        |          | 5        |
|                          | Total                                          | % of     | Cumulati | Total              | % of             | Cumulati | Total                           | % of     | Cumulati |
|                          |                                                | Variance | ve %     |                    | Variance         | ve %     |                                 | Variance | ve %     |
| 1                        | 5.274                                          | 43.950   | 43.950   | 5.274              | 43.950           | 43.950   | 3.903                           | 32.528   | 32.528   |
| 2                        | 1.399                                          | 11.660   | 55.610   | 1.399              | 11.660           | 55.610   | 2.059                           | 17.158   | 49.686   |
| 3                        | 1.174                                          | 9.780    | 65.390   | 1.174              | 9.780            | 65.390   | 1.885                           | 15.704   | 65.390   |
| 4                        | .945                                           | 7.877    | 73.267   |                    |                  |          |                                 |          |          |
| 5                        | .711                                           | 5.924    | 79.191   |                    |                  |          |                                 |          |          |
| 6                        | .570                                           | 4.754    | 83.944   |                    |                  |          |                                 |          |          |
| 7                        | .433                                           | 3.612    | 87.556   |                    |                  |          |                                 |          |          |
| 8                        | .380                                           | 3.164    | 90.720   |                    |                  |          |                                 |          |          |
| 9                        | .366                                           | 3.053    | 93.774   |                    |                  |          |                                 |          |          |
| 10                       | .278                                           | 2.314    | 96.088   |                    |                  |          |                                 |          |          |
| 11                       | .242                                           | 2.013    | 98.101   |                    |                  |          |                                 |          |          |
| 12                       | .228                                           | 1.899    | 100.000  |                    |                  |          |                                 |          |          |
| Extraction               | traction Method: Principal Component Analysis. |          |          |                    |                  |          |                                 |          |          |

Source: Computed from Primary Data

# **Fig : 5.9.** Scree Plot for focuses on the government policies those are supportive

# for the investment in the utility scale renewable energy projects



The captioned table concludes the inferences revealed from the analysis of PCA with Varimax rotation. The table indicates that total five different factors were extracted based on the total variance analyzed. The third components in the initial solution have an Eigen values over 1 and the cumulative variance explained for about 65.390% of the total variables in the unique 12 variables related to the challenges / barriers affect for the developments of utility scale renewable energy projects. Hence it shows that the analysis has drastically condensed the intricacy of the larger numbers of data set by using of such components, with loss of information about 34.610% i.e. (100-65.390). Here the sample size selected for this factor analysis was 252 stake holder respondents from various regions of India. Further, it is revealed that personal three factors based on percentage of variance explained in the given table works out to 43.950, 55.610 and 65.390 respectively.

# Table 5.35 : Rotated Factor Loading Matrix <sup>a</sup>

(Question no. 28 focuses on the government policies those are supportive for the investment in the utility scale renewable energy projects.)

| Rotated Component/ factor                        | loading Ma        | trix <sup>a</sup>                 |                   |  |  |
|--------------------------------------------------|-------------------|-----------------------------------|-------------------|--|--|
| Factors related to the government policies those | Compo             | <b>Component / Factor loading</b> |                   |  |  |
| are supportive for the investment in the utility | 1                 | 2                                 | 3                 |  |  |
| scale renewable energy projects                  |                   |                                   |                   |  |  |
| Amendment in tariff policy 2015(Reduction in     | <mark>.768</mark> |                                   |                   |  |  |
| tariff cost)                                     |                   |                                   |                   |  |  |
| Waiver of transmission charges (Promoting grid   |                   |                                   | <mark>.505</mark> |  |  |
| connectivity)                                    |                   |                                   |                   |  |  |
| Financial support from government institutions   | <mark>.595</mark> |                                   |                   |  |  |
| Defined Renewable Purchase obligation (RPO)      | <mark>.748</mark> |                                   |                   |  |  |
| Promoting Research & Development                 |                   |                                   | <mark>.655</mark> |  |  |
| Promoting expansion of market                    |                   |                                   | <mark>.829</mark> |  |  |
| Repowering policy                                | <mark>.767</mark> |                                   |                   |  |  |
| Import taxes, Custom duties, Safeguard           |                   | <mark>.778</mark>                 |                   |  |  |
| duties                                           |                   |                                   |                   |  |  |
| Financial and Promotional Initiatives            |                   | <mark>.807</mark>                 |                   |  |  |
| Promoting supply chain from other countries      |                   |                                   | <mark>.589</mark> |  |  |
| Removal of feed in tariff                        | <mark>.788</mark> |                                   |                   |  |  |
| Introduction of competitive bidding              | <mark>.824</mark> |                                   |                   |  |  |
| Extraction Method: Principal Component Analysis. |                   |                                   |                   |  |  |
| Rotation Method: Varimax with Kaiser Normalizat  | ion.              |                                   |                   |  |  |
| a. Rotation converged in 6 iterations.           |                   |                                   |                   |  |  |

The captioned table shows the result of rotation component matrix method utilized for factor analysis by suppressing small coefficient by absolute value 0.4. The various

factors were rotated with Varimax method with Kaiser Normalization. The extraction method employed for the analysis was principal component analysis. The table revealed that the factors that differs from one other and supports to understand the factor by setting every variables primarily on any one of the factors. The rotation solution suggest researcher towards load factors for every variables in a set of data, this data sets are used to know the unusual variables. The loading values of the factors are above 0.4. Hence, none of the statements out of 12 needs to be excluded from the factor analysis.

| Factor    | Statements as per the questionnaire          | Factor Name        |
|-----------|----------------------------------------------|--------------------|
| Number    |                                              |                    |
|           | Q 28_1 Amendment in tariff policy 2015       |                    |
|           | (Reduction in tariff cost)                   |                    |
|           | Q 28_3 Financial support from government     |                    |
|           | institutions                                 | Tariff Policies    |
| Factor :1 | Q 28_4 Defined Renewable Purchase            |                    |
|           | obligation (RPO)                             |                    |
|           | Q 28_7 Repowering policy                     |                    |
|           | Q 28_11 Removal of feed in tariff            |                    |
|           | Q 28_12 Introduction of competitive bidding  |                    |
| Factor: 2 | Q 28_8 Import taxes, Custom duties,          |                    |
|           | Safeguard                                    | Financial policies |
|           | duties                                       |                    |
|           | Q 28_9 Financial and Promotional Initiatives |                    |
|           | Q 28_2 Waiver of transmission charges        |                    |
| Factor: 3 | (Promoting grid connectivity)                | Promotional        |
|           | Q 28_5 Promoting Research & Development      | policies           |
|           | Q 28_6 Promoting expansion of market         |                    |
|           | Q 28_10 Promoting supply chain from other    |                    |
|           | countries                                    |                    |

# Table 5.36: Naming of Group of statements(Statements from Question no.28)

Source: Computed from Primary Data

# Table 5.37 : Distribution of Statements of (Question no.28\_1 to

| 28 | 12) |
|----|-----|
|    |     |

| Name of Factors      | Factors<br>Numbe<br>r | Statement Number |   |   |    |    |    |
|----------------------|-----------------------|------------------|---|---|----|----|----|
| Tariff Policies      | 1                     | 1                | 3 | 4 | 7  | 11 | 12 |
| Financial policies   | 2                     | 8                | 9 |   |    |    |    |
| Promotional policies | 3                     | 2                | 5 | 6 | 10 |    |    |

**Factor No. 1:** The captioned table of rotated factor loading matrix inferred that the first component comprises for six variables. The variables like Amendment in tariff policy 2015 (Reduction in tariff cost), Financial support from government institutions, Defined Renewable Purchase obligation (RPO), Repowering policy, Removal of feed in tariff and

introduction of competitive bidding indicates factor loading of .768, .595, .748, .767, .788 and .824 respectively. Consequently, the appropriate names referred as `` Tariff Policies `` The **Cronbach`s Alfa** of 6 no's of statements is 0.892 which is nearer to almost 1, which considered being the excellent reliability.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .892             | 6          |

**Factor No. 2:** The captioned table of rotated factor loading matrix inferred that the second components comprises for two variables. The variables like Import taxes, Custom duties, Safeguard duties and Financial and Promotional Initiatives indicates factor loading .778 and .807 respectively. Consequently, the appropriate names referred as `` Financial policies `` The **Cronbach`s Alfa** of 2 no's of statements is 0.706 which is nearer to almost 1, which considered being the excellent reliability.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .706             | 2          |

**Factor No. 3:** The captioned table of rotated factor loading matrix inferred that the third components comprises for four variables. The variables Waiver of transmission charges (Promoting grid connectivity), Promoting Research & Development, Promoting expansion of market and Promoting supply chain from other countries indicates factor loading of .505, .655, .829 and .589respectively. Consequently, the appropriate names referred as `` Promotional policies ``. The **Cronbach`s Alfa** of 4 no's of statements is 0.637 which is nearer to almost 1, which considered being the excellent reliability.

#### **Reliability Statistics**

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .637             | 4          |

Principal Component Analysis (PCA) for statement related to the factors that contribute to make utility scale renewable energy project more affordable and viable:

In this research study, the statistical analysis technique of exploratory factor analysis has been adopted for Question no. 42 focuses on the factors that contribute to make utility scale renewable energy project more affordable and viable. The statement consists of 12 factors and analysis is to be carried out through the `PCA` technique, in which the total variance of the collected data is to be considered. For which `Varimax` option in SPSS was utilized. The respondent i.e. various stake holders related to the field of renewable energy projects were pursue to obtain valuable responses towards the different variables related to the government policies that are supportive for the investment in the utility scale renewable energy projects. Accordingly all the 252 nos of stake holders had responded for the said statements.

#### **Appropriateness in Factor Analysis:**

The appropriateness of factor analysis is identified by examining the correlations that exists between all the pairs of variables which are included in the in the factor analysis study. If the correlation between the variables seems to be smaller, which conclude that the factor analysis is not appropriate. Hence in order to apply factor analysis techniques most of the variable under analysis is to be correlated with each other. The sphericity test under the Bartlett's is a statistical technique that is being used for examining whether the variables are correlated with each other or not. The interpretation of assumed null hypothesis indicates that the variables among the population are uncorrelated or correlated with each other in the given population.

The other statistical technique which is used for factor analysis calculation is Kaiser- Meyer – Olkin well known as KMO technique which is measure of sampling adequacy. In KMO statistics, the index is used to conclude the appropriateness of factor analysis. The researcher concludes that the factor analysis is appropriate if the value of index should be between 0.5 to 1. If the value of index is below the 0.5 than factor analysis is in appropriate statistical technique for this research study.

#### Table No 5.38 : KMO and Bartlett's test of Sphericity

(Question no. 42 focuses on the factors that contribute to make utility scale renewable energy project more affordable and viable)

| Kaiser Meyer Olkin Measure and Bartlett's Test |                               |    |       |  |  |  |  |
|------------------------------------------------|-------------------------------|----|-------|--|--|--|--|
| Sampling Adequacy as                           | Bartlett's test of Sphericity |    |       |  |  |  |  |
| per Kaiser Meyer Olkin                         |                               |    |       |  |  |  |  |
| Measure                                        |                               |    |       |  |  |  |  |
| 0.722                                          | Approx. Chi-                  | df | Sig   |  |  |  |  |
|                                                | Square                        |    |       |  |  |  |  |
|                                                | 940.896                       | 66 | 0.000 |  |  |  |  |

Source: Computed from Primary Data

The above data revealed that the approximate Chi-square value of 940.896 at degree of freedom 66 under the Bartlett's test of Sphericity, the significance value (p-value) is 0.000. The researcher analyzes the Bartlett's test of Sphericity, considering significance level (P-value) of 0.05. In case if significance value is less than 0.05, Researcher will reject the  $H_0$  On the contrary, if the significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject.

In this case, the significance value (p-value) is 0.000 of test which is less than p value of 0.05, hence null hypothesis is rejected, which indicates that the selected variables in the population are also not correlated. Hence it indicates that the given data's are suitable for Factor Analysis testing.

The KMO measure was 0.722, this is adequately larger than 0.5. Hence, in view of data analysis such factor analysis is seems to be appropriate.

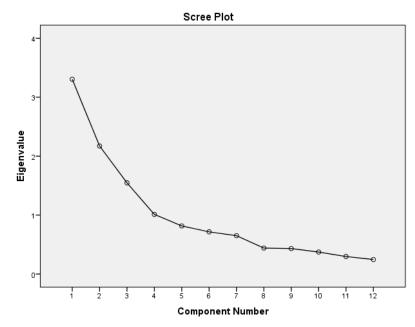
| KMO ranges Communalities                            |         |            |  |  |  |  |
|-----------------------------------------------------|---------|------------|--|--|--|--|
| Statements                                          | Initial | Extraction |  |  |  |  |
| Government should provide more subsidy              | 1.000   | .557       |  |  |  |  |
| Invest more in R&D for technology development       | 1.000   | .629       |  |  |  |  |
| Promote domestic manufacturing capacity             | 1.000   | .699       |  |  |  |  |
| Implementation of policies                          | 1.000   | .769       |  |  |  |  |
| Secured payment mechanism                           | 1.000   | .659       |  |  |  |  |
| Power Purchase Agreement with Off takers/<br>DISCOM | 1.000   | .842       |  |  |  |  |
| Waival of inter-state transmission charges          | 1.000   | .427       |  |  |  |  |
| Facilitate international trade                      | 1.000   | .687       |  |  |  |  |
| Facilitate supply chain management                  | 1.000   | .754       |  |  |  |  |
| Must Run status to RE power                         | 1.000   | .599       |  |  |  |  |
| Waival of taxes & duties                            | 1.000   | .635       |  |  |  |  |
| Awareness and capacity building                     | 1.000   | .777       |  |  |  |  |
| Extraction Method: Principal Component Analysis.    |         | 1          |  |  |  |  |

 Table: 5.39
 KMO ranges Communalities

All the statements are fall under the communalities ranges almost more than 0.50, hence all statements are taken into consideration for these factor analyses as these statements contributing for the factor analysis except the statement Waiver of inter-state transmission charges.

#### Identifying the method of Factor Analysis:

Once the appropriateness of factor analysis is finalized with the testing of given relevant data through appropriate method of KMO as well as Bartlett's test of Sphericity, next step is to utilize two basic approaches for factor analysis i.e. first is Principal Component Analysis (PCA) and second one is Confirmatory Factor Analysis (CFA). However in order to analyze 12 selected variables, PCA analysis methodology is useful for factor analysis as described earlier. Moreover, it is further advisable in case that the major issue is to identify the smallest number of factors, it needs to take into consideration for variance in the given data utilized for multivariate study and such factors is considered as principal mechanism.


# **Table 5.40 : Total Variance Explained**

(Question no. 42 focuses on the factors that contribute to make utility scale renewable

|          | Total Variance Explained |             |                                        |         |           |                                 |       |          |          |  |  |
|----------|--------------------------|-------------|----------------------------------------|---------|-----------|---------------------------------|-------|----------|----------|--|--|
| Compo    | Initial Eigenvalues      |             | Initial Eigenvalues Extraction Sums of |         | ums of    | <b>Rotation Sums of Squared</b> |       |          |          |  |  |
| nent     |                          |             |                                        | Sq      | uared Loa | dings                           |       | Loading  | oadings  |  |  |
|          | Total                    | % of        | Cumulati                               | Total   | % of      | Cumulati                        | Total | % of     | Cumulati |  |  |
|          |                          | Variance    | ve %                                   |         | Variance  | ve %                            |       | Variance | ve %     |  |  |
| 1        | 3.304                    | 27.535      | 27.535                                 | 3.304   | 27.535    | 27.535                          | 2.362 | 19.687   | 19.687   |  |  |
| 2        | 2.171                    | 18.094      | 45.630                                 | 2.171   | 18.094    | 45.630                          | 2.249 | 18.742   | 38.429   |  |  |
| 3        | 1.547                    | 12.888      | 58.518                                 | 1.547   | 12.888    | 58.518                          | 1.943 | 16.193   | 54.622   |  |  |
| 4        | 1.011                    | 8.429       | 66.947                                 | 1.011   | 8.429     | 66.947                          | 1.479 | 12.325   | 66.947   |  |  |
| 5        | .816                     | 6.798       | 73.744                                 |         |           |                                 |       |          |          |  |  |
| 6        | .715                     | 5.959       | 79.704                                 |         |           |                                 |       |          |          |  |  |
| 7        | .650                     | 5.417       | 85.120                                 |         |           |                                 |       |          |          |  |  |
| 8        | .439                     | 3.662       | 88.782                                 |         |           |                                 |       |          |          |  |  |
| 9        | .431                     | 3.595       | 92.377                                 |         |           |                                 |       |          |          |  |  |
| 10       | .373                     | 3.106       | 95.484                                 |         |           |                                 |       |          |          |  |  |
| 11       | .297                     | 2.474       | 97.958                                 |         |           |                                 |       |          |          |  |  |
| 12       | .245                     | 2.042       | 100.000                                |         |           |                                 |       |          |          |  |  |
| Extracti | on Metl                  | hod: Princi | pal Comp                               | onent A | nalysis.  |                                 |       |          |          |  |  |

energy project more affordable and viable)

Fig: 5.10. Scree Plot for factors that contribute to make utility scale renewable energy project more affordable and viable



The captioned table concludes the inferences revealed from the analysis of PCA with Varimax rotation. The table indicates that total four different factors were extracted based on the total variance analyzed. The fourth components in the initial solution have an Eigen values over 1 and the cumulative variance explained for about 66.947% of the total variables in the unique 12 variables related to the challenges / barriers affect for the developments of utility scale renewable energy projects. Hence it shows that the analysis has drastically condensed the intricacy of the larger numbers of data set by using of such components, with loss of information about 33.053% i.e. (100-66.947). Here the sample size selected for this factor analysis was 252 stake holder respondents from various regions of India. Further, it is revealed that personal three factors based on percentage of variance explained in the given table works out to 27.535, 45.630, 58.518 and 66.947 respectively.

# Table 5.41 : Rotated Factor Loading Matrix <sup>a</sup>

(Question no. 42 focuses on the factors that contribute to make utility scale renewable

| Rotated Component/ factor loading Matrix <sup>a</sup>                                               |                                                     |                               |                   |                   |                   |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|-------------------|-------------------|-------------------|--|
| Sr Factors that contribute to make utility scale<br>No.renewable energy project more affordable and |                                                     | Component / Factor<br>loading |                   |                   |                   |  |
|                                                                                                     | viable                                              | 1                             | 2                 | 3                 | 4                 |  |
| 1                                                                                                   | Government should provide more subsidy              | <mark>.602</mark>             |                   |                   |                   |  |
| 2                                                                                                   | Invest more in R&D for technology development       |                               |                   |                   | <mark>.709</mark> |  |
| 3                                                                                                   | Promote domestic manufacturing capacity             |                               |                   |                   | <mark>.766</mark> |  |
| 4                                                                                                   | Implementation of policies                          | <mark>.830</mark>             |                   |                   |                   |  |
| 5                                                                                                   | Secured payment mechanism                           |                               | <mark>.610</mark> |                   |                   |  |
|                                                                                                     | Power Purchase Agreement with Off takers/<br>DISCOM | <mark>.912</mark>             |                   |                   |                   |  |
| 7                                                                                                   | Waival of inter-state transmission charges          |                               |                   | <mark>.488</mark> |                   |  |
| 8                                                                                                   | Facilitate international trade                      |                               |                   | <mark>.587</mark> |                   |  |
| 9                                                                                                   | Facilitate supply chain management                  |                               |                   | <mark>.805</mark> |                   |  |
| 10                                                                                                  | Must Run status to RE power                         |                               | <mark>.759</mark> |                   |                   |  |
| 11                                                                                                  | Waival of taxes & duties                            |                               | <mark>.769</mark> |                   |                   |  |
| 12                                                                                                  | Awareness and capacity building                     |                               |                   | <mark>.758</mark> |                   |  |
|                                                                                                     | Extraction Method: Principal Component Analysis.    | ı                             |                   |                   | 1                 |  |
|                                                                                                     | Rotation Method: Varimax with Kaiser Normalizati    | on.                           |                   |                   |                   |  |
|                                                                                                     | a. Rotation converged in 8 iterations.              |                               | Computed          |                   |                   |  |

energy project more affordable and viable)

The captioned table shows the result of rotation component matrix method utilized for factor analysis by suppressing small coefficient by absolute value 0.4. The various factors were rotated with Varimax method with Kaiser Normalization. The extraction method employed for the analysis was principal component analysis. The table revealed that the factors that differs from one other and supports to understand the factor by setting every variables primarily on any one of the factors. The rotation solution suggest researcher towards load factors for every variables in a set of data, this data sets are used to know the unusual variables. The loading values of the factors are above 0.4. Hence, none of the statements out of 12 needs to be excluded from the factor analysis.

| Factor                           | Statements as per the questionnaire       | Factor Name     |
|----------------------------------|-------------------------------------------|-----------------|
| Number                           |                                           |                 |
|                                  | Q 42_1 Government should provide more     |                 |
| Factor :1                        | subsidy                                   | Policy matter   |
|                                  | Q 42_4 Implementation of policies         |                 |
|                                  | Q 42_6 Power Purchase Agreement with Off  |                 |
|                                  | takers/DISCOM                             |                 |
| Factor :2                        | Q 42_5 Secured payment mechanism          |                 |
|                                  | Q 42_10 Must Run status to RE power       | Payment & Taxes |
| Q 42_11 Waiver of taxes & duties |                                           |                 |
|                                  | Q 42_7 waiver of inter-state transmission |                 |
| Factor: 3                        | charges                                   | Supply chain    |
| Factor, J                        | Q 42_8 Facilitate international trade     |                 |
|                                  | Q 42_9 Facilitate supply chain management |                 |
|                                  | Q 42_12 Awareness and capacity building   |                 |
| Factor: 4                        | Q 42_2 Invest more in R&D for technology  | Technology      |
|                                  | development                               | development     |
|                                  | Q 42_3 Promote domestic manufacturing     | development     |
|                                  | capacity                                  |                 |

Table 5.42: Naming of Group of statements(Statements from Question no.42)

# Table 5.43 : Distribution of Statements of

| Name of Factors        | Factors<br>Numbe | Statement Number |    |    |    |
|------------------------|------------------|------------------|----|----|----|
| Doliov mottor          | <b>r</b>         | 1                | 1  | 6  |    |
| Policy matter          | 1                | 1                | 4  | 0  |    |
| Payment & Taxes        | 2                | 5                | 10 | 11 |    |
| Supply chain           | 3                | 7                | 8  | 9  | 12 |
| Technology development | 4                | 2                | 3  |    |    |

# (Question no.42\_1 to 42\_12)

Source: Computed from Primary Data

**Factor No. 1:** The captioned table of rotated factor loading matrix inferred that the first component comprises for three variables. The variables like Government should provide more subsidies, Implementation of policies and Power Purchase Agreement with off takers / DISCOM indicates factor loading of .602, .830 and .912respectively. Consequently, the appropriate names referred as `` Policy matter `` The **Cronbach`s Alfa** of 3 no's of statements is 0.770 which is nearer to almost 1, which considered being the excellent reliability.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .770             | 3          |

**Factor No. 2:** The captioned table of rotated factor loading matrix inferred that the second components comprises for three variables. The variables like Secured payment mechanism, Must Run status to RE power and Waiver of taxes & duties indicates factor loading .610, .759 and .769respectively. Consequently, the appropriate names referred as `` Payment & Taxes `` The **Cronbach`s Alfa** of 4 no's of statements is 0.637 which is nearer to almost 1, which considered being the excellent reliability.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .641             | 3          |

Factor No. 3: The captioned table of rotated factor loading matrix inferred that the third components comprises for four variables. The variables likes waiver of inter-

state transmission charges, Facilitate international trade, Facilitate supply chain management and Awareness and capacity building indicates factor loading of .488, .587, .805 and .758 respectively. Consequently, the appropriate names referred as `` Supply chain `` The **Cronbach`s Alfa** of 4 no's of statements is 0.677 which is nearer to almost 1, which considered being the excellent reliability.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .677             | 4          |

**Factor No. 4:** The captioned table of rotated factor loading matrix inferred that the third components comprises for two variables. The variables likes invest more in R&D for technology development and Promote domestic manufacturing capacity indicates factor loading of .709 and .766 respectively. Consequently, the appropriate names referred as `` Technology development `` The **Cronbach`s Alfa** of 2 no's of statements is 0.459 which is nearer to 0.50, which considered being the good reliability.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |  |  |
|------------------|------------|--|--|
| .459             | 2          |  |  |

Analyses of Data received from these respondents were carried out by utilizing various useful statistical tools to obtain the results for interpretation to draw the meaningful inferences.

Before processing for hypothesis testing, Test of Normality of questions considered for hypothesis testing under the questionnaire has been carried out and summarized in the Table.

| Tests of Normality |                                 |     |      |              |     |      |  |  |
|--------------------|---------------------------------|-----|------|--------------|-----|------|--|--|
| Questionnair       | Kolmogorov-Smirnov <sup>a</sup> |     |      | Shapiro-Wilk |     |      |  |  |
| e                  | Statistic                       | df  | Sig. | Statistic    | df  | Sig. |  |  |
| 5.0                | .233                            | 252 | .000 | .806         | 252 | .000 |  |  |
| 6.0                | .357                            | 252 | .000 | .726         | 252 | .000 |  |  |
| 7.0                | .391                            | 252 | .000 | .655         | 252 | .000 |  |  |
| 8.1                | .448                            | 252 | .000 | .569         | 252 | .000 |  |  |
| 8.2                | .452                            | 252 | .000 | .563         | 252 | .000 |  |  |
| 8.3                | .404                            | 252 | .000 | .614         | 252 | .000 |  |  |
| 8.4                | .361                            | 252 | .000 | .634         | 252 | .000 |  |  |
| 8.5                | .520                            | 252 | .000 | .397         | 252 | .000 |  |  |
| 8.6                | .540                            | 252 | .000 | .250         | 252 | .000 |  |  |
| 8.7                | .539                            | 252 | .000 | .261         | 252 | .000 |  |  |
| 8.8                | .396                            | 252 | .000 | .620         | 252 | .000 |  |  |
| 8.9                | .539                            | 252 | .000 | .151         | 252 | .000 |  |  |
| 8.10               | .525                            | 252 | .000 | .370         | 252 | .000 |  |  |
| 8.11               | .537                            | 252 | .000 | .120         | 252 | .000 |  |  |
| 8.12               | .538                            | 252 | .000 | .271         | 252 | .000 |  |  |
| 8.13               | .520                            | 252 | .000 | .397         | 252 | .000 |  |  |
| 8.14               | .538                            | 252 | .000 | .136         | 252 | .000 |  |  |
| 8.15               | .517                            | 252 | .000 | .410         | 252 | .000 |  |  |
| 9.1                | .269                            | 252 | .000 | .763         | 252 | .000 |  |  |
| 9.2                | .340                            | 252 | .000 | .753         | 252 | .000 |  |  |
| 9.3                | .371                            | 252 | .000 | .664         | 252 | .000 |  |  |
| 9.4                | .460                            | 252 | .000 | .561         | 252 | .000 |  |  |
| 9.5                | .226                            | 252 | .000 | .823         | 252 | .000 |  |  |
| 9.6                | .260                            | 252 | .000 | .839         | 252 | .000 |  |  |
| 9.7                | .352                            | 252 | .000 | .680         | 252 | .000 |  |  |
| 9.8                | .304                            | 252 | .000 | .842         | 252 | .000 |  |  |
| 9.9                | .373                            | 252 | .000 | .665         | 252 | .000 |  |  |
| 9.10               | .379                            | 252 | .000 | .679         | 252 | .000 |  |  |

 Table 5.44 : Test of Normality

| 9.11  | .312 | 252 | .000 | .729 | 252 | .000 |
|-------|------|-----|------|------|-----|------|
| 9.12  | .270 | 252 | .000 | .869 | 252 | .000 |
| 9.13  | .384 | 252 | .000 | .653 | 252 | .000 |
| 9.14  | .310 | 252 | .000 | .739 | 252 | .000 |
| 9.15  | .235 | 252 | .000 | .850 | 252 | .000 |
| 11.1  | .427 | 252 | .000 | .623 | 252 | .000 |
| 11.2  | .433 | 252 | .000 | .619 | 252 | .000 |
| 11.3  | .426 | 252 | .000 | .622 | 252 | .000 |
| 11.4  | .432 | 252 | .000 | .629 | 252 | .000 |
| 11.5  | .436 | 252 | .000 | .625 | 252 | .000 |
| 12.1  | .289 | 252 | .000 | .791 | 252 | .000 |
| 12.2  | .264 | 252 | .000 | .810 | 252 | .000 |
| 12.3  | .238 | 252 | .000 | .840 | 252 | .000 |
| 12.4  | .214 | 252 | .000 | .856 | 252 | .000 |
| 12.5  | .213 | 252 | .000 | .809 | 252 | .000 |
| 13    | .332 | 252 | .000 | .698 | 252 | .000 |
| 14    | .402 | 252 | .000 | .633 | 252 | .000 |
| 15.1  | .386 | 252 | .000 | .661 | 252 | .000 |
| 15.2  | .197 | 252 | .000 | .856 | 252 | .000 |
| 16.1  | .347 | 252 | .000 | .688 | 252 | .000 |
| 16.2  | .180 | 252 | .000 | .860 | 252 | .000 |
| 17.1  | .310 | 252 | .000 | .756 | 252 | .000 |
| 17.2  | .191 | 252 | .000 | .880 | 252 | .000 |
| 17.3  | .211 | 252 | .000 | .871 | 252 | .000 |
| 17.4  | .221 | 252 | .000 | .889 | 252 | .000 |
| 17.5  | .391 | 252 | .000 | .663 | 252 | .000 |
| 17.6  | .195 | 252 | .000 | .877 | 252 | .000 |
| 17.7  | .194 | 252 | .000 | .881 | 252 | .000 |
| 17.8  | .222 | 252 | .000 | .890 | 252 | .000 |
| 17.9  | .230 | 252 | .000 | .843 | 252 | .000 |
| 17.10 | .277 | 252 | .000 | .784 | 252 | .000 |
| 17.11 | .204 | 252 | .000 | .881 | 252 | .000 |

| 17.12 | .395 | 252 | .000 | .654 | 252 | .000 |
|-------|------|-----|------|------|-----|------|
| 17.13 | .223 | 252 | .000 | .884 | 252 | .000 |
| 17.14 | .241 | 252 | .000 | .820 | 252 | .000 |
| 17.15 | .438 | 252 | .000 | .577 | 252 | .000 |
| 17.16 | .235 | 252 | .000 | .835 | 252 | .000 |
| 17.17 | .333 | 252 | .000 | .722 | 252 | .000 |
| 17.18 | .226 | 252 | .000 | .862 | 252 | .000 |
| 17.19 | .351 | 252 | .000 | .709 | 252 | .000 |
| 17.20 | .210 | 252 | .000 | .878 | 252 | .000 |
| 18.1  | .368 | 252 | .000 | .693 | 252 | .000 |
| 18.2  | .220 | 252 | .000 | .843 | 252 | .000 |
| 18.3  | .191 | 252 | .000 | .867 | 252 | .000 |
| 18.4  | .277 | 252 | .000 | .828 | 252 | .000 |
| 18.5  | .280 | 252 | .000 | .828 | 252 | .000 |
| 18.6  | .223 | 252 | .000 | .880 | 252 | .000 |
| 18.7  | .235 | 252 | .000 | .876 | 252 | .000 |
| 18.8  | .310 | 252 | .000 | .725 | 252 | .000 |
| 18.9  | .398 | 252 | .000 | .639 | 252 | .000 |
| 18.10 | .175 | 252 | .000 | .912 | 252 | .000 |
| 18.11 | .160 | 252 | .000 | .892 | 252 | .000 |
| 19.1  | .424 | 252 | .000 | .630 | 252 | .000 |
| 19.2  | .185 | 252 | .000 | .908 | 252 | .000 |
| 19.3  | .196 | 252 | .000 | .912 | 252 | .000 |
| 19.4  | .246 | 252 | .000 | .792 | 252 | .000 |
| 19.5  | .353 | 252 | .000 | .713 | 252 | .000 |
| 19.6  | .253 | 252 | .000 | .809 | 252 | .000 |
| 19.7  | .263 | 252 | .000 | .798 | 252 | .000 |
| 19.8  | .205 | 252 | .000 | .880 | 252 | .000 |
| 19.9  | .175 | 252 | .000 | .898 | 252 | .000 |
| 19.10 | .201 | 252 | .000 | .895 | 252 | .000 |
| 20.1  | .191 | 252 | .000 | .906 | 252 | .000 |
| 20.2  | .191 | 252 | .000 | .909 | 252 | .000 |

| 21.1  | .528 | 252 | .000 | .062 | 252 | .000 |
|-------|------|-----|------|------|-----|------|
| 21.2  | .539 | 252 | .000 | .151 | 252 | .000 |
| 22.1  | .205 | 252 | .000 | .921 | 252 | .000 |
| 22.2  | .154 | 252 | .000 | .929 | 252 | .000 |
| 23.1  | .178 | 252 | .000 | .896 | 252 | .000 |
| 23.2  | .210 | 252 | .000 | .861 | 252 | .000 |
| 23.3  | .241 | 252 | .000 | .825 | 252 | .000 |
| 23.4  | .181 | 252 | .000 | .907 | 252 | .000 |
| 23.5  | .335 | 252 | .000 | .731 | 252 | .000 |
| 23.6  | .221 | 252 | .000 | .897 | 252 | .000 |
| 23.7  | .247 | 252 | .000 | .880 | 252 | .000 |
| 23.8  | .248 | 252 | .000 | .848 | 252 | .000 |
| 23.9  | .201 | 252 | .000 | .894 | 252 | .000 |
| 23.10 | .193 | 252 | .000 | .881 | 252 | .000 |
| 23.11 | .268 | 252 | .000 | .800 | 252 | .000 |
| 23.12 | .225 | 252 | .000 | .895 | 252 | .000 |
| 23.13 | .341 | 252 | .000 | .734 | 252 | .000 |
| 23.14 | .208 | 252 | .000 | .903 | 252 | .000 |
| 23.15 | .248 | 252 | .000 | .861 | 252 | .000 |
| 23.16 | .200 | 252 | .000 | .876 | 252 | .000 |
| 23.17 | .207 | 252 | .000 | .895 | 252 | .000 |
| 23.18 | .249 | 252 | .000 | .881 | 252 | .000 |
| 23.19 | .214 | 252 | .000 | .903 | 252 | .000 |
| 23.20 | .209 | 252 | .000 | .893 | 252 | .000 |
| 23.21 | .265 | 252 | .000 | .796 | 252 | .000 |
| 23.22 | .193 | 252 | .000 | .877 | 252 | .000 |
| 24.1  | .414 | 252 | .000 | .591 | 252 | .000 |
| 24.2  | .456 | 252 | .000 | .573 | 252 | .000 |
| 24.3  | .206 | 252 | .000 | .880 | 252 | .000 |
| 24.4  | .187 | 252 | .000 | .894 | 252 | .000 |
| 24.5  | .322 | 252 | .000 | .754 | 252 | .000 |
| 24.6  | .241 | 252 | .000 | .818 | 252 | .000 |

| 24.7  | .334 | 252 | .000 | .731 | 252 | .000 |
|-------|------|-----|------|------|-----|------|
| 25    | .275 | 252 | .000 | .801 | 252 | .000 |
| 26.1  | .188 | 252 | .000 | .912 | 252 | .000 |
| 26.2  | .204 | 252 | .000 | .904 | 252 | .000 |
| 26.3  | .210 | 252 | .000 | .863 | 252 | .000 |
| 26.4  | .191 | 252 | .000 | .910 | 252 | .000 |
| 26.5  | .178 | 252 | .000 | .898 | 252 | .000 |
| 26.6  | .217 | 252 | .000 | .887 | 252 | .000 |
| 26.7  | .212 | 252 | .000 | .866 | 252 | .000 |
| 26.8  | .194 | 252 | .000 | .885 | 252 | .000 |
| 26.9  | .174 | 252 | .000 | .917 | 252 | .000 |
| 26.10 | .380 | 252 | .000 | .672 | 252 | .000 |
| 26.11 | .263 | 252 | .000 | .799 | 252 | .000 |
| 26.12 | .444 | 252 | .000 | .553 | 252 | .000 |
| 26.13 | .211 | 252 | .000 | .860 | 252 | .000 |
| 26.14 | .214 | 252 | .000 | .899 | 252 | .000 |
| 27.1  | .314 | 252 | .000 | .806 | 252 | .000 |
| 27.2  | .252 | 252 | .000 | .888 | 252 | .000 |
| 27.3  | .219 | 252 | .000 | .894 | 252 | .000 |
| 27.4  | .274 | 252 | .000 | .875 | 252 | .000 |
| 27.5  | .219 | 252 | .000 | .892 | 252 | .000 |
| 27.6  | .253 | 252 | .000 | .882 | 252 | .000 |
| 27.7  | .295 | 252 | .000 | .728 | 252 | .000 |
| 27.8  | .221 | 252 | .000 | .893 | 252 | .000 |
| 27.9  | .243 | 252 | .000 | .871 | 252 | .000 |
| 28.1  | .171 | 252 | .000 | .914 | 252 | .000 |
| 28.2  | .272 | 252 | .000 | .787 | 252 | .000 |
| 28.3  | .180 | 252 | .000 | .888 | 252 | .000 |
| 28.4  | .215 | 252 | .000 | .887 | 252 | .000 |
| 28.5  | .221 | 252 | .000 | .895 | 252 | .000 |
| 28.6  | .292 | 252 | .000 | .836 | 252 | .000 |
| 28.7  | .223 | 252 | .000 | .867 | 252 | .000 |

| 28.8  | .198 | 252 | .000 | .828 | 252 | .000 |
|-------|------|-----|------|------|-----|------|
| 28.9  | .212 | 252 | .000 | .869 | 252 | .000 |
| 28.10 | .264 | 252 | .000 | .862 | 252 | .000 |
| 28.11 | .206 | 252 | .000 | .896 | 252 | .000 |
| 28.12 | .167 | 252 | .000 | .907 | 252 | .000 |
| 30.1  | .181 | 252 | .000 | .888 | 252 | .000 |
| 30.2  | .172 | 252 | .000 | .915 | 252 | .000 |
| 30.3  | .158 | 252 | .000 | .894 | 252 | .000 |
| 30.4  | .211 | 252 | .000 | .879 | 252 | .000 |
| 30.5  | .197 | 252 | .000 | .877 | 252 | .000 |
| 30.6  | .325 | 252 | .000 | .747 | 252 | .000 |
| 30.7  | .254 | 252 | .000 | .885 | 252 | .000 |
| 30.8  | .216 | 252 | .000 | .875 | 252 | .000 |
| 30.9  | .217 | 252 | .000 | .884 | 252 | .000 |
| 30.10 | .246 | 252 | .000 | .839 | 252 | .000 |
| 31.1  | .256 | 252 | .000 | .815 | 252 | .000 |
| 31.2  | .300 | 252 | .000 | .798 | 252 | .000 |
| 31.3  | .260 | 252 | .000 | .801 | 252 | .000 |
| 31.4  | .250 | 252 | .000 | .868 | 252 | .000 |
| 31.5  | .162 | 252 | .000 | .916 | 252 | .000 |
| 31.6  | .269 | 252 | .000 | .867 | 252 | .000 |
| 31.7  | .263 | 252 | .000 | .775 | 252 | .000 |
| 31.8  | .202 | 252 | .000 | .906 | 252 | .000 |
| 31.9  | .221 | 252 | .000 | .896 | 252 | .000 |
| 31.10 | .201 | 252 | .000 | .907 | 252 | .000 |
| 31.11 | .437 | 252 | .000 | .603 | 252 | .000 |
| 31.12 | .219 | 252 | .000 | .891 | 252 | .000 |
| 31.13 | .191 | 252 | .000 | .903 | 252 | .000 |
| 32.1  | .274 | 252 | .000 | .833 | 252 | .000 |
| 32.2  | .223 | 252 | .000 | .891 | 252 | .000 |
| 32.3  | .252 | 252 | .000 | .821 | 252 | .000 |
| 32.4  | .257 | 252 | .000 | .791 | 252 | .000 |

| 32.5  | .275 | 252 | .000 | .778 | 252 | .000 |
|-------|------|-----|------|------|-----|------|
| 32.6  | .164 | 252 | .000 | .906 | 252 | .000 |
| 32.7  | .366 | 252 | .000 | .671 | 252 | .000 |
| 32.8  | .247 | 252 | .000 | .866 | 252 | .000 |
| 32.9  | .294 | 252 | .000 | .760 | 252 | .000 |
| 32.10 | .272 | 252 | .000 | .798 | 252 | .000 |
| 32.11 | .225 | 252 | .000 | .894 | 252 | .000 |
| 32.12 | .191 | 252 | .000 | .872 | 252 | .000 |
| 32.13 | .306 | 252 | .000 | .742 | 252 | .000 |
| 32.14 | .162 | 252 | .000 | .914 | 252 | .000 |
| 33.1  | .195 | 252 | .000 | .878 | 252 | .000 |
| 33.2  | .260 | 252 | .000 | .872 | 252 | .000 |
| 33.3  | .274 | 252 | .000 | .780 | 252 | .000 |
| 33.4  | .211 | 252 | .000 | .901 | 252 | .000 |
| 33.5  | .199 | 252 | .000 | .899 | 252 | .000 |
| 33.6  | .189 | 252 | .000 | .910 | 252 | .000 |
| 33.7  | .186 | 252 | .000 | .907 | 252 | .000 |
| 33.8  | .280 | 252 | .000 | .850 | 252 | .000 |
| 33.9  | .199 | 252 | .000 | .896 | 252 | .000 |
| 33.10 | .309 | 252 | .000 | .841 | 252 | .000 |
| 35.1  | .181 | 252 | .000 | .923 | 252 | .000 |
| 35.2  | .200 | 252 | .000 | .861 | 252 | .000 |
| 36.1  | .326 | 252 | .000 | .793 | 252 | .000 |
| 36.2  | .309 | 252 | .000 | .810 | 252 | .000 |
| 37.1  | .269 | 252 | .000 | .800 | 252 | .000 |
| 37.2  | .260 | 252 | .000 | .789 | 252 | .000 |
| 38.1  | .350 | 252 | .000 | .766 | 252 | .000 |
| 38.2  | .272 | 252 | .000 | .775 | 252 | .000 |
| 39.1  | .329 | 252 | .000 | .805 | 252 | .000 |
| 39.2  | .268 | 252 | .000 | .861 | 252 | .000 |
| 42.1  | .240 | 252 | .000 | .836 | 252 | .000 |
| 42.2  | .218 | 252 | .000 | .874 | 252 | .000 |

| 42.3  | .349 | 252 | .000 | .724 | 252 | .000 |
|-------|------|-----|------|------|-----|------|
| 42.4  | .228 | 252 | .000 | .855 | 252 | .000 |
| 42.5  | .368 | 252 | .000 | .698 | 252 | .000 |
|       |      |     |      |      |     |      |
| 42.6  | .254 | 252 | .000 | .821 | 252 | .000 |
| 42.7  | .319 | 252 | .000 | .750 | 252 | .000 |
| 42.8  | .288 | 252 | .000 | .790 | 252 | .000 |
| 42.9  | .192 | 252 | .000 | .867 | 252 | .000 |
| 42.10 | .406 | 252 | .000 | .630 | 252 | .000 |
| 42.11 | .408 | 252 | .000 | .637 | 252 | .000 |
| 42.12 | .176 | 252 | .000 | .915 | 252 | .000 |
| 43.1  | .188 | 252 | .000 | .906 | 252 | .000 |
| 43.2  | .257 | 252 | .000 | .859 | 252 | .000 |
| 43.3  | .226 | 252 | .000 | .892 | 252 | .000 |
| 43.4  | .247 | 252 | .000 | .813 | 252 | .000 |
| 43.5  | .332 | 252 | .000 | .736 | 252 | .000 |
| 43.6  | .233 | 252 | .000 | .882 | 252 | .000 |
| 43.7  | .178 | 252 | .000 | .907 | 252 | .000 |
| 43.8  | .230 | 252 | .000 | .897 | 252 | .000 |
| 43.9  | .221 | 252 | .000 | .896 | 252 | .000 |
| 44.1  | .471 | 252 | .000 | .514 | 252 | .000 |
| 44.2  | .212 | 252 | .000 | .902 | 252 | .000 |
| 44.3  | .254 | 252 | .000 | .881 | 252 | .000 |
| 44.4  | .197 | 252 | .000 | .907 | 252 | .000 |
| 44.5  | .240 | 252 | .000 | .893 | 252 | .000 |
| 44.6  | .390 | 252 | .000 | .675 | 252 | .000 |
| 44.7  | .243 | 252 | .000 | .897 | 252 | .000 |
| 44.8  | .244 | 252 | .000 | .826 | 252 | .000 |
| 44.9  | .427 | 252 | .000 | .594 | 252 | .000 |
| 44.10 | .245 | 252 | .000 | .861 | 252 | .000 |
| 45.1  | .255 | 252 | .000 | .802 | 252 | .000 |
| 45.2  | .262 | 252 | .000 | .781 | 252 | .000 |
| 45.3  | .189 | 252 | .000 | .908 | 252 | .000 |

| 45.4 | .225                                  | 252 | .000 | .883 | 252 | .000 |  |  |
|------|---------------------------------------|-----|------|------|-----|------|--|--|
| 45.5 | .410                                  | 252 | .000 | .634 | 252 | .000 |  |  |
| 45.6 | .222                                  | 252 | .000 | .887 | 252 | .000 |  |  |
| 45.7 | .210                                  | 252 | .000 | .865 | 252 | .000 |  |  |
| 46   | .219                                  | 252 | .000 | .851 | 252 | .000 |  |  |
| 47.1 | .477                                  | 252 | .000 | .511 | 252 | .000 |  |  |
| 47.2 | .404                                  | 252 | .000 | .553 | 252 | .000 |  |  |
| 48   | .258                                  | 252 | .000 | .863 | 252 | .000 |  |  |
| 50.1 | .283                                  | 252 | .000 | .755 | 252 | .000 |  |  |
| 50.2 | .317                                  | 252 | .000 | .755 | 252 | .000 |  |  |
|      | a. Lilliefors Significance Correction |     |      |      |     |      |  |  |

For testing of normality, SPSS is used to identify whether the given variables supposed to be normally distributed or not. Before proceeding for the hypothesis testing, it is important to decide that the parametric statistical test to be exercised or non-parametric test based on the normality test. This can be done with the help of statistical test widely known as Kolmogorov-Smirnova and Shapiro-Wilk. This test are used to test the null hypothesis that a set of given variables / data follows a normal distribution.

The Kolmogorov-Smirnova and Shapiro-Wilk statistical test under aforesaid table indicates that the P- value / significance value is 0.000 which is reported as P-value less than significance value of 0.005, which significant evidence that null hypothesis is rejected hence it is clear that the variable follows a non- normal distribution. In view of which non-parametric statistical test methodology is used by the researcher.

### 5.6 Hypothesis Testing:

The researcher has bifurcated the hypothesis based on various factors for development of renewable energy projects.

### 1) Potential of renewable energy for the development of Renewable Energy Projects:

 $H0_1$ : There is no significant difference in the perception about different state/area have different Renewable Energy potential.

|              | Value  | df | P-Value (Asymptotic<br>Significance- 2 sided) |
|--------------|--------|----|-----------------------------------------------|
| Pearson Chi- | 58.713 | 9  | 0.000                                         |
| Square       |        |    |                                               |

Table 5.45 : Chi-Square Tests Table

The researcher analyzes the Chi-square test, in case if significance value (P-value) is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject. In the contrary, if significance value is less than 0.05, Researcher will reject the  $H_0$ .

In this case, the significance value (p-value) is 0.000 of chi-square test which is less than p value of 0.05, which indicates that there is significant difference in the perception about different state/area have different Renewable Energy potential.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates there is significant difference in the perception about different state/area have different Renewable Energy potential.

Moreover, Researcher also developed that correlations between two variable of `potential of renewable energy` and different state/area have different renewable energy.

# Table 5.46 : Correlations between two variable of `potential of renewableenergy` and different state/area have different renewable energy

| potential. |
|------------|
|------------|

|                    | Opportunities for solar power project |         |  |  |  |
|--------------------|---------------------------------------|---------|--|--|--|
|                    | development                           |         |  |  |  |
| potential of solar | R                                     | 0.392** |  |  |  |
| energy             | P (two tailed)                        | 0.00    |  |  |  |
|                    | Ν                                     | 252     |  |  |  |

\*\*Correlation is significant at the 0.01 level (2-tailed)

- The above table presents spearman's R correlation coefficient between two variable of `potential of renewable energy` and different state/area have different renewable energy potential.
- The r value = 0.392, p value = 0.00 and N=252. As p value is significant i.e. 0.00 which is less than 0.05, the results indicates positive correlation to the tune of 39.2 percentage between potential of renewable energy and different state/area have different renewable energy potential.

 $H0_2$ : There is no significant difference in the perception about potential of solar renewable energy in India across year of experience group

|              | Value | df | P-Value (Asymptotic<br>Significance- 2 sided) |
|--------------|-------|----|-----------------------------------------------|
| Pearson Chi- | 8.616 | 9  | 0.473                                         |
| Square       |       |    |                                               |

 Table 5.47 : Chi-Square Tests Table

In this case, the significance value (p-value) is 0.473 of chi-square test which is greater than p value of 0.05, which indicates that there is no significant difference in the perception about potential of solar renewable energy in India across year of experience group

In view of above the null hypothesis is accepted which indicates there is no significant difference in the perception about potential of solar renewable energy in India across year of experience group

H0<sub>3</sub>: There is no significant difference in the perception about potential of Wind energy in India across year of experience group

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 23.401 | 3  | 0.000   |
| Square       |        |    |         |

 Table 5.48 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.000 of chi-square test, which indicates that there exists a significant difference in the perception about potential of Wind energy in India across year of experience group

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there exist a significant difference in the perception about potential of Wind energy in India across year of experience group

 $H0_4$ : There is no significant difference in the perception about potential of renewable energy (solar & Wind energy) in India across Type of Organization

ValuedfP-Value (Asymptotic<br/>Significance- 2 sided)Pearson Chi-<br/>Square15.754120.203

 Table 5.49:
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.203 of chi-square test which is greater than p value of 0.05, which indicates that there is no significant difference in the perception about potential of renewable energy (solar & Wind energy) in India across Type of Organization

In view of above the null hypothesis is accepted which indicates there is no significant difference in the perception about potential of renewable energy (solar & Wind energy) in India across Type of Organization

**H0**<sub>5</sub>: There is no significant association between available renewable energy potential and achievement of Government target.

|              | Value   | df | P-Value (Asymptotic<br>Significance- 2 sided) |
|--------------|---------|----|-----------------------------------------------|
| Pearson Chi- | 239.118 | 16 | 0.000                                         |
| Square       |         |    |                                               |

 Table 5. 50: Chi-Square Tests Table

In this case, the significance value (p-value) is 0.000 of chi-square test which is less than p value of 0.05, which indicates that there is significant association between available renewable energy potential and achievement of Government target.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates there is significant association between available renewable energy potential and achievement of Government target.

Moreover, Researcher also developed that correlation between two variable of `available renewable energy potential` and `achievement of Government target`.

Table 5.51 : correlation between two variable of `available renewableenergy potential` and `achievement of Government target`.

|                     | Achievement of Government target |         |  |
|---------------------|----------------------------------|---------|--|
| Available renewable | R                                | 0.575** |  |
| energy potential    | P (two tailed)                   | 0.00    |  |
|                     | Ν                                | 252     |  |

\*\*Correlation is significant at the 0.01 level (2-tailed)

The above table presents spearman's R correlation coefficient between two variable of `available renewable energy potential` and `achievement of Government target`.

The R value = 0.575, p - value = 0.00 and N=252. As p value is significant i.e. 0.00 which is less than 0.05, the results indicates positive correlation to the tune of 57.5 percentage between `available renewable energy potential` and `achievement of Government target`.

 $H0_6$ : There is no significant difference in the perception about contribution across various stockholders group for achievement of government targets for renewable energy projects.

| Various stake holders      | Chi-   | Df | Asymp.Sig | H <sub>0</sub>   |
|----------------------------|--------|----|-----------|------------------|
| group                      | square |    | (P-value) |                  |
|                            | Value  |    |           |                  |
| Manufacturers              | 12.874 | 4  | 0.012     | Rejected         |
| Suppliers                  | 17.882 | 4  | 0.001     | Rejected         |
| EPC contractors            | 6.845  | 4  | 0.144     | Failed to reject |
| Project Developers         | 4.269  | 4  | 0.371     | Failed to reject |
| Investors                  | 7.373  | 4  | 0.117     | Failed to reject |
| Financiers                 | 4.921  | 4  | 0.296     | Failed to reject |
| Policy Makers              | 3.340  | 4  | 0.503     | Failed to reject |
| Consultant                 | 14.248 | 4  | 0.007     | Rejected         |
| Power Purchaser            | 1.663  | 4  | 0.797     | Failed to reject |
| Independent Power Producer | 3.591  | 4  | 0.464     | Failed to reject |
| Captive Users              | 0.785  | 4  | 0.940     | Failed to reject |
| Research Institute         | 3.787  | 4  | 0.436     | Failed to reject |
| Promoters of Renewable     | 7.390  | 4  | 0.117     | Failed to reject |
| Energy                     |        |    |           |                  |
| Renewable Energy Power     | 0.551  | 4  | 0.968     | Failed to reject |
| traders                    |        |    |           |                  |
| Other stake holders        | 14.040 | 4  | 0.007     | Rejected         |

 Table 5.52:
 Chi-Square Tests Table

(Source: Computed from Primary Data)

The captioned table for Chi-square test indicates the significance in perception about support/contribution across various stockholders as mentioned in column one for

achievement of government targets for renewable energy projects. In case, if significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject. i.e. accepted. In the contrary, if significance value is less than 0.05, Researcher will reject the  $H_0$ .

Manufacturers: The analysis revealed that there is significant difference in the perception about contribution of manufacturers for achievement of government targets for renewable energy projects, as the significance value is 0.012 which is well within the standard significance level of 0.05.

Suppliers: The analysis revealed that there is significant difference in the perception about contribution of suppliers for achievement of government targets for renewable energy projects, as the significance value is 0.001 which is well within the standard significance level of 0.05.

EPC contractors: The analysis revealed that there is no significant difference in the perception about contribution of EPC contractors for achievement of government targets for renewable energy projects, as the significance value is 0.144 which goes beyond the standard significance level of 0.05.

Project Developers: The analysis revealed that there is no significant difference in the perception about contribution of Project Developers for achievement of government targets for renewable energy projects, as the significance value is 0.371 which goes beyond the standard significance level of 0.05.

Investors: The analysis revealed that there is no significant difference in the perception about contribution of Investors for achievement of government targets for renewable energy projects, as the significance value is 0.117 which goes beyond the standard significance level of 0.05.

Financiers: The analysis revealed that there is no significant difference in the perception about contribution of Financiers for achievement of government targets for renewable energy projects, as the significance value is 0.296 which goes beyond the standard significance level of 0.05.

Policy Makers: The analysis revealed that there is no significant difference in the perception about contribution of Policy Makers for achievement of government targets for renewable energy projects, as the significance value is 0.503 which goes beyond the standard significance level of 0.05.

Consultant: The analysis revealed that there is significant difference in the perception about contribution of Consultant for achievement of government targets for renewable energy projects, as the significance value is 0.007 which is well within the standard significance level of 0.05.

Power Purchaser: The analysis revealed that there is no significant difference in the perception about contribution of Power Purchaser for achievement of government targets for renewable energy projects, as the significance value is 0.797 which goes beyond the standard significance level of 0.05.

Independent Power Producer: The analysis revealed that there is no significant difference in the perception about contribution of Independent Power Producer for achievement of government targets for renewable energy projects, as the significance value is 0.464 which goes beyond the standard significance level of 0.05.

Captive Users: The analysis revealed that there is no significant difference in the perception about contribution of Captive Users for achievement of government targets for renewable energy projects, as the significance value is 0.940 which goes beyond the standard significance level of 0.05.

Research Institute: The analysis revealed that there is no significant difference in the perception about contribution of Research Institute for achievement of government targets for renewable energy projects, as the significance value is 0.436 which goes beyond the standard significance level of 0.05.

Promoters of Renewable Energy: The analysis revealed that there is no significant difference in the perception about contribution of Promoters of Renewable Energy for

achievement of government targets for renewable energy projects, as the significance value is 0.117 which goes beyond the standard significance level of 0.05.

Renewable Energy Power traders: The analysis revealed that there is no significant difference in the perception about contribution of Renewable Energy Power traders for achievement of government targets for renewable energy projects, as the significance value is 0.968 which goes beyond the standard significance level of 0.05.

Other stake holders: The analysis revealed that there is significant difference in the perception about contribution of other stake holders for achievement of government targets for renewable energy projects, as the significance value is 0.007 which is well within the standard significance level of 0.05.

### 2) Key driving policies, policy supportive mechanism and barriers for the development of Renewable Energy Projects:

 $H0_7$ : There is no significant difference in the perception about existing policies and supports helps in achieving the government target for renewable energy projects across different States of India.

|              | Value   | df | P-Value |
|--------------|---------|----|---------|
| Pearson Chi- | 140.481 | 96 | 0.002   |
| Square       |         |    |         |

 Table 5.53:
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.002 of chi-square test, which indicates that there is significant difference in the perception about existing policies and supports helps in achieving the government target for renewable energy projects across different States of India.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there is significant difference in the perception about existing policies and supports helps in achieving the government target for renewable energy projects across different States of India  $HO_8$ : There is no significant difference in the perception about existing policies and supports helps in achieving the government target for renewable energy projects across year of experience group

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 41.504 | 24 | 0.015   |
| Square       |        |    |         |

 Table 5.54:
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.015 of chi-square test, which indicates that there is significant difference in the perception about existing policies and supports helps in achieving the government target for renewable energy projects across year of experience group.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there is significant difference in the perception about existing policies and supports helps in achieving the government target for renewable energy projects across year of experience group.

**H0**<sub>9</sub>: There is no significant difference in the perception about existing policies and supports helps in achieving the government target for renewable energy projects across Types of Organization.

 Table 5.55:
 Chi-Square Tests Table

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 60.145 | 32 | 0.002   |
| Square       |        |    |         |

In this case, the significance value (p-value) is 0.002 of chi-square test, which indicates that there is significant difference in the perception about existing policies and supports helps in achieving the government target for renewable energy projects across Types of Organization.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there is significant difference in the perception about existing policies and supports helps in achieving the government target for renewable energy projects across Types of Organization.

 $HO_{10}$ : There is no significant association between central and state level policy supports for decision of installation of renewable energy

|              | Value   | df | P-Value |
|--------------|---------|----|---------|
| Pearson Chi- | 230.280 | 12 | 0.000   |
| Square       |         |    |         |

Table 5.56: Chi-Square Tests Table

In this case, the significance value (p-value) is 0.000 of chi-square test, which indicates that there exists a significant association between central and state level policy supports for decision of installation of renewable energy.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there exist a association between central and state level policy supports for decision of installation of renewable energy.

Moreover, Researcher also developed that correlations between two variable of ` central level policy supports ` and ` state level policy supports `.

 Table 5.57 : correlations between two variable of ` central level policy supports `

 and ` state level policy supports `.

|                      | State level policy supports |         |  |
|----------------------|-----------------------------|---------|--|
| central level policy | R                           | 0.778** |  |
| supports             | P (two tailed)              | 0.00    |  |
|                      | Ν                           | 252     |  |

\*\*Correlation is significant at the 0.01 level (2-tailed)

The above table presents spearman's R correlation coefficient between correlations between two variable of ` central level policy supports ` and ` state level policy supports `.

The r value = 0.778, p - value = 0.00 and N=252. As p value is significant i.e. 0.00 which is less than 0.05, the results indicates positive correlation to the tune of 77.8 percentage between of ` central level policy supports ` and ` state level policy supports `.

 $H0_{11}$ : There is no significant difference in the perception about criticality of various risks associated to investment in utility scale renewable energy projects across various organization groups.

| Risks associated to                                                  | Chi-   | Df | Asymp.Sig | H <sub>0</sub>   |
|----------------------------------------------------------------------|--------|----|-----------|------------------|
| investment                                                           | square |    | (P-value) |                  |
|                                                                      | Value  |    |           |                  |
| Regulatory Risk                                                      | 30.824 | 16 | 0.014     | Rejected         |
| Construction Risk say Time<br>over run & cost over run               | 33.876 | 16 | 0.006     | Rejected         |
| Counter Party Risk say<br>Construction Contractor, O&M<br>Contractor | 22.016 | 16 | 0.143     | Failed to reject |
| Financial Risk                                                       | 11.281 | 12 | 0.505     | Failed to reject |
| Investment Risk                                                      | 6.331  | 12 | 0.898     | Failed to reject |
| Power Off Taker Risk                                                 | 29.316 | 16 | 0.022     | Rejected         |
| Resource assessment Risk                                             | 27.802 | 16 | 0.033     | Rejected         |
| Force Majeure Risk                                                   | 31.738 | 16 | 0.011     | Rejected         |
| Deviation Schedule<br>Mechanism (DSM) penalty<br>risk                | 26.589 | 16 | 0.046     | Rejected         |

 Table 5.58 :
 Chi-Square Tests Table

Source: Computed from Primary Data

The captioned table for Chi-square test indicates the significance in perception about criticality of various risks associated to investment in utility scale renewable energy projects across various organization groups. In case, if significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject. i.e. accepted. In the contrary, if significance value is less than 0.05, Researcher will reject the  $H_0$ .

The analysis of perceived risks associated to investment across various organizational groups from chi-square table is narrated as under:

Regulatory Risk: The analysis revealed that there is significant difference in the perception about criticality of regulatory risks associated to investment in utility scale renewable energy projects across various organization groups, as the significance value is 0.014 which is well within the standard significance level of 0.05.

Construction Risk: The analysis revealed that there is significant difference in the perception about criticality of construction risks associated to investment in utility scale renewable energy projects across various organization groups, as the significance value is 0.006 which is well within the standard significance level of 0.05.

Counter Party Risk: The analysis revealed that there is no significant difference in the perception about criticality of counter party risks associated to investment in utility scale renewable energy projects across various organization groups, as the significance value is 0.143 which goes beyond the standard significance level of 0.05.

Financial Risk: The analysis revealed that there is no significant difference in the perception about criticality of financial risks associated to investment in utility scale renewable energy projects across various organization groups, as the significance value is 0.505 which goes beyond the standard significance level of 0.05.

Investment Risk: The analysis revealed that there is no significant difference in the perception about criticality of investment risks associated to investment in utility scale renewable energy projects across various organization groups, as the significance value is 0.898 which goes beyond the standard significance level of 0.05.

Power off Taker Risk: The analysis revealed that there is significant difference in the perception about criticality of power off taker risks associated to investment in utility scale renewable energy projects across various organization groups, as the significance value is 0.022 which is well within the standard significance level of 0.05.

Resource assessment Risk: The analysis revealed that there is significant difference in the perception about criticality of resource assessment risks associated to investment in utility scale renewable energy projects across various organization groups, as the significance value is 0.033 which is well within the standard significance level of 0.05.

Force Majeure Risk: The analysis revealed that there is significant difference in the perception about criticality of force majeure risks associated to investment in utility scale renewable energy projects across various organization groups, as the significance value is 0.011 which is well within the standard significance level of 0.05.

Deviation Schedule Mechanism (DSM) penalty risk: The analysis revealed that there is significant difference in the perception about criticality of deviation schedule mechanism (DSM) penalty risk associated to investment in utility scale renewable energy projects across various organization groups, as the significance value is 0.046 which is well within the standard significance level of 0.05.

 $H0_{12}$ : There is no significant difference in factors influencing the decision of installation of utility scale renewable energy projects within different experience group.

| Table 5.59 : Kruskal W | allis Test |
|------------------------|------------|
|------------------------|------------|

(Regulatory policy related factors affecting the development of Renewable energy projects within different experience groups)

| Factor                 | <b>Regulatory policy related</b>          | Chi-   | Df | Asymp | $\mathbf{H}_{0}$ |
|------------------------|-------------------------------------------|--------|----|-------|------------------|
| number                 | factors                                   | square |    | .Sig  |                  |
| Factor:1               | Policy barriers                           | 6.098  | 3  | 0.107 | Failed to reject |
| Factor:2               | Regulatory barriers                       | 4.274  | 3  | 0.233 | Failed to reject |
| Factor:3               | Support mechanism barriers                | 9.984  | 3  | 0.019 | Rejected         |
| Factor:4               | Political barriers                        | 7.303  | 3  | 0.063 | Failed to reject |
| Factor:5               | Environment barriers                      | 10.878 | 3  | 0.012 | Rejected         |
| Factor:6               | Land policy barriers                      | 2.214  | 3  | 0.529 | Failed to reject |
| Factor:7               | Power purchase policy                     | 6.960  | 3  | 0.073 | Failed to reject |
| Factor:8               | Institutional & Administrative            | 20.540 | 3  | 0.000 | Rejected         |
|                        | barrier                                   |        |    |       |                  |
| Factor:9               | Public acceptance barrier                 | 26.148 | 3  | 0.000 | Rejected         |
| Factor:10              | International Trade barrier               | 7.846  | 3  | 0.049 | Rejected         |
| a. Kruskal Wallis Test |                                           |        |    |       |                  |
| b. Group               | b. Grouping Variable: Years of Experience |        |    |       |                  |

Source: Computed from Primary Data

The captioned table for Kruskal Wallis Test indicates the significance in the Regulatory policy related factors affecting the development of utility scale renewable energy projects within different experience group. In case, if significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject. In the contrary, if significance value is less than 0.05, Researcher will reject the  $H_0$ .

Factor 1: The aforesaid analysis revealed that there is no significant difference in policy barrier and years of experience group as the significance value is 0.107 which goes beyond the standard level of 0.05.

Factor 2: Researcher also discovered from above Kruskal Wallis Test analysis that there is no significant difference in regulatory barrier and years of experience group as the significance value is 0.233 which goes beyond the standard level of 0.05.

Factor 3: Moreover, it is discovered from the above analysis that there is significant difference in support mechanism barrier and years of experience group as the significance value is 0.019 which stay within the standard level of 0.05.

Factor 4: Further, Researcher discovered from above analysis that there is no significant difference in political barrier and years of experience group as the significance value is 0.063 which goes beyond the standard level of 0.05.

Factor 5: Likewise, Researcher discovered from the above analysis that there is significant difference in Environmental barrier and years of experience group as the significance value is 0.012 which stay within the standard level of 0.05.

Factor 6: Further, Researcher discovered from above analysis that there is no significant difference in land policy barrier and years of experience group as the significance value is 0.529 which goes beyond the standard level of 0.05.

Factor 7: Researcher also, discovered from above analysis that there is no significant difference in power purchase policy barrier and years of experience group as the significance value is 0.073 which goes beyond the standard level of 0.05.

Factor 8: Researcher further discovered from the above analysis that there is significant difference in Institutional & Administrative barrier and years of experience group as the significance value is 0.000 which stay within the standard level of 0.05.

Factor 9: Researcher also, discovered from the above analysis that there is significant difference in Public acceptance barrier and years of experience group as the significance value is 0.000 which stay within the standard level of 0.05.

Factor 10: Similarly, Researcher discovered from the above analysis that there is significant difference in International Trade barrier and years of experience group as the significance value is 0.049 which stay within the standard level of 0.05.

#### 3) Strengths and opportunities of renewable energy projects:

 $H0_{13}$ : There is no significant association between installation of renewable energy projects and opportunities for green employment generation to boost India's economy

 Table 5.60 : Chi-Square Tests Table

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 504.00 | 4  | 0.000   |
| Square       |        |    |         |

In this case, the significance value (p-value) is 0.000 of chi-square test, which indicates that there exists a significant association between installation of renewable energy projects and opportunities for green employment generation to boost India's economy.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there exist a association between installation of renewable energy projects and opportunities for green employment generation to boost India's economy.

Moreover, Researcher also developed that correlations between two variable of ` installation of renewable energy projects ` and ` opportunities for green employment generation.

Table 5.61: correlations between two variable of `installation of renewable energy projects ` and ` opportunities for green employment generation `.

|                    | Opportunities for solar power project<br>development |         |  |
|--------------------|------------------------------------------------------|---------|--|
|                    |                                                      |         |  |
| potential of solar | R                                                    | 1.000** |  |
| energy             | P (two tailed) 0.00                                  |         |  |
|                    | Ν                                                    | 252     |  |

\*\*Correlation is significant at the 0.01 level (2-tailed)

The above table presents spearman's R correlation coefficient between `installation of renewable energy projects` and `opportunities for green employment generation`.

The r value = 1.000, p - value = 0.00 and N=252. As p value is significant i.e. 0.00 which is less than 0.05, the results indicates positive correlation to the tune of 100 percentage between of `installation of renewable energy projects` and `opportunities for green employment generation`.

 $H0_{14}$ : There is no significant relationship between potential of solar energy and opportunities for solar power project development.

|              | Value   | df | P-Value |
|--------------|---------|----|---------|
| Pearson Chi- | 331.959 | 9  | 0.000   |
| Square       |         |    |         |

 Table 5.62:
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.000 of chi-square test, which indicates that there exists a relationship between potential of solar energy and opportunities for solar power project development.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there exist a relationship between potential of solar energy and opportunities for solar power project development.

Moreover, Researcher also developed that correlations between two variable of `potential of solar energy` and `opportunities for solar power project development.

 Table 5.63 : Correlation between potential of solar energy and
 opportunities for solar power project development.

|                    | Opportunities for solar power project<br>development |         |  |
|--------------------|------------------------------------------------------|---------|--|
|                    |                                                      |         |  |
| potential of solar | R                                                    | 0.821** |  |
| energy             | P (two tailed)                                       | 0.00    |  |
|                    | N 252                                                |         |  |

\*\*Correlation is significant at the 0.01 level (2-tailed)

The above table presents spearman's R correlation coefficient between potential of solar energy and opportunities for solar power project development. The r value = 0.821, p - value = 0.00 and N=252. As p value is significant i.e. 0.00 which is less than 0.05, the results indicates positive correlation to the tune of 82.1 percentage between potential of solar energy and opportunities for solar power project development.

Similarly,

 $H0_{15}$ : There is no significant association between potential of wind energy and opportunities for wind power project development.

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 42.991 | 2  | 0.000   |
| Square       |        |    |         |

 Table 5.64:
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.000 of chi-square test, which indicates that there exists a relationship between potential of wind energy and opportunities for wind power project development.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there exist a relationship between potential of wind energy and opportunities for wind power project development.

Moreover, Researcher also developed that correlations between two variable of `potential of wind energy` and `opportunities for wind power project development`.

| Table 5.65 : Correlation between potential of wind energy and |
|---------------------------------------------------------------|
| opportunities for wind power project development.             |

|                    | Opportunities for solar power project development |      |  |  |
|--------------------|---------------------------------------------------|------|--|--|
| Potential of solar | R 0.413**                                         |      |  |  |
| energy             | P (two tailed)                                    | 0.00 |  |  |
|                    | Ν                                                 | 252  |  |  |

\*\*Correlation is significant at the 0.01 level (2-tailed)

The above table presents spearman's R correlation coefficient between potential of wind energy and opportunities for wind power project development. The r value = 0.413, p - value = 0.00 and N=252. As p value is significant i.e. 0.00 which is less than 0.05, the results indicates positive correlation to the tune of 41.3 percentage between potential of wind energy and opportunities for wind power project development.

 $H0_{16}$ : There is no significant association in the perception across experience group about available renewable energy potential for achievement of government target.

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 22.024 | 12 | 0.037   |
| Square       |        |    |         |

 Table 5.66:
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.037 of chi-square test, which indicates that there exists a significant association in the perception across experience group about available renewable energy potential for achievement of government target.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there exist a significant association in the perception across experience group about available renewable energy potential for achievement of government target.

 $H0_{17}$ : There is no significant association in the perception across types of organization about available renewable energy potential for achievement of government target.

 Table 5.67 :
 Chi-Square Tests Table

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 21.601 | 16 | 0.157   |
| Square       |        |    |         |

In this case, the significance value (p-value) is 0.157 of chi-square test, which indicates that there is no significant association in the perception across types of organization about available renewable energy potential for achievement of government target.

In view of above, the null hypothesis is accepted which indicates that there does not exist significant association in the perception across types of organization about available renewable energy potential for achievement of government target.

## 4) Manufacturing resources, value chain for development of renewable energy projects:

 $H0_{18}$ : There is no significant difference in the perception about effectiveness of value chain for RE project component from other countries across the Years of experience group.

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 51.669 | 18 | 0.000   |
| Square       |        |    |         |

Table 5.68 : Chi-Square Tests Table

In this case, the significance value (p-value) is 0.000 of chi-square test, which indicates that there is significant difference in the perception about effectiveness of value chain for RE project component from other countries across the Years of experience group.

In view of above, the null hypothesis is failed to reject i.e. accepted which indicates that there exist significant difference in the perception about effectiveness of value chain for RE project component from other countries across the Years of experience group.

 $H0_{19}$ : There is no significant difference in the perception about effectiveness of value chain for RE project component from other countries across Types of Organization.

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 33.288 | 24 | 0.098   |
| Square       |        |    |         |

#### Table 5.69 : Chi-Square Tests Table

In this case, the significance value (p-value) is 0.098 of chi-square test, which indicates that there is no significant difference in the perception about effectiveness of value chain for RE project component from other countries across Types of Organization.

In view of above, the null hypothesis is fail to reject i.e. accepted which indicates that there does not exist significant difference in the perception about effectiveness of value chain for RE project component from other countries across Types of Organization.

 $H0_{20}$ : There is no significant difference in perception about cost of procurement of materials for renewable energy projects from India & abroad across types of organizations.

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 27.945 | 16 | 0.032   |
| Square       |        |    |         |

 Table 5.70 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.032 of chi-square test, which indicates that there is significant difference in perception about cost for procurement of materials for renewable energy projects from India & abroad across types of organizations.

In view of above, the null hypothesis is reject which indicates that there exists significant difference in perception about cost for procurement of materials for renewable energy projects from India & abroad across types of organizations.

 $H0_{21}$ : There is no significant relationship between Government target and available manufacturing capacity in India to meet target.

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 41.752 | 28 | 0.046   |
| Square       |        |    |         |

 Table 5.71:
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.046 of chi-square test, which indicates that there is significant association between Government target and available manufacturing capacity in India to meet target.

In view of above, the null hypothesis is rejected which indicates that there exist significant association between Government target and available manufacturing capacity in India to meet target.

## 5) Market dynamic, cost competitiveness, viability for development of renewable energy projects:

 $HO_{22}$ : There is no significant difference in the perception about cost competition for development of solar and wind power projects across the various states of India.

| Development of RE      | Pearson Chi- | df | Asymp. sig | Но               |
|------------------------|--------------|----|------------|------------------|
| projects across states | Square Value |    | (P-Value)  |                  |
| Solar power projects   | 63.841       | 36 | 0.003      | Reject           |
| Wind power projects    | 37.806       | 48 | 0.854      | Failed to Reject |

 Table 5.72 :
 Chi-Square Tests

(Source: Computed from Primary Data)

In the case of solar power project development, the significance value (p-value) is 0.003 of chi-square test, which indicates that there is significant difference in the perception about cost competition for development of solar power projects across the various states of India. However, In the case of Wind power projects developments, the significance value (p-value) is 0.854 of chi-square test, which indicates that there is no significant difference in the perception about cost competition for development of wind power projects across the various states of India.

In view of above, for solar projects, the null hypothesis is rejected which indicates that there exist significant difference in the perception about cost competition for development of solar power projects across the various states of India. However for wind projects, the null hypothesis is fail to rejects which indicates that there is no significant difference in the perception about cost competition for development of wind power projects across the various states of India.  $H0_{23}$ : There is no significant difference in the perception about project cost viability about solar power project across Types of Organization

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 42.773 | 20 | 0.002   |
| Square       |        |    |         |

 Table 5.73 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.002 of chi-square test, which indicates that there is significant difference in the perception about project cost viability about solar power project across Types of Organization.

In view of above, the null hypothesis is rejected which indicates that there exist significant difference in the perception about project cost viability about solar power project across Types of Organization.

**H0**<sub>24</sub>: There is no significant difference in the perception about project cost viability about Wind Project across Types of Organization

 Table 5.74 :
 Chi-Square Tests Table

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 30.190 | 20 | 0.067   |
| Square       |        |    |         |

In this case, the significance value (p-value) is 0.067 of chi-square test, which indicates that there is no significant difference in the perception about project cost viability about Wind power Project across Types of Organization

In view of above, the null hypothesis is fail to reject i.e. accepted which indicates that there does not exist significant difference in the perception about project cost viability about Wind power Project across Types of Organization  $H0_{25}$ : There is no significant difference in the perception regarding the initial cost of the setting up of utility scale solar power projects across Years of Experience group

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 21.058 | 9  | 0.012   |
| Square       |        |    |         |

 Table 5.75 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.012 of chi-square test, which indicates that there is significant difference in the perception regarding the initial cost of the setting up of utility scale solar power projects across Years of Experience group

In view of above, the null hypothesis is rejected which indicates that there exist significant difference in the perception regarding the initial cost of the setting up of utility scale solar power projects across Years of Experience group

 $H0_{26}$ : There is no significant difference in the perception regarding the initial cost of the setting up of utility scale **wind** power projects across Years of Experience group

 Table 5.76 : Chi-Square Tests Table

|              | Value | df | P-Value |
|--------------|-------|----|---------|
| Pearson Chi- | 8.443 | 6  | 0.207   |
| Square       |       |    |         |

In this case, the significance value (p-value) is 0.207 of chi-square test, which indicates that there is no significant difference in the perception regarding the initial cost of the setting up of utility scale solar power projects across Years of Experience group

In view of above, the null hypothesis is fail to reject i.e. accepted which indicates that there does not exist significant difference in the perception regarding the initial cost of the setting up of utility scale solar power projects across Years of Experience group

 $H0_{27}$ : There is no significant difference in the perception regarding the initial cost of the setting up of utility scale **solar** power projects across Types of Organization

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 11.413 | 12 | 0.494   |
| Square       |        |    |         |

 Table 5.77 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.494 of chi-square test, which indicates that there is no significant difference in the perception regarding the initial cost of the setting up of utility scale solar power projects across Types of Organization

In view of above, the null hypothesis is accepted which indicates that there does not exist significant difference in the perception regarding the initial cost of the setting up of utility scale solar power projects across Types of Organization

 $H0_{28}$ : There is no significant difference in the perception regarding the initial cost of the setting up of utility scale **wind** power projects across Types of Organization

 Table 5.78 :
 Chi-Square Tests Table

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 17.986 | 8  | 0.021   |
| Square       |        |    |         |

In this case, the significance value (p-value) is 0.021of chi-square test, which indicates that there is significant difference in the perception regarding the initial cost of the setting up of utility scale wind power projects across Types of Organization In view of above, the null hypothesis is rejected which indicates that there exist significant difference in the perception regarding the initial cost of the setting up of utility scale wind power projects across Types of Organization

 $H0_{29}$ : There is no significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale solar power projects across Years of Experience group

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 11.770 | 12 | 0.464   |
| Square       |        |    |         |

In this case, the significance value (p-value) is 0.464 of chi-square test, which indicates that there is no significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale solar power projects across Years of Experience group

In view of above, the null hypothesis is failed to reject i.e. accepted which indicates that there does not exist significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale solar power projects across Years of Experience group

 $H0_{30}$ : There is no significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale **wind** power projects across Years of Experience group

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 10.335 | 12 | 0.587   |
| Square       |        |    |         |

 Table 5.80 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.587 of chi-square test, which indicates that there is no significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale solar power projects across Years of Experience group

In view of above, the null hypothesis is fail to reject i.e. accepted which indicates that there does not exist significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale solar power projects across Years of Experience group

 $H0_{31}$ : There is no significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale **solar** power projects across Types of Organization

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 16.881 | 16 | 0.393   |
| Square       |        |    |         |

 Table 5.81 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.393 of chi-square test, which indicates that there is no significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale solar power projects across Types of Organization

In view of above, the null hypothesis is accepted which indicates that there does not exist significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale solar power projects across Types of Organization

 $H0_{32}$ : There is no significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale **wind** power projects across Types of Organization

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 11.642 | 16 | 0.768   |
| Square       |        |    |         |

 Table 5.82 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.768 of chi-square test, which indicates that there is no significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale wind power projects across Types of Organization

In view of above, the null hypothesis is failed to reject i.e. accepted which indicates that there does not exist significant difference in the perception regarding the operation & maintenance cost of the setting up of utility scale wind power projects across Types of Organization

 $H0_{33}$ : There is no significant association between investment risk and investment cost associated with renewable energy projects.

 Table 5.83 :
 Chi-Square Tests Table

|              | Value   | df | P-Value |
|--------------|---------|----|---------|
| Pearson Chi- | 109.630 | 9  | 0.000   |
| Square       |         |    |         |

In this case, the significance value (p-value) is 0.000 of chi-square test, which indicates that there exists a association between investment risk and investment cost associated with renewable energy projects.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there exist a relationship between investment risk and investment cost associated with renewable energy projects.

Moreover, Researcher also developed that correlation between two variables of `investment risk' and 'investment cost' associated with renewable energy projects.

 Table 5.84: Correlations between two variables of `investment risk' and

 'investment cost' associated with renewable energy projects.

|                   | `investment risk' |         |  |  |  |
|-------------------|-------------------|---------|--|--|--|
| 'investment cost' | R                 | 0.522** |  |  |  |
|                   | P (two tailed)    | 0.00    |  |  |  |
|                   | N 252             |         |  |  |  |

\*\*Correlation is significant at the 0.01 level (2-tailed)

The above table presents spearman's R correlation coefficient between two variables of 'investment risk' and 'investment cost' associated with renewable energy projects. The r value = 0.522, p - value = 0.00 and N=252. As p value is significant i.e. 0.00 which is less than 0.05, the results indicates positive correlation to the tune of 52.2 percentage between two variables of `investment risk' and 'investment cost' associated with renewable energy projects.

#### 6) Weaknesses, threats and Challenges of renewable energy projects:

 $H0_{34}$ : There is no significant difference in the perception regarding challenges faced for development of utility scale renewable energy projects across Types of Organization

|              | Value   | df  | P-Value |
|--------------|---------|-----|---------|
| Pearson Chi- | 173.280 | 168 | 0.374   |
| Square       |         |     |         |

 Table 5.85 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.374 of chi-square test, which indicates that there is no significant difference in the perception regarding challenges

faced for development of utility scale renewable energy projects across Types of Organization

In view of above, the null hypothesis is accepted which indicates that there does not exist significant difference in perception regarding challenges faced for development of utility scale renewable energy projects across Types of Organization

 $H0_{35}$ : There is no significant difference in the perception about challenges faced for development of utility scale renewable energy projects across Years of experience group

|              | Value   | df  | P-Value |
|--------------|---------|-----|---------|
| Pearson Chi- | 134.450 | 126 | 0.287   |
| Square       |         |     |         |

 Table 5.86 :
 Chi-Square Tests Table

In this case, the significance value (p-value) is 0.287of chi-square test, which indicates that there is no significant difference in the perception about challenges faced for development of utility scale renewable energy projects across Years of experience group

In view of above, the null hypothesis is accepted which indicates that there does not exist significant difference in the perception about challenges faced for development of utility scale renewable energy projects across Years of experience group

 $H0_{36}$ : There is no significant difference in the perception about awareness for renewable energy project development across various regions/ states of India.

 Table 5.87 :
 Chi-Square Tests Table

|              | Value  | df | P-Value |
|--------------|--------|----|---------|
| Pearson Chi- | 77.750 | 48 | 0.004   |
| Square       |        |    |         |

In this case, the significance value (p-value) is 0.004 of chi-square test, which indicates that there exists significant difference in the perception about awareness for renewable energy project development across various regions/ states of India.

In view of above the null hypothesis is rejected and alternate hypothesis is accepted which indicates that there exist significant difference in the perception about awareness for renewable energy project development across various regions/ states of India.

 $H0_{37}$ : There is no significant difference in Regulatory policy related factors affecting the development of utility scale renewable energy projects within different experience group.

| Factor    | Regulatory policy related                 | Chi-   | Df | Asymp | H <sub>0</sub>   |  |
|-----------|-------------------------------------------|--------|----|-------|------------------|--|
| number    | factors                                   | square |    | . Sig |                  |  |
| Factor:1  | Policy barriers                           | 6.098  | 3  | 0.107 | Failed to reject |  |
| Factor:2  | Regulatory barriers                       | 4.274  | 3  | 0.233 | Failed to reject |  |
| Factor:3  | Support mechanism barriers                | 9.984  | 3  | 0.019 | Rejected         |  |
| Factor:4  | Political barriers                        | 7.303  | 3  | 0.063 | Failed to reject |  |
| Factor:5  | Environment barriers                      | 10.878 | 3  | 0.012 | Rejected         |  |
| Factor:6  | Land policy barriers                      | 2.214  | 3  | 0.529 | Failed to reject |  |
| Factor:7  | Power purchase policy                     | 6.960  | 3  | 0.073 | Failed to reject |  |
| Factor:8  | Institutional & Administrative<br>barrier | 20.540 | 3  | 0.000 | Rejected         |  |
| Factor:9  | Public acceptance barrier                 | 26.148 | 3  | 0.000 | Rejected         |  |
| Factor:10 | International Trade barrier               | 7.846  | 3  | 0.049 | Rejected         |  |
| b. Krus   | b. Kruskal Wallis Test                    |        |    |       |                  |  |
| b. Grou   | b. Grouping Variable: Years of Experience |        |    |       |                  |  |

Table 5.88: Kruskal Wallis Test

(Regulatory policy related factors affecting the development of Renewable energy projects within different experience groups)

Source: Computed from Primary Data

The captioned table for Kruskal Wallis Test indicates the significance in the Regulatory policy related factors affecting the development of utility scale renewable energy projects within different experience group. In case, if significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject. In the contrary, if significance value is less than 0.05, Researcher will reject the  $H_0$ .

Factor 1: The aforesaid analysis revealed that there is no significant difference in policy barrier among the years of experience group as the significance value is 0.107 which goes beyond the standard level of 0.05.

Factor 2: Researcher also discovered from above Kruskal Wallis Test analysis that there is no significant difference in regulatory barrier among the years of experience group as the significance value is 0.233 which goes beyond the standard level of 0.05.

Factor 3: Moreover, it is discovered from the above analysis that there is significant difference in support mechanism barrier among the years of experience group as the significance value is 0.019 which stay within the standard level of 0.05.

Factor 4: Further, Researcher discovered from above analysis that there is no significant difference in political barrier among the years of experience group as the significance value is 0.063 which goes beyond the standard level of 0.05.

Factor 5: Likewise, Researcher discovered from the above analysis that there is significant difference in Environmental barrier among the years of experience group as the significance value is 0.012 which stay within the standard level of 0.05.

Factor 6: Further, Researcher discovered from above analysis that there is no significant difference in land policy barrier among the years of experience group as the significance value is 0.529 which goes beyond the standard level of 0.05.

Factor 7: Researcher also, discovered from above analysis that there is no significant difference in power purchase policy barrier among the years of experience group as the significance value is 0.073 which goes beyond the standard level of 0.05.

Factor 8: Researcher further discovered from the above analysis that there is significant difference in Institutional & Administrative barrier among the years of experience group as the significance value is 0.000 which stay within the standard level of 0.05.

Factor 9: Researcher also, discovered from the above analysis that there is significant difference in Public acceptance barrier among the years of experience group as the significance value is 0.000 which stay within the standard level of 0.05.

Factor 10: Similarly, Researcher discovered from the above analysis that there is significant difference in International Trade barrier among the years of experience group as the significance value is 0.049 which stay within the standard level of 0.05.

223

 $H0_{38}$ : There is no significant difference in factors related to current challenges for installation of renewable energy projects within different organizational group.

### Table 5.89 : Kruskal Wallis Test

(Factors related to current challenges for installation of renewable energy projects within different organizational group)

| Factor     | Factors related to current             | Chi-   | Df | Asymp | H <sub>0</sub>   |
|------------|----------------------------------------|--------|----|-------|------------------|
| number     | challenges                             | square |    | .Sig  |                  |
| Factor: 1  | Distribution & transmission facilities | 7.368  | 4  | 0.118 | Failed to reject |
| Factor: 2  | Frequent changes in state policies     | 13.438 | 4  | 0.009 | Rejected         |
| Factor: 3  | Difficulty in funding project          | 18.808 | 4  | 0.001 | Rejected         |
| Factor: 4  | Financing cost                         | 13.367 | 4  | 0.010 | Rejected         |
| Factor: 5  | Reduced tariff                         | 6.509  | 4  | 0.164 | Failed to reject |
| Factor: 6  | Variable output                        | 26.362 | 4  | 0.000 | Rejected         |
| Factor: 7  | Initial investment                     | 4.865  | 4  | 0.301 | Failed to reject |
| Factor: 8  | Market Competition                     | 7.739  | 4  | 0.102 | Failed to reject |
| Factor: 9  | Cost Competition                       | 6.785  | 4  | 0.148 | Failed to reject |
| Factor: 10 | International trade issues             | 9.888  | 4  | 0.042 | Rejected         |
| Factor: 11 | Competitive bidding process            | 3.311  | 4  | 0.507 | Failed to reject |
| Factor: 12 | Local Taxes & duties                   | 15.795 | 4  | 0.003 | Rejected         |
| Factor: 13 | Safe guard & anti-dumping duties       | 9.386  | 4  | 0.052 | Failed to reject |
| Factor: 14 | Domestic Content Requirement<br>(DCR)  | 13.433 | 4  | 0.009 | Rejected         |
| a. Kru     | skal Wallis Test                       |        | •  | •     |                  |
| b. Grou    | ping Variable: Types of Organization   | ons    |    |       |                  |

Source: Computed from Primary Data

The captioned table for Kruskal Wallis Test indicates the significance in the factors related to current challenges for installation of renewable energy projects within different organizational group. In case, if significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject i.e. accepted. In the contrary, if significance value is less than 0.05, Researcher will reject the  $H_0$ .

Factor 1: The aforesaid analysis revealed that there is no significant difference in Distribution & transmission facilities for installation of renewable energy projects within different organizational group as the significance value is 0.118 which goes beyond the standard significance level of 0.05.

Factor: 2 Moreover, it is discovered from the above analysis that there is significant difference in Frequent changes in state policies for installation of renewable energy projects within different organizational group as the significance value is 0.009 which stay within the standard significance level of 0.05.

Factor: 3 Researcher discovered from the above analysis that there is significant difference in Difficulty in funding project for installation of renewable energy projects within different organizational group as the significance value is 0.001 which stay within the standard significance level of 0.05.

Factor: 4 Researcher further discovered from the above analysis that there is significant difference in financing cost for installation of renewable energy projects within different organizational group as the significance value is 0.010 which stay within the standard significance level of 0.05.

Factor: 5 Researcher discovered that there is no significant difference in reduced tariff for installation of renewable energy projects within different organizational group as the significance value is 0.640 which goes beyond the standard significance level of 0.05.

Factor: 6 Researcher discovered from the above analysis that there is significant difference in Variable output for installation of renewable energy projects within different organizational group as the significance value is 0.000 which stay within the standard significance level of 0.05.

Factor: 7 Researcher discovered that there is no significant difference in Initial investment for installation of renewable energy projects within different organizational group as the significance value is 0.301 which goes beyond the standard significance level of 0.05.

Factor: 8 Researcher further that there is no significant difference in Market Competition for installation of renewable energy projects within different organizational group as the significance value is 0.102 which goes beyond the standard significance level of 0.05.

Factor: 9 likewise, Researcher discovered that there is no significant difference in Cost Competition for installation of renewable energy projects within different organizational group as the significance value is 0.148 which goes beyond the standard significance level of 0.05.

Factor: 10 Researcher discovered from the above analysis that there is significant difference in International trade issues for installation of renewable energy projects within different organizational group as the significance value is 0.042 which stay within the standard significance level of 0.05.

Factor: 11 Researcher discovered that there is no significant difference in Competitive bidding process for installation of renewable energy projects within different organizational group as the significance value is 0.507 which goes beyond the standard significance level of 0.05.

Factor: 12 Researcher discovered from the above analysis that there is significant difference in Local Taxes & duties for installation of renewable energy projects within different organizational group as the significance value is 0.003 which stay within the standard significance level of 0.05.

Factor: 13 Researcher discovered that there is no significant difference in Safe guard & anti-dumping duties for installation of renewable energy projects within different organizational group as the significance value is 0.052 which goes beyond the standard significance level of 0.05.

Factor: 14 Researcher lastly discovered from the above analysis that there is significant difference in Domestic Content Requirement for installation of renewable energy projects within different organizational group as the significance value is 0.009 which stay within the standard significance level of 0.05.

 $H0_{39}$ : There is no significant difference in operational related factors affecting the development of utility scale renewable energy projects within different states.

| Factor                 | <b>Operational related factors</b>        | Chi-   | Df | Asymp | H <sub>0</sub>   |  |  |
|------------------------|-------------------------------------------|--------|----|-------|------------------|--|--|
| number                 |                                           | square |    | .Sig  |                  |  |  |
| Factor: 2              | Evacuation issues                         | 22.234 | 12 | 0.035 | Rejected         |  |  |
| Factor: 8              | Awareness & capacity development barriers | 22.673 | 12 | 0.031 | Rejected         |  |  |
| Factor: 9              | Sale of power barriers                    | 30.865 | 12 | 0.002 | Rejected         |  |  |
| Factor: 10             | Forecasting & scheduling barrier          | 27.321 | 12 | 0.007 | Rejected         |  |  |
| Factor: 11             | Land acquisition barrier                  | 16.027 | 12 | 0.190 | Failed to reject |  |  |
| Factor: 12             | Deviation Schedule Mechanism<br>(DSM)     | 22.387 | 12 | 0.033 | Rejected         |  |  |
| a. Kruskal Wallis Test |                                           |        |    |       |                  |  |  |
| b. Grou                | b. Grouping Variable: Different States    |        |    |       |                  |  |  |

 Table 5.90 : Chi-Square Tests Table

Source: Computed from Primary Data

The captioned table for Kruskal Wallis Test indicates the significance in the Operational related factors affecting the development of utility scale renewable energy projects within different States. In case, if significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject. In the contrary, if significance value is less than 0.05, Researcher will reject the  $H_0$ . Accordingly, the researcher discovered following fact from the above Kruskal Wallis test analysis.

Factor: 2 Researcher discovered from the above analysis that there is significant difference in Evacuation issues within the different states, as the significance value is 0.035 which stay within the standard significance level of 0.05.

Factor: 8 Researcher discovered from the above analysis that there is significant difference in Awareness & capacity development challenges within the different states, as the significance value is 0.031 which stay within the standard significance level of 0.05.

Factor: 9 Researcher discovered from the above analysis that there is significant difference in Sale of power related issue within the different states, as the significance value is 0.002 which stay within the standard significance level of 0.05.

Factor: 10 Researcher discovered from the above analysis that there is significant difference in Forecasting & scheduling issues within the different states, as the significance value is 0.007 which stay within the standard significance level of 0.05. Factor: 11 Researcher also, discovered from above analysis that there is no significant difference in Land acquisition issues within the different states, as the significance value is 0.190 which goes beyond the standard level of 0.05.

Factor: 12 Researcher discovered from the above analysis that there is significant difference in Deviation Schedule Mechanism issues within the different states, as the significance value is 0.033 which stay within the standard significance level of 0.05.

 $H0_{40}$ : There is no significant difference in functional challenges related factors affecting the development of utility scale renewable energy projects within different organizational groups.

| Factor                 | Functional challenges related               | Chi-   | Df | Asymp | H <sub>0</sub>   |  |  |
|------------------------|---------------------------------------------|--------|----|-------|------------------|--|--|
| number                 | factors                                     | square |    | .Sig  |                  |  |  |
| Factor: 1              | Financial Challenges                        | 13.858 | 4  | 0.008 | Rejected         |  |  |
| Factor: 3              | Costing Challenges                          | 10.472 | 4  | 0.033 | Rejected         |  |  |
| Factor: 4              | Competition Challenges                      | 4.991  | 4  | 0.288 | Failed to reject |  |  |
| Factor: 5              | Technical Challenges                        | 36.411 | 4  | 0.000 | Rejected         |  |  |
| Factor: 6              | Infrastructure Challenges                   | 8.453  | 4  | 0.076 | Failed to reject |  |  |
| Factor: 7              | Investment Challenges                       | 8.598  | 4  | 0.072 | Failed to reject |  |  |
| Factor: 13             | Supply chain Challenges                     | 8.231  | 4  | 0.083 | Failed to reject |  |  |
| a. Kruskal Wallis Test |                                             |        |    |       |                  |  |  |
| b. Group               | b. Grouping Variable: Types of Organization |        |    |       |                  |  |  |

 Table 5.91 :
 Chi-Square Tests Table

Source: Computed from Primary Data

The captioned table for Kruskal Wallis Test indicates the significance in the functional challenges related factors affecting the development of utility scale renewable energy projects within different organizational groups. In case, if significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject. In the contrary, if significance value is less than 0.05, Researcher will reject the  $H_0$ . Accordingly, the researcher discovered following fact from the above Kruskal Wallis test analysis.

Factor: 1 Researcher discovered from the above analysis that there is significant difference in Financial Challenges for development of utility scale renewable energy projects within different organizational groups as the significance value is 0.008 which stay within the standard significance level of 0.05.

Factor: 3 Further, Researcher discovered from the above analysis that there is significant difference in Costing challenges for development of utility scale renewable energy projects within different organizational groups as the significance value is 0.033 which stay within the standard significance level of 0.05.

Factor: 4 Researcher discovered from the above analysis that there is no significant difference in Competition challenges for development of utility scale renewable energy projects within different organizational groups as the significance value is 0.288 which goes beyond the standard significance level of 0.05.

Factor: 5 Researcher discovered from the above analysis that there is significant difference in Technical Challenges for development of utility scale renewable energy projects within different organizational groups as the significance value is 0.000 which stay within the standard significance level of 0.05.

Factor: 6 Researcher discovered from the above analysis that there is no significant difference in Infrastructure challenges for development of utility scale renewable energy projects within different organizational groups as the significance value is 0.076 which goes beyond the standard significance level of 0.05.

Factor: 7 Researcher discovered from the above analysis that there is no significant difference in Investment challenges for development of utility scale renewable energy projects within different organizational groups as the significance value is 0.072 which goes beyond the standard significance level of 0.05.

Factor: 13 Researcher discovered from the above analysis that there is no significant difference in supply chain challenges for development of utility scale renewable energy projects within different organizational groups as the significance value is 0.083 which goes beyond the standard significance level of 0.05.

 $HO_{41}$ : There is no significant difference in General factors affecting the development of utility scale renewable energy projects within different states.

| Factor     | <b>Operational related factors</b>                                                | Chi-   | Df | Asymp | H <sub>0</sub>   |  |  |  |
|------------|-----------------------------------------------------------------------------------|--------|----|-------|------------------|--|--|--|
| number     |                                                                                   | square |    | .Sig  |                  |  |  |  |
| Factor: 1  | Frequent changes in state level regulations                                       | 31.655 | 12 | 0.002 | Rejected         |  |  |  |
| Factor: 2  | Difficulty in finding buyers for generated electricity                            | 19.414 | 12 | 0.079 | Failed to reject |  |  |  |
| Factor: 3  | Investment cost                                                                   | 13.428 | 12 | 0.339 | Failed to reject |  |  |  |
| Factor: 4  | Operation & Maintenance                                                           | 16.780 | 12 | 0.158 | Failed to reject |  |  |  |
| Factor: 5  | Seasonal availability of<br>renewable resource                                    | 27.377 | 12 | 0.007 | Rejected         |  |  |  |
| Factor: 6  | Distribution companies not<br>willing to buy beyond<br>Renewable Power Obligation | 25.505 | 12 | 0.013 | Rejected         |  |  |  |
| Factor: 7  | Process for obtaining Renewable<br>Energy Certification (REC)                     | 38.466 | 12 | 0.000 | Rejected         |  |  |  |
| Factor: 8  | Wheeling & supervision charges.                                                   | 17.487 | 12 | 0.132 | Failed to reject |  |  |  |
| Factor: 9  | Procedure for permission,<br>registration etc.                                    | 25.008 | 12 | 0.015 | Rejected         |  |  |  |
| Factor: 10 | Procedure for connectivity                                                        | 11.862 | 12 | 0.457 | Failed to reject |  |  |  |
| a. Krus    | skal Wallis Test                                                                  |        |    |       |                  |  |  |  |
| b. Grou    | b. Grouping Variable: Different States                                            |        |    |       |                  |  |  |  |

 Table 5.92 :
 Chi-Square Tests Table

Source: Computed from Primary Data

The captioned table for Kruskal Wallis Test indicates the significance in the General factors affecting the development of utility scale renewable energy projects within different States. In case, if significance value is more than 0.05, the  $H_0$  Null Hypothesis is failed to reject .i.e accepted. In the contrary, if significance value is less than 0.05, Researcher will reject the  $H_0$  Accordingly, the researcher discovered following fact from the above Kruskal Wallis test analysis.

Factor: 1 Researcher discovered from the above analysis that there is significant difference in frequent changes in state level regulations within the different states, as the significance value is 0.002 which stay within the standard significance level of 0.05.

Factor: 2 Researcher discovered from the above analysis that there is no significant difference in Difficulty in finding buyers for generated electricity for renewable

energy projects within different States as the significance value is 0.079 which goes beyond the standard significance level of 0.05.

Factor: 3 Researcher discovered from the above analysis that there is no significant difference in Investment cost for development of utility scale renewable energy projects within different States as the significance value is 0.339 which goes beyond the standard significance level of 0.05.

Factor: 4 Researcher discovered from the above analysis that there is no significant difference in Operation & Maintenance for renewable energy projects within different States as the significance value is 0.158 which goes beyond the standard significance level of 0.05.

Factor: 5 Researcher discovered from the above analysis that there is significant difference in Seasonal availability of renewable resource for development of renewable power projects within the different states, as the significance value is 0.007 which stay within the standard significance level of 0.05.

Factor: 6 Researcher discovered from the above analysis that there is significant difference in Distribution companies not willing to buy beyond Renewable Power Obligation within the different states, as the significance value is 0.013 which stay within the standard significance level of 0.05.

Factor: 7 Researcher discovered from the above analysis that there is significant difference in Process for obtaining Renewable Energy Certification (REC) within the different states, as the significance value is 0.000 which stay within the standard significance level of 0.05.

Factor: 8 Researcher discovered from the above analysis that there is no significant difference in Wheeling & supervision charges for renewable energy projects within different States as the significance value is 0.132 which goes beyond the standard significance level of 0.05.

Factor: 9 Researcher discovered from the above analysis that there is significant difference in Procedure for permission, registration etc within the different states, as the significance value is 0.015 which stay within the standard significance level of 0.05.

Factor: 10 Researcher discovered from the above analysis that there is no significant difference in Procedure for connectivity for renewable energy projects within different States as the significance value is 0.457 which goes beyond the standard significance level of 0.05.

 $H0_{42}$ : There is no significant difference in the perception about grid connectivity / evacuation issues for development of renewable energy projects between different States and types of organization.

| Sr | Evacuation Issues                                | Different States |    |       | T            | pes | of    |
|----|--------------------------------------------------|------------------|----|-------|--------------|-----|-------|
| No |                                                  |                  |    |       | organization |     |       |
|    |                                                  | Value            | df | P-    | Value        | df  | P-    |
|    |                                                  |                  |    | Value |              |     | Value |
| 1  | Inadequate transmission                          | 42.001           | 48 | 0.716 | 23.350       | 16  | 0.105 |
|    | infrastructure                                   |                  |    |       |              |     |       |
| 2  | Mismatch between the available                   | 45.348           | 48 | 0.582 | 20.086       | 16  | 0.216 |
|    | corridor and necessary demand<br>Centre          |                  |    |       |              |     |       |
| 3  | Procedure for connectivity permission            | 70.985           | 48 | 0.017 | 37.911       | 16  | 0.002 |
| 4  | High cost of establishment of transmission lines | 48.412           | 48 | 0.456 | 14.249       | 16  | 0.580 |
| 5  | Right of Way (RoW) issues                        | 35.597           | 36 | 0.631 | 13.132       | 12  | 0.36  |
| 6  | Transmission system Supervision charges          | 52.574           | 48 | 0.301 | 31.061       | 16  | 0.13  |
| 7  | Wheeling & transmission charges                  | 33.872           | 48 | 0.939 | 26.085       | 16  | 0.053 |

 Table 5.93 : Chi-Square Tests Table

Source: Computed from Primary Data

Pearson Chi-Square Tests has been applied to examine the difference in perception about grid connectivity / evacuation issues for development of renewable energy projects between different States and types of organization.

The result of the test indicates that there does not exists significant difference in the perception about grid connectivity / evacuation issues for all statement as the significance value (p-value) for all statements is well beyond the significance level of 0.05 except in case of statement `` Procedure for connectivity permission``

In view of above, the null hypothesis is failed to rejected and hence accepted which indicates that there is no significant difference in the perception about grid connectivity / evacuation issues for development of renewable energy projects between different States and types of organization.