
Chapter 1

Introduction

B
eginning of the 20th century marked as a major milestone in the world of physics. The

inadequacy of classical physics in explaining the systems at microscopic level brought

a major revolution and a new branch of physics "Quantum Physics" was born. Subsequently

emerged the field of quantum statistical mechanics which deals with the statistical mechan-

ics of these quantum systems, and is now an integral part of theoretical physics [1]. Since

then the question of out of equilibrium dynamics and thermalization of isolated finite inter-

acting many-body quantum systems has been of some interest and has been addressed from

theoretical perspective. Recently magnificent experiments have been developed on cooling

and trapping of ultra-cold quantum gases [2, 3] and electrons in solids [4]. These experi-

mental developments suddenly resulted in a lot of interest on theoretical investigations of

thermalization of isolated finite interacting many-body quantum systems mainly because

one can simulate these systems using these experiments [5–11]. These ultra-cold gases

are highly isolated in character and hence are perfect to be used for this kind of simulation

compared to the other condensed matter experiments where this isolation is almost impossi-

ble [12]. The problem of thermalization of isolated finite interacting quantum systems is of

great fundamental importance, however a complete understanding of the same is not known

so far. Various groups have addressed the problem of thermalization using different models

and perspectives. It is now known that integrable quantum systems do not thermalize due to

a phenomena called many-body localization. In contrast to these, the non-integrable quan-

tum systems thermalize and the underlying mechanism of thermalization in these systems

is given by eigenstate thermalization hypothesis (ETH) [5, 13]. Many groups have studied

role of localization and chaos, statistical relaxation, eigenstate thermalization, ergodicity

principle and so on using lattice models of interacting spins both for fermionic and bosonic

systems [8, 14–21]. Thermalization has also been studied using embedded random matrix

models for femionic as well as bosonic systems [10, 11, 22–27]. The role played by the

structure of chaotic wavefunctions in the process of thermalization is shown in [28–30].
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1.1. Random Matrix Theory

The investigations on isolated finite interacting many particle quantum systems like

atomic nuclei, atoms, mesoscopic systems (quantum dots, small metallic grains), interact-

ing spin systems modeling quantum computing core, ultra-cold atoms and quantum black

holes with SYK model and so on are useful in addressing open problems of quantum statis-

tical mechanics. In order to address open problems of quantum statistical mechanics such as

Bose-Einstein (BE) condensation, quantum many-body chaos and thermalization, it is im-

portant to analyze the spectral and wavefunction properties of these systems [8–11,31–36].

It is now well established that Random Matrix Theory (RMT), due to its universality [37],

successfully describes the spectral as well as wavefunction properties of isolated finite in-

teracting many-particle quantum systems [31]. These investigations not only help us in

understanding and making formulations of many-body quantum mechanics but also aid in

building new quantum technologies like quantum information science. Both many-body

quantum mechanics and building new quantum technologies depend on each other. For

instance developing quantum computers requires the knowledge of quantum many-body

systems and these quantum computers can be used to simulate the quantum many-body

systems [38].

1.1 Random Matrix Theory

In 1928 Wishart’s historical paper [39] on multivariate statistics, gave birth to the field

of RMT. Later in 1950, Wigner introduced RMT in the field of physics, while addressing

compound nucleus resonances [40]. Wigner worked on the spectra of neutron excitation

of heavy nuclei obtained using neutron resonances and on the basis of his work he pointed

out that for many-body systems whose interaction is complex enough, the Hamiltonian rep-

resenting the system should behave like a large random matrix. The matrix elements of

this matrix are random numbers drawn from some probability distribution (usually Gaus-

sian). However it doesnot depend on the probability distribution but only on the symmetries

present in the quantum system. These matrix elements should be statistically independent

and identically distributed (which means they should be drawn from the same distribution).

Dyson gave the tripartite classification of classical random matrices (Gaussian Orthog-

onal Ensemble (GOE), Gaussian Unitary Ensemble (GUE) and Gaussian Symplectic En-

semble (GSE)) [41] on the basis of the type of symmetry preserved by the system viz. time

reversal, rotational, etc. Over the coming years, rigorous research in the field by Dyson,

Mehta, Pandey, Bohigas, Gaudin, Porter, Rosenzweirg, French, Berry, Tabor and many oth-

ers resulted in tremendous development of RMT. In 1984, Bohigas, Giannoni and Schmit

came up with their famous Bohigas-Giannoni-Schmit (BGS) conjecture which stated that
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"Spectra of all quantum systems whose classical analog is chaotic follow RMT" [37]. This

conjecture established the universality of RMT.

This opened doors to application of RMT to various other quantum chaotic systems

like quantum dots, chaotic quantum billiards, metallic grains, etc. Over the years, it is now

established as a good model to describe such complex quantum systems and stochastic sys-

tems. Due to its universality, accompanied with a great deal of mathematical work done

over the years, RMT has now found applications in almost all possible fields of science like

wireless communications, brain functional networks, number theory, quantum information

science, quantum chromodynamics [8, 31–36, 42]. However its application is not only lim-

ited to fields of science but also has emerged as a multidisciplinary research area with nu-

merous applications in fields like economics, finance, stock markets, etc. [43, 44]. One can

learn in more detail about RMT and its applications to quantum chaotic systems from these

very famous books by Pioneers of RMT, Mehta [45], Haake [46], Stoeckmann [47] and

Forrester [48]. Other good books on the subject include those by Wright and Weiver [49],

Bai and Silverstein [50] and by Couillet and Debbah [51].

1.2 Classification of Classical Random Matrix Ensembles

Based on Space-Time Symmetries

Knowledge of symmetries present in the quantum systems is very important as it corre-

sponds to quantum numbers which help in understanding the system qualitatively. However

for quantitative understanding of these systems one requires knowledge of the interactions.

The symmetries present in the quantum systems are reflected in their respective Hamilto-

nian. Any space-time symmetry present in the Hamiltonian matrix can be represented by an

equivalent matrix (real, Hermitian or quaternion) using group theory and it is invariant un-

der a specific transformation. A collection of such Hamiltonian matrices whose independent

matrix elements are Gaussian random numbers is called a random matrix ensemble.

Dyson gave the three fold classification of these random matrix ensembles based on the

symmetries present in the quantum system. Dyson’s three fold classification on the basis of

symmetries and angular momentum values of particles is as follows:

1. Gaussian Orthogonal Ensemble (GOE):

If a quantum system preserves time-reversal symmetry as well as a good rotational

symmetry with any spin interaction, then its Hamiltonian matrix can be represented

by a real matrix invariant under orthogonal transformation i.e OÕ = I .
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1.3. Embedded Random Matrix Ensembles

(a)

• Symmetries: Time-reversal symmetry, No rotational symmetry

• Angular Momentum: Integer

• Hamiltonian: Real symmetric

(b)

• Symmetries: Time-reversal symmetry, Rotational symmetry

• Angular Momentum: Any (integer/half-integer)

• Hamiltonian: Real symmetric

2. Gaussian Unitary Ensemble (GUE):

If a quantum system does not preserve time-reversal symmetry, then its Hamiltonian

matrix can be represented by a Hermitian matrix invariant under unitary transforma-

tion i.e. UU † = I .

• Symmetries: No time-reversal symmetry

• Angular Momentum: Any (integer/half-integer)

• Hamiltonian: Hermitian

3. Gaussian Symplectic Ensemble (GSE):

If a quantum system preserves time-reversal symmetry and has a half-integer spin

interaction, then its Hamiltonian matrix can be represented by a quaternion real matrix

invariant under symplectic transformation

i.e. SZS̃ = Z, SS† = I .

• Symmetries: Time-reversal symmetry, No rotational symmetry

• Angular Momentum: Half-integer

• Hamiltonian: Quaternion real

1.3 Embedded Random Matrix Ensembles

Constituents of isolated quantum systems interact via few-body interactions whereas

the classical random matrix ensembles (and in particular the GOE) take into account many-

body interactions. This motivated French and co-workers to introduce random matrix model
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accounting for few-body interactions, called Embedded ensemble (EE) [52, 53]. The or-

thogonal variant of these EE with two body interactions is denoted by EGOE(2). These

systems also possess an additional one body part corresponding to mean-field generated by

all other constituents in these systems. With two-body interaction and in the presence of

mean-field one-body part they are called EGOE(1+2). It is now well established that these

EGOE(1+2) models are paradigmatic models to study the dynamical transition from inte-

grability to chaos in isolated finite interacting many-body quantum systems [8, 24, 31, 54].

For spin-less fermion systems these models are denoted by EGOE(1+2) and for spin-less

boson systems they are denoted by BEGOE(1+2) (with ’B’ for bosons). These models

were initially analyzed for isolated finite interacting spin-less fermion systems by many

groups [24, 55–58]. Also, isolated finite interacting spin-less boson systems were analyzed

in [27, 59–63].

Consider m particles (fermions/bosons) distributed in N single particle (sp) states.

Then two limiting situations exist. One is the dilute limit which is defined by m → ∞ ,

N → ∞ and m/N → 0 , which allows only one particle per sp state. The other one is the

dense limit which is defined by m → ∞ , N → ∞ and m/N → ∞ , which allows more

than one particle to occupy a particular sp state. The dilute limit exists for both fermion and

boson systems while the dense limit is feasible only for boson systems. The dense limit is

not feasible for fermion systems because of the fact that fermions obey Pauli’s exclusion

principle which allows only one particle per sp state. Since in the dilute limit both fermions

and bosons show same behavior, the investigations on BEGOE carried out in past focused

on the dense limit [22, 27, 59–63].

Finite interacting particle systems preserve various symmetries like particle number,

spin, angular momentum, parity, spin-isospin SU(4) symmetry and so on [31]. These sym-

metries give rise to various quantum numbers. In the later years, EGOE(1+2) models pre-

serving various symmetries were introduced. EGOE(1+2) models with spin 1/2 degree

of freedom are the simplest ones. They are denoted by EGOE(1+2)- s for fermion sys-

tems [64] and BEGOE(1+2)-F for two species boson systems with a fictitious (F ) spin

1/2 degree of freedom [65]. Moving further for boson systems with spin one degree of

freedom, EGOE(1+2) model is denoted by BEGOE(1+2)-S1 [66]. EGOE(1+2) model pre-

serving parity is denoted by EGOE(1+2)-π [67]. More details on all these EE can be found

in a book on the subject by Kota [31], in a recent review article by Kota and Chavda [34]

and also in [68–70]. In this thesis we have used the spinless EGOE(1+2) and BEGOE(1+2)

models as well as EGOE(1+2)- s , BEGOE(1+2)-F and BEGOE(1+2)-S1 . The defini-

tion and construction of the basic Hamiltonian of all these EE used to model isolated finite

interacting fermion and boson systems in this thesis is given in chapter 2.

Spectral fluctuations arising from various complex quantum systems help in under-
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standing the chaotic dynamics of these systems. Over the years various measures have been

developed in the field of RMT to study spectral fluctuations. Various spacing distributions

like nearest neighbor spacing distribution (NNSD), distribution of ratio of consecutive level

spacings, Dyson-Mehta ∆3 statistic and so on are these measures. In chapter 3, we study

spectral fluctuations using the spectra (i.e. eigenvalues) obtained from the Hamiltonian of

various EE described in chapter 2. For this purpose we use two spacing distributions. In the

first part of this chapter, we have studied the closest neighbor spacing distribution PCN(s)

and the farther neighbor spacing distribution PFN(s) for interacting fermion and boson

systems with and without spin degree of freedom. A very good correspondence between

the numerical EE results and the recently derived analytical expressions using a 3× 3 ran-

dom matrix model and other related quantities is obtained. The construction of this spacing

distribution involves a cumbersome and non-trivial procedure called unfolding, which can

be avoided if we use the method of ratio of spacings. Going beyond the method of ratio of

spacings, in the second part of this chapter, we study the probability distribution of higher

orders of the ratio of spacings for both interacting fermion and boson systems with and

without spin degree of freedom. Our numerical results demonstrate a very good consis-

tency with the recently proposed generalized Wigner surmise like scaling relation. These

results confirm that the recently derived analytical expressions using classical random ma-

trix model for both these distributions are universal in understanding spectral fluctuations in

complex quantum systems. This conclusively establishes that results of local spectral fluc-

tuations generated by EE follow that of given by the classical Gaussian ensembles. Further

the higher order spacing ratio distributions can also reveal quantitative information about the

underlying symmetry structure (examples are isospin in lighter nuclei and scissors states in

heavy nuclei). We use spin ensembles to demonstrate this.

In the chapters so far, the main focus was on one- plus two-body part of the interaction

as inter-particle interaction is known to be only one-body and two-body in nature. How-

ever, it is seen from recent studies that the higher body interactions k > 2 play an important

role in strongly interacting quantum systems [71, 72], nuclear physics [73], quantum black

holes [35, 74] and wormholes [75] with SYK model and also in quantum transport in dis-

ordered networks connected by many-body interactions [76–78]. Therefore, it is necessary

to extend the analysis of EE to higher k -body interactions in order to understand these

problems. They are represented by EGOE( k ) (or BEGOE( k )) for fermion (or boson) sys-

tems. In the presence of mean-field one body part they are represented by EGOE(1+ k ) (or

BEGOE(1+ k )) for fermion (or boson) systems.

From the previous studies, it is known that with EGOE( k )(or BEGOE( k )), the eigen-

value density for a system of m fermions/bosons in N spx states changes from Gaussian

form to semi-circle as k changes from 2 to m [31, 34, 55, 79]. The generating function

of q -Hermite polynomials also demonstrates this Gaussian to semi-circle transition. Due
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to this property of q -Hermite polynomials they have been employed in recent studies on

spectral densities of the so-called SYK model [80,81] and quantum spin glasses [82]. Apart

from this they have been used recently to study the strength functions (also known as local

density of states (LDOS)) and fidelity decay (also known as survival or return probabil-

ity) in EE, both for fermion as well as boson systems [79]. Formulae for parameter q in

terms of m , N and k are derived for fermionic and bosonic EE in [79] which explain

the Gaussian to semi-circle transition in spectral densities and strength functions and also

fidelity decay in many-body quantum systems as a function of rank of interaction. Recently,

the lower-order bivariate reduced moments of the transition strengths are examined for the

action of a transition operator on the eigenstates generated by EGOE( k ) and it is shown

that the ensemble averaged distribution of transition strengths follows a bivariate q -normal

distribution [83]. Also using the bivariate q -normal form, a formula for the chaos measure,

number of principal components (NPC), in the transition strengths from a state is presented

in [83].

In the beginning of chapter 4 the method of construction of Hamiltonian of

EGOE(1+ k ) and BEGOE(1+ k ) for isolated finite interacting fermion and boson systems

is described. Further the q -Hermite polynomials, their generating functions and properties

are introduced. We have also defined the so-called q -normal distribution fqN , conditional

q -normal distribution fCqN and bivariate q -normal distribution fbiv−qN . In the past the

formulae of parameter q in terms of m , N and k for both EGOE( k ) and BEGOE( k )

were derived in [79]. Going beyond this, we have derived an analytical formula of pa-

rameter q considering only the mean-field one-body part for both fermions and bosons.

Furthermore, for a fixed body rank k , the variation of parameter q is studied as the interac-

tion strength λ varies in EGOE(1+ k ) and BEGOE(1+ k ). In the end of this chapter we use

q -Hermite polynomials to study the spectral density for EGOE(1+ k ) and BEGOE(1+ k ).

It is shown that the spectral density of both EGOE(1+ k ) and BEGOE(1+ k ) demonstrate

Gaussian to semi-circle transition and this transition is well described by fqN .

The chapters so far involved the spectral properties of isolated finite interacting many-

particle quantum systems. The spectral properties were analyzed using two measures viz.

ordered level spacing distribution and higher order spacing ratio distribution. These spectral

properties are analyzed using the eigenvalues of these systems. However more information

about the chaotic dynamics of these systems is embedded in the eigenfunctions. In the

upcoming two chapters 5 and 6, we study the structure of wavefunction of these systems

using their eigenfunctions. Now in order to study wavefunction properties, it is necessary

to have knowledge of the strength functions as they play a crucial role in the analysis of

wavefunction properties. They give information about how a particular basis state spreads

over the eigenstates.
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In chapter 5, we analyze the strength function and its width for both fermions and

bosons using EGOE(1+ k ) and BEGOE(1+ k ) respectively. Recently, it is shown that in

the strong coupling limit (i.e. λ > λt ), the Gaussian to semi-circle transition in strength

functions can be represented by fCqN [84]. We show that for both EGOE(1+ k ) and

BEGOE(1+ k ), this transition in strength functions as a function of body rank of inter-

action k is well described by fCqN . Further we have also derived a complete analytical

description of the variance of the strength function in terms of the correlation coefficient ζ ,

as a function of λ and k . The analytical expression of ζ is utilized to obtain the analytical

expression of marker λt which defines the thermalization region in terms of the system

parameters m , N and k . Very recently, analytical formulae for the lowest four moments

of the strength functions for fermion systems modeled by EGOE(1+ k ) are derived in [84].

Lastly in chapter 5, we have analyzed the lower order moments of the strength functions.

The strength functions are a basis in the study of various chaos quantifiers. In chapter

6, we study two such chaos quantifiers viz. number of principal components (NPC) and

information entropy (S info ) using the strength function analysis presented in chapter 5. We

use the interpolating conditional q -normal form fCqN of the strength functions and fqN

form to study NPC and the localization length lH related to S info . An analytical formula

for NPC as a function of energy is derived in terms of two parameters ζ and q for k -body

interaction. For strong enough interaction strength, this formula is tested and found to be

in good agreement with the numerical EE results for both EGOE(1+ k ) and BEGOE(1+ k ).

The other chaos quantifier lH is studied numerically using fCqN for both EGOE(1+ k )

and BEGOE(1+ k ) as a function of energy for k -body interaction and these results are in

good agreement with the EE results. We have also studied time evolution of these systems

using an important quantity called fidelity decay in boson systems after the application of

k -body interaction quench. This is studied for BEGOE(1+ k ) using the interpolating form

of strength functions.

We have seen earlier that k -body interactions play an important role in quantum trans-

port across disordered networks connected by many-body interactions. In chapter 7, we use

all the knowledge of EE with k -body interactions acquired from the work presented in this

thesis as well as from past studies to study the role of centrosymmetry in quantum transport

across disordered fermionic and bosonic networks connected by many-body interactions.

In this regard, we study the influence of centrosymmetry on transport efficiencies of an

initial localized excitation in disordered finite fermionic and bosonic network modeled by

EGOE( k ) and BEGOE( k ) respectively. The disordered fermionic network of d sites is

modeled by three different ensembles that includes many-body interactions: (i) EGOE( k )

without centrosymmetry, (ii) EGOE( k ) with centrosymmetry present in both k as well

as m particle space (denoted by csEGOE( k )) and (iii) EGOE( k ) with centrosymmetry

present in k particle space only (denoted by EGOE( k -cs)). Similarly for bosonic net-
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work, we used BEGOE( k ), csBEGOE( k ) and BEGOE( k -cs) ensembles. We found that

the quantum efficiency is enhanced when centrosymmetry is imposed and the results are in

good agreement with those obtained in past [76].

Finally the last chapter 8, presents the conclusions of the entire work carried out in this

thesis. Also the future directions of the work presented in this thesis are discussed.
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