
Chapter 2

Embedded Ensembles for Fermion and

Boson Systems

I
n random matrix theory, the statistical properties of isolated finite many-particle complex

quantum systems can be investigated by representing its Hamiltonian by a random matrix

that contains all the information about the system. Depending upon the symmetries imposed

on the system, we have tripartite classification of classical random matrices viz. Gaussian

Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE) and Gaussian Symplectic

Ensemble (GSE). This classification was given by Dyson on the basis of symmetries and

angular momentum values of particles.

However, constituent particles of various finite interacting many-particle quantum sys-

tems like nuclei, atoms, quantum dots, etc. interact via few body interactions in the presence

of an average field generated by other particles. This motivated French and co-workers to

introduce random matrix ensembles with few body interactions called Embedded Ensem-

bles (EE) which are now well established models to represent these systems [52, 53]. For

two body interactions in the presence of an average field, their orthogonal variant called

Embedded Gaussian Orthogonal Ensemble (EGOE) is denoted by EGOE(1+2). In these

ensembles, the two particle Hamiltonian matrix is defined using the classical GOE and the

m > 2 particle Hamiltonian matrix is generated using the concepts of direct product space

and Lie algebra. They are generically called EE because of the fact that the two parti-

cle Hamiltonian matrix is embedded in the m particle Hamiltonian matrix. Recently these

models have also been used successfully in understanding high energy physics related prob-

lems. EGOE( k ) for complex fermions are known as complex Sachdev-Ye-Kitaev models

in this area [85–87]. In this chapter we define and describe the construction of Hamilto-

nian matrix of various EE for fermion and boson systems with and without spin degree of

freedom used in this thesis. For spinless fermion and boson systems they are denoted by
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2.1. EGOE for Spinless Systems

EGOE(1+2) and BEGOE(1+2) respectively.

2.1 EGOE for Spinless Systems

The definition and construction of EGOE(1+2) and BEGOE(1+2) are clearly described

in detail in [31]. However, for the sake of completeness we describe these EE here.

Let us consider a system of m fermions (or bosons) without spin and which are to

be distributed in N sp states and interacting via (1+2) body interaction. Let these N sp

states be denoted by |i〉 where i = 1, 2, 3, ..., N and the corresponding sp energies are

ǫi . This distribution of m fermions (or bosons) in N sp states generates a many particle

configuration space with dimension dF (N,m) for fermions (or dB(N,m) for bosons). For

fermions, dF (N,m) =
(
N
m

)
. For example for (N,m) = (12, 6) we have dF = 924 , for

(N,m) = (13, 6) , dF = 1716 and for (N,m) = (14, 7) , dF = 3432 . On the other hand

for bosons, dB(N,m) =
(
N+m−1

m

)
. For example for (N,m) = (4, 10) we have dB = 286 ,

for (N,m) = (5, 10) , dB = 1001 and for (N,m) = (7, 14) , dB = 38760 . A basis state in

m -particle space, due to product nature of the states in occupation number representation,

is denoted by

∣∣∣
∏N

i=1mi

〉
= |m1, m2, . . . , mN〉 , where mi is the number of fermions (or

bosons) in i ’th sp state. For fermions, we have mi = 0 or 1 and for bosons mi can take

any value from 0 to m with
∑

imi = m .

With random two-body interactions V (2) , we can define the Hamiltonian of

EGOE(1+2) as follows,

H = h(1) + λ{V (2)}. (2.1)

In the above Eq. (2.1), h(1) represents the mean field one-body Hamiltonian given by

h(1) =
∑N

i=1 ǫini . Here ǫi are the sp energies and ni are number operators acting on sp

states. For fermions ni = F †
i Fi where F †

i and Fi are the fermion creation and annihila-

tion operators respectively for the sp state |i〉 . Similarly, for bosons ni = B†
iBi with B†

i

and Bi are the boson creation and annihilation operators respectively for the sp state |i〉 .

λ is the two-body interaction strength and notation { } denotes an ensemble. The dimen-

sionality of m -particle Hamiltonian matrix H(m) is d(N,m) = dF (N,m) for fermions

( d(N,m) = dB(N,m) for bosons).
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Chapter 2. Embedded Ensembles for Fermion and Boson Systems

For fermion system, one can define the two-body Hamiltonian matrix as follows,

V (2) =
∑

i < j, k < l

〈kl| V (2)| ij〉F †
l F

†
kFiFj (2.2)

These fermion creation and annihilation operators obey the following anticommutation

rules, {Fi, F
†
j } = δij and {Fi, Fj} = {F †

i , F
†
j } = 0 . In Eq. (2.2), 〈kl| V (2)| ij〉 are

the two body matrix elements (TBME) which are anti-symmetric for fermion systems with

the following symmetries,

〈kl| V (2)| ji〉a = −〈kl| V (2)| ij〉a ,
〈kl| V (2)| ij〉a = 〈ij| V (2)| kl〉a .

(2.3)

For boson system the two-body hamiltonian V (2) is defined in terms of the matrix

elements in the two particle basis states |i, j〉 ≡ |mi = 1, mj = 1〉 if i 6= j or |mi = 2〉 if

i = j ,

V (2) =
∑

i ≤ j

k ≤ l

〈ij| V (2)| kl〉s√
1 + δij

√
1 + δkl

B†
iB

†
jBkBl, (2.4)

For a system of bosons the TBME 〈ij| V (2)| kl〉 are symmetrized with the following sym-

metries,

〈ij| V (2)| kl〉s = 〈kl| V (2)| ij〉s = 〈ji| V (2)| lk〉s = 〈ij| V (2)| lk〉s. (2.5)

These boson creation and annihilation operators obey the following commutation rules,

[
Bi, B

†
j

]
= δ̂ij and

[
Bi, Bj

]
=

[
B†

i , B
†
j

]
= 0̂ .

Action of the two body Hamiltonian operator V (2) on the many particle basis states

|i〉 generates the EGOE(2) (or BEGOE(2)) ensemble in m fermion (or boson) spaces.

The Hamiltonian matrix is a d(N,m) × d(N,m) matrix and it is symmetric because

of the presence of time reversal symmetry with the number of independent matrix elements

ime(N) given by,

ime(N, 2) =
d(N, 2)[d(N, 2) + 1]

2
(2.6)

The m -particle Hamiltonian matrix H(m) is then defined by m particle matrix elements

〈m′
1, m

′
2, . . . , m

′
N |H|m1, m2, . . . , mN〉 . Many of the matrix elements of H(m) for m >
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2.1. EGOE for Spinless Systems

2 are zero due to two-body nature of the interaction. The non-zero matrix elements of

H(m) are linear combinations of the sp energies and the TBME.

For fermions, the non-zero matrix elements are obtained as follows [31],

〈v1v2 . . . vm| V (2)| v1v2 . . . vm〉 =
∑

vi < vj ≤ vm

〈vivj | V (2)| vivj〉 ,

〈vpv2v3 . . . vm| V (2)| v1v2 . . . vm〉 =
vm∑

vi = v2

〈vpvi| V (2)| v1vi〉 ,

〈vpvqv3 . . . vm| V (2)| v1v2v3 . . . vm〉 = 〈vpvq| V (2)| v1v2〉 .

(2.7)

In the above equation Eq. (2.7), | v1v2 . . . vm〉 represents the orbits occupied by m

fermions.

For bosons, the non-zero matrix elements are obtained as follows,

〈m′
1, m

′
2, . . . , m

′
N |H|m1, m2, . . . , mN〉

=
∑
i

ǫi

〈
Πm

′

p|B†
iBi|Πmp

〉
+ λ

∑
i≤j, k≤l

〈ij|V (2)|kl〉√
1+δij

√
1+δkl

〈
Πm

′

p|B†
iB

†
jBkBl|Πmp

〉
.

(2.8)

where B†
i |mi〉 =

√
mi + 1|mi + 1〉 and Bi|mi〉 =

√
mi|mi − 1〉 . The ensemble of H(m)

is obtained by taking the defining TBME as Gaussian random variables with

〈kl|V (2)|ij〉 = 0 and |〈kl|V (2)|ij〉|2 = υ2
(
1 + δ(ij),(kl)

)
, (2.9)

where the bar indicates an ensemble average.

Thus V (2) is a GOE in two-particle space and H(m) is EGOE of two-body interac-

tion with strength λ plus the single particle hamiltonian h(1) .

For realistic finite interacting particle systems like atomic nuclei, quantum dots, nano-

metallic grains, ultracold spinor gases etc. in addition to particle number m , spin quan-

tum number (S ) is important. As group symmetries define various quantum numbers,

in general, one has to consider EGOE with group symmetries. The most trivial spin EE

are EE with spin 1/2 degree of freedom. It is very important to study these as they

have many applications. They are denoted by EGOE(1+2)- s (or BEGOE(1+2)-F ) for

fermions (or bosons) [64, 65]. In BEGOE(1+2)-F , F is fictitious spin-1/2 degree of free-

dom. EGOE(1+2)- s is used to study universal conductance fluctuations in mesoscopic

systems and BEGOE(1+2)-F may be useful in exploring general structures of spinor con-

densates [31]. For boson systems with spin one degree of freedom, EE model is denoted by

BEGOE(1+2)-S1 [66]. The definition and construction of EGOE(1+2)- s , BEGOE(1+2)-
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Chapter 2. Embedded Ensembles for Fermion and Boson Systems

F and BEGOE(1+2)-S1 are clearly described in detail in [64], [65] and [66] respectively

and also in the book [31]. However, for the sake of completeness we describe all these EE

here.

2.2 Embedded Fermionic/Bosonic Ensembles with Spin

2.2.1 EGOE for Fermion with Spin 1/2 Degree of Freedom -

EGOE(1+2)- s : Definition and Construction

We consider a system of m (m > 2 ) fermions distributed in Ω number of sp orbitals

each with spin s = 1
2

so that number of sp states is N = 2Ω . The sp states are denoted

by |i,ms = ±1
2
〉 with i = 1, 2, . . . ,Ω and similarly two particle antisymmetric states are

denoted by |(ij)s,ms〉a with s = 0 or 1 . A complete set of basis states spanning the

Hilbert space can be generated by distributing these m fermions into N sp states. As

fermions have s = 1
2

, the two-fermion spin is given by s = 0 or 1 and m fermion spin S

is given by S = m/2 , m/2−1 , . . . , 0 or 1/2. The two-body Hamiltonian V (2) is defined

by the two-body matrix elements,

V s
ijkl = 〈(kl)s,ms | V (2) | (ij)s,ms〉 (2.10)

with the two-particle spins s = 0, 1 ; note that for s = 1 , only matrix elements with

i 6= j and k 6= l can exist. V (2) = V s=0(2) ⊕ V s=1(2) . As two-particle spins can take

two values, the two-body Hamiltonian V (2) is a direct sum matrix of matrices in spin 0

and 1 spaces with dimensions Ω(Ω + 1)/2 and Ω(Ω − 1)/2 respectively. Thus, V (2)

is defined by two-body matrix elements that are independent of the ms quantum number.

With V s=0(2) and V s=1(2) being independent GOEs in two-particle spaces, the many

fermion Hamiltonian H for EGOE(1+2)- s can be generated by propagating the {V (2)}
ensemble to the m -particle spaces with a given S by using the direct product structure of

the m -particle spaces. Then EGOE(1+2)- s is defined by the Hamiltonian H ,

H = h(1) + λ0{V s=0(2)}+ λ1{V s=1(2)} . (2.11)

where λ0 and λ1 are the two-body interaction strengths of the s = 0 and s = 1 parts re-

spectively. The 1-body Hamiltonian h(1) is defined using sp energies ǫi , with unit average

level spacing, as h(1) =
∑

i ǫi ni . Here, ni are number operators acting on the sp states

|i,ms = ±1
2
〉 .

15



2.2. Embedded Fermionic/Bosonic Ensembles with Spin

For EGOE(1+2)- s , the dimension of H matrix given in Eq. (2.11) is,

d(m,S) =
(2S + 1)

(Ω + 1)

(
(Ω + 1)

m/2 + S + 1

)(
(Ω + 1)

m/2− S

)
. (2.12)

They satisfy the sum rule
∑

S (2S + 1) d(m,S) =
(
N
m

)
. For example for m = 6 and

Ω = 8 , the dimensions are 1176, 1512, 420 and 28 for S = 0,1,2 and 3 respectively.

The many particle Hamiltonian matrix for a given (m,S) can be constructed as fol-

lows: first we consider the sp states
∣∣i,ms = ±1

2

〉
which are arranged in such a way

that the first Ω states have ms = 1
2

and the remaining Ω have ms = 1
2

so that a state

|r 〉 =
∣∣i = r,ms =

1
2

〉
for r ≤ Ω and for r > Ω , |r 〉 =

∣∣i = r − Ω, ms = −1
2

〉
. Now

the m -particle configurations m due to product nature of the states in occupation number

representation, is denoted by

∣∣∣∣∣

N=2Ω∏

r=1

mr

〉
= |m1, m2, . . . , mΩ, mΩ+1, mΩ+2, . . . , m2Ω〉 , (2.13)

where mr can take values 0 or 1. The corresponding mS values are,

mS =
1

2

[
Ω∑

r=1

mr −
2Ω∑

r′=Ω+1

mr′

]
. (2.14)

Here, for even values of m , the m ’s with mS = 0 will include states with all S values

and similarly with mS = 1
2

for odd m . Therefore, the m -particle Hamiltonian matrix

is constructed using the basis defined by m ’s with mS = 0 for even values of m and

mS = 1
2

for odd values of m .

Moving further, the (1+2)-body Hamiltonian defined by (ǫi, V (2)
s=0,1
ijkl ) ’s is converted

into the
∣∣i,ms = ±1

2

〉
basis by changing εi to εr with the index r defined as above and

changing V (2)s=0,1
ijkl to Vimi,jmj ,kmk,lml

where

Vi 1
2
,j 1

2
,k 1

2
,l 1

2

= V s=1
ijkl , Vi− 1

2
,j− 1

2
,k− 1

2
,l− 1

2

= V s=1
ijkl , Vi 1

2
,j− 1

2
,k 1

2
,l− 1

2

=

√
(1 + δij)(1 + δkl)

2
{V s=1

ijkl +V
s=0
ijkl }

(2.15)

with all other matrix elements being zero except for the symmetries,

Vimi,jmj,kmk,lml
= −Vimi,jmj ,kmk,lml

= Vimi,jmj ,kmk,lml
= Vkmk,lml,imi,jmj

. (2.16)

Using (ǫr, Vimi,jmj ,kmk,lml
) ’s, construction of the m -particle H matrix in the basis

defined by Eqs. (2.13) and (2.14) reduces to the problem of EGOE(1+2) for spinless fermion
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Chapter 2. Embedded Ensembles for Fermion and Boson Systems

systems. For the S2 operator, it is easy to recognize that ǫi = 3/4 independent of i ,

V s=0
ijij = −3/2 and V s=1

ijij = 1/2 independent of (i, j) and all other V s ’s are zero. Using

these, for the S2 operator, the m -particle matrix with mS = 0 for even m (and mS = 1
2

for odd m ) is constructed and diagonalized. This gives a direct sum of unitary matrices

and the unitary matrix, that corresponds to a given S is identified by the eigenvalue S(S +

1) . Applying the unitary transformation defined by this unitary matrix, the m -particle

Hamiltonian matrix with mS = 0 for even m (and mS = 1
2

for odd m ) is transformed to

the basis with good S values.

2.2.2 EGOE for Boson with Spin 1/2 Degree of Freedom -

BEGOE(1+2)-F : Definition and Construction

One can also define embedded ensemble for bosons with fictitious spin f = 1/2 degree

of freedom denoted as BEGOE(1 + 2)-F with s replaced by f , with two-particle spin

s replaced by f and many-particle spin S replaced by F in the previous section. For

BEGOE(1+2)-F , the spin algebra remains same as in fermion EGOE(1+2)- s case with

V (2) defined by two-body matrix elements given by,

V f
ijkl = 〈(kl)f,mf | V (2) | (ij)f,mf 〉 (2.17)

and dimensions of spin f = 0 and f = 1 spaces being Ω(Ω − 1)/2 and Ω(Ω + 1)/2

respectively. For BEGOE(1+2)-F , the dimension of H matrix given in Eq. (2.11) is,

d(m,F ) =
(2F + 1)

(Ω− 1)

(
(Ω− 1) + (m/2 + F + 1)− 1

m/2 + F + 1

)(
(Ω− 1) + (m/2− F )− 1

m/2− F

)
.

(2.18)

satisfying the sum rule
∑

F (2F + 1) d(m,F ) =
(
N+m−1

m

)
. For example for m = 10 and

Ω = 4 , the dimensions are 196, 540, 750, 770, 594 and 286 for spins S =0, 1, 2, 3, 4 and 5

respectively. In order to construct the many particle Hamiltonian matrix for boson systems

for a given (m,F ) , mr can take values between 0 to m/2 (for even m ) and m/2 + 1 (for

odd m ) with
∑N

r mr = m .

For boson systems the (1+2)-body Hamiltonian defined by (ǫi, V (2)
f=0,1
ijkl ) ’s is con-

verted into the
∣∣i,mf = ±1

2

〉
basis by changing εi to εr with the index r defined as

above and changing V (2)f=0,1
ijkl to Vimi,jmj ,kmk,lml

= 〈imi, jmj | V (2)| kmk, lml〉 using

the Eq. (2.15) with all other matrix elements being zero except for the symmetries,

Vimi,jmj,kmk,lml
= Vkmk,lml,imi,jmj

= Vjmj ,imi,lml,kmk
= Vimi,jmj ,lml,kmk

. (2.19)
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2.2. Embedded Fermionic/Bosonic Ensembles with Spin

Using (ǫr, Vimi,jmj ,kmk,lml
) ’s, construction of the m -particle H matrix in the basis

defined by Eqs. (2.13) and (2.14) reduces to the problem of BEGOE(1+2) for spinless boson

systems. The construction of F 2 operator is similar to that of S2 described in the last

paragraph of the previous section. Using F 2 operator, the m -particle matrix with mF = 0

for even m (and mF = 1
2

for odd m ) is constructed and diagonalized. This gives a direct

sum of unitary matrices and the unitary matrix, that corresponds to a given S is identified

by the eigenvalue F (F + 1) . Applying the unitary transformation defined by this unitary

matrix, the m -particle Hamiltonian matrix with mF = 0 for even m (and mF = 1
2

for

odd m ) is transformed to the basis with good F values.

2.2.3 EGOE for Boson with Spin 1 Degree of Freedom - BEGOE(1+2)-

S1 : Definition and Construction

Let us consider a system of m (m > 2 ) interacting bosons distributed in Ω number of

single particle (sp) orbitals each with spin s = 1 . The number of single particle states are

N = 3Ω . The single particle states are denoted by |i,ms = 0,±1〉 with i = 1, 2, . . . ,Ω

and the two particle symmetric states are denoted by |(ij)s,ms 〉s with s = 0, 1 or 2 . The

total dimensionality of the two-particle space with the matrix dimension for space s = 0 ,

s = 1 and s = 2 are Ω(Ω + 1)/2 , Ω(Ω − 1)/2 and Ω(Ω + 1)/2 respectively. The two-

body Hamiltonian V (2) preserving m particle spin S is defined by the symmetrized two-

body matrix elements V (2)sijkl = s 〈(kl)s,ms | V (2) | (ij)s,ms〉s with the two-particle

spin s = 0, 1, 2 and they are independent of the ms quantum number; note that for s = 1

only i 6= j and k 6= l matrix elements exist. Thus we have

V (2) = V (2)s=0 + V (2)s=1 + V (2)s=2 (2.20)

The sum here is a direct sum. Now, by defining the two parts of the two-body Hamiltonian

to be independent GOE’s in the 2-particle spaces [ each one for V (2)s=0 , V (2)s=1 and

V (2)s=2 ], BEGOE(2)-S1 for a given (m,S) system is generated and then propagating

the V (2) ensemble {V (2)} = {V (2)s=0} + {V (2)s=1 + {V (2)s=2} to the m -particle

spaces with a given spin S by using the geometry (direct product structure) of the m -

particle spaces; here { } denotes ensemble. The embedding algebra is U(3) ⊃ G ⊃ G1⊗
SO(3) with SO(3) generating spin S . For one plus two-body Hamiltonians preserving

m particle spin S , the one-body Hamiltonian is given by,

h(1) =
∑

i=1,2,...,Ω

ǫini (2.21)
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where the orbits i are three fold degenerate, ni are number operators and ǫi are sp ener-

gies. Then BEGOE(1+2)-S1 is defined by

{H}BEGOE(1+2)-S1 = h(1)+λ0 {V (2)s=0}+λ1 {V (2)s=1}+λ2 {V (2)s=2} . (2.22)

Here {V (2)s=0} , {V (2)s=1} and {V (2)s=2} are GOE’s with unit variance and λ0 , λ1

and λ2 are the strengths of the s = 0 , s = 1 and s = 2 parts of V (2) , respectively.

The mean-field one body part h(1) in Eq.(2.22) is a fixed one–body operator defined by sp

energies with average spacing ∆ . Without loss of generality we put ∆ = 1 so that λ0 , λ1

and λ2 are in the units of ∆ .

The H matrix dimension d(m,S) for a given (m,S) , i.e. number of states in the

(m,S) space [with each of them being (2S + 1) -fold degenerate], is given by

d(Ω, m, S)

= 4F3

[
{Ω, m′

, m
′

+
1

2
,Ω+ S}, {1− Ω

2
+m

′

,
2− Ω

2
+m

′

, S + 1}, 1
]

× Γ[Ω− 2m
′

]Γ[Ω + S]

Γ[Ω]2Γ[1 + 2m′]Γ[S + 1]

−4F3

[{
Ω, m

′

+
1

2
, m

′

+ 1,Ω+ S + 1

}
,

{
2− Ω

2
+m

′

,
3− Ω

2
+m

′

, S + 2

}
, 1

]

×Γ[Ω− 2m
′ − 1]Γ[Ω + S + 1]

Γ[Ω]2Γ[2m′ ]Γ[S + 2]
. (2.23)

where m
′

= S−m
2

. They satisfy the sum rule
∑

S (2S+1) d(m,S) =
(
N+m−1

m

)
. PFQ and

Γ are the hyper geometric function and gamma function respectively. For S = Smax = m

second term in the above expression is taken to be zero. For example, for m = 5 and

Ω = 5 the dimensions are 126, 600, 525, 525, 224, 126 for spins S =0-5 respectively. For

m = 10 and Ω = 4 , the dimensions are 714, 1260, 2100, 1855, 1841, 1144, 840, 315 and

165 for spins S =0-10 respectively. Similarly, for m = 5 and Ω = 6 , the dimensions are

336, 1386,1260,1176,504 and 252 for spins values S =0-5 respectively.

With sp energies ǫi and two-body matrix elements V (2)sijkl , the many particle Hamil-

tonian matrix for a given (m,S ) can be constructed using the MS representations and

a spin projection operator, S2 as described in [64] or directly in a good S basis using

angular-momentum algebra. We have employed the MS representation for constructing

the H matrices and the S2 operator for projecting states with good S as described in [64].

The dimension of this basis space is
∑

S d(m,S) . for example for (m = 10,Ω = 4 )

we have
∑

S d(m,S)=10234, for (m = 5,Ω = 5 ) we have
∑

S d(m,S)=2126, for

(m = 8,Ω = 6 ) we have
∑

S d(m,S)=155217, for (m = 5,Ω = 6 ) we have
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2.2. Embedded Fermionic/Bosonic Ensembles with Spin

∑
S d(m,S)=4914. In order to construct the many particle Hamiltonian matrix for a given

(m,S) , first the single particle states |i,ms = 0, ±1〉 are arranged in such a way that the

first Ω states have ms = 1 , the next Ω states have ms = 0 and the remaining Ω hav-

ing ms = −1 so that a state |r 〉 = |i = Ω, ms = 1〉 for r ≤ Ω , for Ω < r ≤ 2Ω ,

|r 〉 = |i = r − Ω, ms = 0〉 and for r > 2Ω |r 〉 = |i = r − Ω, ms = −1〉 . Now the

m -particle configurations m due to product nature of the states in occupation number rep-

resentation, is denoted by

∣∣∣∣∣

N=3Ω∏

r=1

mr

〉
= |m1, m2, . . . , mΩ, mΩ+1, mΩ+2, . . . , m2Ω, m2Ω+1, m2Ω+2, . . . , m3Ω〉 , (2.24)

where mr can take values between 0 to m with
∑N

r mr = m . The corresponding mS

values are,

mS =

[
Ω∑

r=1

mr −
3Ω∑

r′=2Ω+1

mr′

]
. (2.25)

To proceed further, the (1+2)-body Hamiltonian defined by (ǫi, V (2)
s=0,1,2
ijkl ) ’s is con-

verted into the |i,ms = 0, ±1〉 basis by changing ǫi to ǫr with the index r defined as

above and changing V (2)s=0,1,2
ijkl to Vimi,jmj ,kmk,lml

= 〈imi, jmj | V (2)| kmk, lml〉 using

the following equations

Vi1,j1,k1,l1 = Vi−1,j−1,k−1,l−1 = V s=2
ijkl

Vi0,j0,k0,l0 =
1

3
{V s=0

ijkl + 2V s=2
ijkl }

Vi0,j1,k0,l1 = Vi0,j−1,k0,l−1 =

√
(1 + δij)(1 + δkl)

2
{V s=1

ijkl + V s=2
ijkl } (2.26)

Vi−1,j1,k−1,l1 =

√
(1 + δij)(1 + δkl)

6
{2V s=0

ijkl + 3V s=1
ijkl + V s=2

ijkl }

Vi−1,j1,k0,l0 =

√
(1 + δij)

3
{V s=2

ijkl − V s=0
ijkl }

with all other matrix elements being zero except for the symmetries,

Vimi,jmj,kmk,lml
= Vkmk,lml,imi,jmj

= Vjmj ,imi,lml,kmk
= Vimi,jmj ,lml,kmk

. (2.27)

Using (ǫr, Vimi,jmj,kmk,lml
) ’s, construction of the m particle H matrix in the basis defined
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by Eq. (2.24) reduces to the problem of BEGOE(1+2) for spinless boson systems. For the

S2 operator, it is easy to recognize that ǫi = 2 independent of i , V s=0
ijij = −4 , V s=1

ijij = −2

and V s=0
ijij = 2 independent of ( ij ) and all other V s are zero. Using these, for the S2

operator, the m particle matrix with mS = 0 is constructed and diagonalized. This gives

a direct sum of unitary matrices and the unitary matrix that corresponds to a given S is

identified by the eigenvalue S(S +1) . Applying the unitary transformation defined by this

unitary matrix, the m particle H matrix with mS = 0 is transformed to the basis with

good S values.
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