
Chapter 3

Spacing Distributions

3.1 Introduction

C
omplex quantum systems from a wide variety of fields like quantum chaos, finance

[43], econophysics [44], quantum chromodynamics [36], functional brain structures

[88] and many more give rise to spectral fluctuations. It is very crucial to study these spectral

fluctuations in order to understand the inherent complexities of complex quantum systems.

These spectral fluctuations firstly reveal whether the given complex quantum system is in

regular (or integrable) domain or in chaotic domain and they also describe the transition

from regular to chaotic domain. In the context of quantum systems, the system is said to be

integrable when we have knowledge of all the quantum numbers of the system, otherwise

the system is said to be non-integrable or chaotic. In addition to this, they are also useful in

characterizing distinct phases observed in physical systems such as localized or delocalized

phase [89], insulating or metallic phase of many-body systems [90,91], integrable or chaotic

limit of the underlying classical system [92] and low-lying shell model or mixing regime of

nuclear spectra [55,93]. RMT is now established as a good model to describe these spectral

fluctuations.

Over the years various measures have been developed in the field of RMT to study

spectral fluctuations. Some of these measures give us knowledge about short-range corre-

lations and others about long-range correlations between the energy-levels of the spectra

of these systems. Among all these measures of RMT, one of the most popular and widely

used is the nearest neighbor spacing distribution (NNSD) P (s) , which gives the degree of

level repulsion. It tells us about the short-range correlations between nearest neighbors of

energy-levels (or eigenvalues) of the complex quantum system. In 1984, Bohigas et al [37]

conjectured that for a quantum system preserving time reversal and rotational symmetry
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(represented by GOE), if a quantum system is chaotic then NNSD follows the Wigner sur-

mise, which is the GOE result and it is given by,

P (s) =
π

2
s exp

(−πs2
4

)
(3.1)

This indicates the presence of ‘level repulsion’ and the energy levels are correlated. This

was proved for certain systems by Haake et al [94]. On the other hand Berry and Tabor [95]

established that if a quantum system is integrable, NNSD follows Poisson distribution, given

by

P (s) = exp(−s). (3.2)

This displays ‘level clustering’ and the energy levels are uncorrelated. In order to con-

struct NNSD for a given set of eigenvalues, we need to remove the variation in the density

of eigenvalues. This is done using the procedure called unfolding [46, 55]. Recently the

transition from regular to chaotic domain in wormholes and open quantum systems has

been studied using NNSD [75, 96]. Going beyond the NNSD, higher-orders of these level

spacings are also studied and the analytical expression for its distribution is derived in [97]

using a Wigner-like surmise for Gaussian random matrix ensembles and also for Poisson

ensemble.

Moving ahead, over the years various other measures in the field of RMT like number

variance and spectral rigidity have been developed to study the long range correlations in

these complex quantum systems [55, 98–100]. Complex systems can be represented in the

form of a network and the spectral properties of these networks are now known to follow

RMT. This opened a route to predict and control functional behavior of these complex sys-

tems [101, 102]. Now the short range correlations given by NNSD may give information

only about the random connections in complex systems such as cancer networks. However,

one can obtain further details about the underlying structural patterns in these systems if one

studies long range correlations using measures like spectral rigidity [103]. Hence the long

range correlation measures are also important along with short range correlation measures

in the study of complex quantum systems. The intermediate distribution between Poisson

and GOE was studied by Brody and hence called Brody distribution [104]. Recently, inter-

mediate semi-poissonian statistics [105] and crossover random matrix ensembles [106] are

also reported.

Going beyond this, recently Srivastava et. al. introduced another measures of spectral

fluctuations called the distribution of the closest neighbor (CN) spacings, sCN and farther

neighbor (FN) spacings, sFN from a given level [107]. The distribution of sCN spacings is

important in the context of perturbation theory, as the contribution from the closest neighbor
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(CN) is prominent due to smaller energy spacing [108]. The distribution of sFN spacings

is complementary to that of sCN . In [107], the analytical formulas for the distribution of

CN and FN spacings are derived for GOE, GUE and GSE based on 3× 3 matrix modeling

and also for Poisson spectra. These analytical formulas are tested and found to be in very

good agreement with the numerical results for the integrable circle billiard, fully chaotic

cardioid billiard, standard map with chaotic dynamics and broken time reversal symmetry,

and the zeros of the Riemann zeta function. In the first part of this chapter, we analyze the

probability distributions of sCN and sFN using all the EGOE(1+2) ensembles for fermion

and boson systems (with and without spin degree of freedom) which we have defined in

chapter 2.

All the measures of spectral fluctuations discussed so far require the procedure of un-

folding of the spectra in order to remove the secular variation in the density of eigenvalues

[46, 55]. The unfolding is a cumbersome and non unique numerical procedure. Also, for

many-body systems such as Bose-Hubbard model, unfolding procedure of the spectra be-

comes non-trivial as the density of states is not a smooth function of energy in the strong in-

teraction domain [109–111]. Similarly, though in the nuclear shell model to a good approx-

imation the density of states is close to an Edgeworth corrected Gaussian, in the interacting

boson models of atomic nuclei, the smooth form of the density of states is not determined.

Moreover, there are discrepancies between spectral and ensemble unfolding for non-ergodic

random matrices [53, 55, 112]. In 2007 Oganesyan and Huse introduced a very good alter-

native to NNSD called the distribution of the ratio of consecutive level spacings P (r) of the

energy levels [109] and since then this method is gaining a lot of attraction [103, 113–117].

This is mainly because this method is simple to compute and no unfolding is needed as it is

independent of the form of the density of the energy levels. The analytical expressions for

P (r) for the classical random matrix ensembles GOE, GUE and GSE were derived by Atas

et. al [118]. Further these spacing ratios have been studied in finite many particle quantum

systems modeled by embedded random matrix ensembles by Chavda and Kota [113]. This

study established that for strong enough interactions they follow GOE results. The statistics

of ratio of spacings has been used to quantify the distance from integrability on finite size

lattices [110, 111], to investigate many-body localization [109, 119–121], to study spectral

correlations in diffused van der Waals clusters [122] and to analyze spectra of uncorrelated

random graph network [123]. More recently, exact distribution of spacing ratios for random

and localized states in quantum chaotic systems is obtained using a 3 × 3 random matrix

model with a possible correction term to it in [124].

Recently the higher orders of these spacing ratios have been studied in [125] and a gen-

eralized form of Wigner surmise has been proposed for the distribution of non-overlapping

spacing ratios of higher-orders. This is shown for Gaussian and circular ensembles of RMT

and for several physical systems such as spin chains chaotic billiards, Floquet systems and
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measured nuclear resonances. It is important to note that in the past, a generalization of the

Wigner surmise relation has been proposed between the higher order spacing distributions

and NNSD [126, 127]. Also in [128], the higher order spacing distributions have been

studied for systems with mixed regular chaotic dynamics. It is important to note that the ra-

tio of two consecutive level spacings introduced by Oganesyan and Huse [109] in 2007 can

be given in terms of sCN and sFN by r̃ = sCN

sFN
. In the second part of this chapter, we have

analyzed the generic properties of non-overlapping higher order spacing ratios for various

fermionic and bosonic embedded ensembles, with and without spin degree of freedom.

The Hamiltonian matrix H of a complex quantum system in finite dimensional space

contains all information about the system. The nature of the matrix depends on various

symmetries imposed on the system. In the presence of symmetries, the Hilbert space of

the system splits into invariant subspaces giving block diagonal form for H . Each block

is characterized by good quantum numbers corresponding to the respective symmetries.

The spectral fluctuations of complex quantum systems are known to be consistent with that

from random matrices, only for the discrete levels drawn from the same subspace. For

mixed spectra, the levels from different blocks are superposed ignoring the symmetries, re-

sulting in level clustering as the actual correlation between the levels is lost. This may give

rise to misleading results since the level clustering is also a spectral signature of integrable

systems [95]. Recently on the basis of rigorous numerical evidence, it is shown that us-

ing the higher order spacing statistics, in addition to the fluctuation characteristics, one can

also obtain information about symmetry structure, for arbitrary sequence of measured or

computed levels without desymmetrization [129]. Here desymmetrization means symme-

try decomposition of the spectra of quantum systems. Recently this has also been studied

in [130] using circular orthogonal, unitary and simplectic ensembles of RMT and the results

are tested with three different physical systems viz. measured nuclear resonances, quantum

chaotic kicked top and spin chains. With this result, it is also possible to analyze any arbi-

trary sequence of experimentally observed levels, whose symmetry structure is unknown.

This method involves only the calculation of higher order spacing ratios and is straight-

forward compared to the complicated and approximate methods based on two-level cluster

function for a composite spectrum [131, 132]. In the second part of this chapter, following

the analysis of distribution of higher order spacing ratios, we also show that the quantitative

information about the symmetry structure of the system can be obtained using higher order

spacing ratios for embedded ensembles with spin degree of freedom.

Following this introductory section, the rest of the chapter is organized as follows. All

the five different examples of EGOE(1+2) for fermion and boson systems with and without

spin degree of freedom, used to analyze both the spacing distributions are given in section

3.2. The ordered level spacing distributions are introduced in section 3.3 along with their

analytical results. The numerical results of ordered level spacing distributions are presented
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in section 3.3.1. Further the higher order spacing ratios are defined in section 3.4. The

numerical results of higher order spacing ratios are given in section 3.4.1. The quantitative

information of the underlying symmetry structure in these systems is obtained using the

distribution of higher order spacing ratios and these results are presented in section 3.4.2.

The last section 3.5 gives conclusions of the entire analysis presented in this chapter. This

chapter is based on [133] and [134].

3.2 EGOE Examples Used to Study Spacing Distributions

In this chapter in order to analyze two spacing distributions viz. ordered level spacing

distribution and distribution of higher order spacing ratios, we consider the following five

examples of EGOEs in many-particle spaces:

1. EGOE(1+2) with m = 6 and N = 12 resulting in matrix dimension of H is

d = 924 . The sp energies are chosen as ǫi = i + 1/i , i = 1, 2, ..., 12 and the

interaction strength is λ ; For more details refer [24].

2. EGOE(1+2)-s with m = 6 , Ω = 8 , S = 0 − 3 with matrix dimensions of H are

1176 , 1512 , 420 and 28 respectively. The sp energies are chosen as ǫi = i + 1/i ,

i = 1, 2, ..., 8 and the interaction strength λ = λ0 = λ1 ; For more details refer

[64, 135].

3. BEGOE(1+2) with m = 10 and N = 5 resulting in matrix dimension of H is

d = 1001 . The sp energies are chosen as ǫi = i + 1/i , i = 1, 2, ..., 5 and the

interaction strength is λ ; For more details refer [27, 62].

4. BEGOE(1+2)-F with m = 10 , Ω = 4 , and F = 0− 5 with matrix dimensions of

H are 196 , 540 , 750 , 770 , 594 and 286 respectively. The sp energies are chosen

as ǫi = i + 1/i , i = 1, 2, 3, 4 and the interaction strength λ = λ0 = λ1 ; For more

details refer [22, 65].

5. BEGOE(1+2)-S1 with m = 8 , Ω = 4 , S = 0 − 8 with matrix dimensions of H

are 714 , 1260 , 2100 , 1855 , 1841 , 1144 , 840 , 315 and 165 respectively. The

sp energies are chosen as ǫi = i + 1/i , i = 1, 2, 3, 4 and the interaction strength

λ = λ0 = λ1 = λ2 ; For more details refer [66].

Throughout this chapter, an ensemble of 500 members is used for all the examples to

study both the spacing distributions. It is important to note that as λ increases in these EE,
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(both fermion and boson), there is Poisson to GOE transition in level fluctuations at λ = λC

and Breit-Wigner to Gaussian transition in strength functions at λ = λF > λC . Also, they

generate a third chaos marker at λ = λt > λF , a point or a region where thermalization

occurs. In the region where λ > λF , there is enough mixing among the basis states and the

system is in the Gaussian domain. For spinless fermion systems (i.e. EGOE(1+2)), λ = 0.1

is sufficiently large so that the system is in Gaussian domain [24]. Also, for fermions with

spin degree of freedom, EGOE(1+2)- s is in Gaussian domain with λ = 0.1 [64, 135].

Similarly, for spinless bosons BEGOE(1+2) is in Gaussian domain for λ = 0.06 [27, 62].

For boson ensembles with spin degree of freedom, BEGOE(1+2)-F with λ = 0.08 [22,65]

and BEGOE(1+2)-S1 with λ = 0.2 [66], again the systems exhibit GOE level fluctuations

and the eigenvalue density as well as strength functions are close to Gaussian. The values

of λ in all the ensemble calculations presented in this chapter are chosen sufficiently large

so that there is enough mixing among the basis states and the system is in the Gaussian

domain, i.e. λ > λF .

3.3 Ordered Level Spacing Distribution

In this section we define CN and FN spacings and give the analytical expressions of

their probability distributions for both GOE and Poisson. Consider the set of unfolded

eigenvalues en with n = 1, 2, ..., d such that e1 < e2 < ... < ed . Then the spacing

between nearest neighbor levels can be given by sn = en+1 − en . Then, CN spacing is

defined as sCN
n = min{sn+1, sn} and the FN spacing is defined as sFN

n = max{sn+1, sn} .

The probability distribution for the CN spacings and the FN spacings are represented by

PCN(s) and PFN(s) respectively. If the system is in integrable domain then the form of

NNSD gives Poisson distribution. Then PCN(s) and PFN(s) are given by,

P P
CN(s) = 2 exp(−2s) (3.3)

and

P P
FN(s) = 2 exp(−s)[1− exp(−s)] , (3.4)

respectively.

Similarly, if the system is in chaotic domain then the NNSD is GOE and is derived

using 3× 3 real symmetric matrices. Then PCN(s) and PFN(s) are given by [107],

28



Chapter 3. Spacing Distributions

PGOE
CN (s) = a

π
s exp(−2as2)[3

√
6πa s− π exp

(
3a
2
s2
)

×(as2 − 3) erfc(
√

3a
2
s)]

(3.5)

and

PGOE
FN (s) = a

π
s exp(−2as2) [π exp

(
3a
2
s2
)

×(as2 − 3) {erf(
√

a
6
s)− erf(

√
3a
2
s)}

+
√
6πa s(exp

(
4a
3
s2
)
− 3)]

(3.6)

respectively.

Here a = 27
8π

. It is important to note that 2P (s) = PCN(s) + PFN(s) . For small

spacings s , PGOE
CN (s) shows level-repulsion similar to the NNSD and PGOE

FN (s) ∝ s4 .

While for large s , PGOE
FN (s) ∝ exp

(−2a
3
s2
)

. For GOE, the average value 〈sCN〉 = 2
3

and

for Poisson it is 1
2

. However, the average value 〈sFN〉 = 4
3

for GOE and 3
2

for Poisson.

In this chapter, we have studied spectral fluctuations in EE for fermion and boson sys-

tems with and without spin degree of freedom using PCN and PFN . We present the nu-

merical results in the next section.

3.3.1 Numerical Results

In this section the probability distributions of CN and FN spacings for all the

EGOE(1+2) examples given in section 3.2 are constructed using the following procedure.

To construct these distributions we first need to carry out the procedure of unfolding of the

spectrum, in order to remove the variation in the density of eigenvalues. In this chapter,

the unfolding of the spectrum is done using the procedure used in [112], with the smooth

density as a corrected Gaussian with corrections involving up to 4-6th order moments of

the density function so that the average spacing is unity. The process of unfolding is done

separately for each member. Then the numerical histograms are constructed for PCN(s)

and PFN(s) using the central 80% part of the spectrum with the bin size equal to 0.1.

We have also computed the ensemble averaged skewness ( γ1 ) and excess ( γ2 ) parameters

which are shown in Table 3.1 for all the examples of EE analyzed in this chapter. Now

first let us consider EE without spin degree of freedom. The histograms in Fig. 3.1 present

the PCN(s) and PFN(s) results for EE without spin degree of freedom, EGOE(1+2) (for

fermions) and BEGOE(1+2) (for bosons). Moving further with spin degree of freedom, Fig.

3.2 presents the EE results with spin degree of freedom, EGOE(1+2)- s (for fermions) and

29



3.3. Ordered Level Spacing Distribution

BEGOE(1+2)-F and BEGOE(1+2)-S1 (for bosons). All these numerical ensemble av-

eraged results are compared with the theoretical predictions (red continuous curves) given

by Eqs.(3.5) and (3.6) for all the examples in these figures and a very good agreement is

observed between them. Also, the ensemble averaged values of 〈sCN〉 and 〈sFN〉 are cal-

culated for all these examples and are given in Table 3.2. They are found to be very close

to corresponding GOE estimates. In addition to this, we have also analyzed shell model

example which is a typical member of EGOE(1+2)-JT [24]. In literature this ensemble is

usually known as TBRE [54]. The result is shown in Fig. 3.3. Here also the shell model

results along with the calculated averages are consistent with the theoretical predictions.
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Figure 3.1: Black histograms represent the probability distribution of closest neighbor spac-

ings PCN(s) and farther neighbor spacings PFN(s) for a 500 member (a) EGOE(1+2)

ensemble and (b) BEGOE(1+2) ensemble. The red smooth curves are obtained using Eqs.

(3.5) and (3.6). The NNSD is shown by green histogram for comparison.

Past studies have shown that EGOE(1+2) and BEGOE(1+2) ensembles exhibit a Pois-

son to GOE transition in level fluctuations with increase in the strength of the two-body
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Figure 3.2: The probability distribution of closest neighbor spacings PCN (s) and farther

neighbor spacings PFN(s) for (a) EGOE(1+2)- s ensemble for spin values S = 0 and 1
(b) BEGOE(1+2)-S1 ensemble for spin value S = 4 and (c) BEGOE(1+2)-F ensemble

for spin values F = 0, 2 and 5 . See Fig. 3.1 and text for details.

interaction λ [24, 62, 65, 115, 135]. It is also possible to study this Poisson to GOE tran-

sition in terms of 〈sCN〉 and 〈sFN〉 . We have computed 〈sCN〉 and 〈sFN〉 for spin-less

fermion and boson ensembles by varying the interaction strength λ and the results are

shown in Fig. 3.4. It is clearly seen that for lower values of λ , the values of 〈sCN〉
and 〈sFN〉 are close to Poisson, which gradually reach the GOE value with increase in
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Figure 3.3: The probability distribution of closest neighbor spacings PCN (s) and farther

neighbor spacings PFN(s) vs. s for Nuclear shell model example: 24 Mg with 8 nucleons

in the ( 2s1d ) shell with angular momentum J = 2 and isospin T = 0 . The matrix

dimension is 1206 and all levels are used in the analysis. See Ref. [112] for further details.

The skewness and excess parameters are γ1 = 0.139 and γ2 = −0.061 . 〈sCN〉 and 〈sFN〉
values are also given in the figure.

λ . Therefore, there is a transition from Poisson to GOE form in PCN(s) (and also in

PFN(s) ). With this it is possible to define a chaos marker λC such that for λ > λC , the

level fluctuations follow GOE. This transition occurs when the interaction strength λ is of

the order of the spacing ∆ between the states that are directly coupled by the two-body

interaction. In the past, the NNSD [136] and the distribution of ratio of consecutive level

spacings [114] have been used to study Poisson-to-GOE transition by constructing suitable

random matrix model and the transition parameters were used to identify the chaos marker

λC in the EE [24, 62, 65, 115, 135]. Corresponding to the critical values of these transition

parameters required for onset of GOE fluctuations, we found the critical value of 〈sCN〉 ,

〈sCN〉C = 0.62 (and 〈sFN〉C = 1.38 ). This is represented by blue dotted lines in Fig.

3.4. 〈sCN〉C = 0.62 gives λC ≃ 0.028 for EGOE(1+2) example and λC ≃ 0.024 for

BEGOE(1+2) example. These values are shown by dashed vertical lines in Fig. 3.4 and are

close to the previously obtained results [31, 115]. These results show that, these measures
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can also be used to identify λC marker using PCN(s) and PFN(s) .
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Figure 3.4: Ensemble averaged values of 〈sCN〉 (lower panel) and 〈sFN〉 (upper panel) as

a function of the two-body strength of interaction λ , obtained for EGOE(1+2) ensemble

with (m,N) = (6, 12) (black circles) and BEGOE(1+2) ensemble with (m,N) = (10, 5)
(red circles). In the calculations sp energies are drawn from the center of a GOE. The

vertical dash-lines represent the position of λC for the corresponding EGOE(1+2) and

BEGOE(1+2) examples. In each calculation, an ensemble of 500 members is used.

The horizontal dotted-lines represent Poisson estimate (black), GOE estimate (red) and

〈sCN〉C = 0.62 (and 〈sFN〉C = 1.38 ). See text for further details.

3.4 Distribution of Higher Order Spacing Ratios

Let us consider the set of eigenvalues En with n = 1, 2, ..., d such that E1 < E2 <

... < Ed . The consecutive eigenvalue spacings are given by sn = En+1 − En . The ratios
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Table 3.1: The ensemble averaged values of parameters γ1 (skewness) and γ2 (excess) for

various embedded ensemble examples used in this chapter.

Embedded Ensemble γ1 γ2
EGOE(1+2) 0.0008 -0.3431

EGOE(1+2)-s

S = 0 0.0202 -0.3034

S = 1 0.0178 -0.3352

BEGOE(1+2) 0.0922 -0.2329

BEGOE(1+2)-F
F = 0 0.0088 -0.3114

F = 2 0.0469 -0.3129

F = 5 0.0677 -0.2569

BEGOE(1+2)-S1
S = 4 0.0349 -0.1111

Table 3.2: Average values of the closest neighbor spacings ( 〈sCN〉 ) and farther neighbor

spacings ( 〈sFN〉 ) obtained numerically for various embedded ensemble examples used in

this chapter. Theoretical average values for Poisson and GOE are also given.

Embedded Ensemble 〈sCN〉 〈sFN〉
EGOE(1+2) 0.6613 1.3417

EGOE(1+2)-s

S = 0 0.6616 1.3411

S = 1 0.6625 1.3409

BEGOE(1+2) 0.6600 1.3401

BEGOE(1+2)-F
F = 0 0.6585 1.3421

F = 2 0.6600 1.3404

F = 5 0.6578 1.3420

BEGOE(1+2)-S1
S = 4 0.6600 1.3401

Poisson 1
2

3
2

GOE 2
3

4
3

of two nearest neighbor or consecutive eigenvalue spacings are given by rn = sn+1/sn .

For GOE, using an exact calculation for 3 × 3 real symmetric matrices, the probability

distribution P (r) for consecutive eigenvalue spacings is derived to be given by Wigner-
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like surmise [118],

PW (r) =
27

8

(r + r2)

(1 + r + r2)5/2
. (3.7)

On the other hand if the quantum system is in integrable domain the probability distri-

bution P (r) is given by,

PP (r) =
1

(1 + r)2
. (3.8)

Nearest neighbor spacing ratios r probe fluctuations in spectral scales of the order of unit

mean spacing. Many different variants of consecutive level spacing ratios have been studied

recently [113, 114, 124].

Now let us define the non-overlapping higher order spacing ratios such that there is no

shared eigenvalue spacing in the numerator and denominator. They are given as,

r(k)n =
s
(k)
n+k

s
(k)
n

=
en+2k − en+k

en+k − en
; n, k = 1, 2, 3... (3.9)

Higher order spacing ratios r(k) probe fluctuations in spectral interval of k mean spacings.

Let P k(r) denote the non-overlapping k -th order probability distribution. Recently, for the

random matrices, belonging to the Gaussian and circular ensembles of RMT, it is shown that

there exists an elegant scaling relation between non-overlapping k -th order spacing ratio

distribution and the nearest neighbor spacing ratio distribution [125]. For GOE random

matrices applicable to Hamiltonians with time-reversal invariance, non-overlapping k -th

order spacing ratio distribution P k(r) is identical to the nearest neighbor spacing ratio

distribution Pα(r) with scaling parameter α and its functional form is given by [125],

P k(r) = Pα(r) = Cα
(r+r2)α

(1+r+r2)1+3α/2 ,

α = (k+2)(k+1)
2

− 2, k ≥ 1 .

(3.10)

Here Cα is a normalization constant. The scaling parameter α ≥ 4 can take large integer

values and it accounts for the dependence on order k of the spacing ratio. On the other

hand if the quantum system is in integrable domain, non-overlapping k -th order spacing

ratio distribution P k(r) is given by,

P k
P (r) =

(2k−1)!
[(k−1)!]2

rk−1

(1+r)2k
. (3.11)

Note that we have P (r) = P 1(r) = P1(r) . This means that k = 1 gives the P (r) dis-

tribution. The generalized scaling relation holds good for Gaussian and circular ensembles
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of RMT and for several physical systems such as spin chains, chaotic billiards, Floquet

systems and measured nuclear resonances [125]. Also in [125], the finite size effect and

different rate of convergence of the scaling relation are discussed as well using various ex-

amples. It is also useful if we compute the average values of spacing ratios r which is

given by 〈r〉 =
∫
r P k(r) dr . In a similar manner, we can compute the average values of

spacing ratios 〈r〉α using Pα(r) . The values of 〈r〉α corresponding to k = 2 , 3 and 4

are 1.1747, 1.0855 and 1.0521 respectively. P k(r) , Pα(r) and 〈r〉 are used in the analysis

of energy levels presented in Section 3.4.1. In this chapter we analyze P k(r) for EE for

fermion and boson systems with and without spin degree of freedom and these numerical

results are presented in the next section.

3.4.1 Numerical Results

Using the definition of higher order spacing distributions given in Section 3.4, we have

constructed k -th order spacing ratio distribution P k(r) for all the EGOE(1+2) models de-

fined in chapter 2. The numerical histograms for P k(r) are constructed for k = 2 , 3

and 4 using the central 80% of the spectrum. A bin-size of 0.1 is chosen for this entire

analysis. The P k(r) results for EE for fermion and boson systems without spin degree

of freedom using EGOE(1+2) and BEGOE(1+2) respectively are presented in Fig. 3.5.

The black histograms correspond to the ensemble averaged numerical results and they are

compared with Pα(r) (smooth red curves) given by Eq. (3.10). For k = 2, 3 and 4 the

corresponding α values are 4, 8 and 13 respectively. we have also computed the ensemble

averaged values of spacing ratios, 〈r〉 , and they are shown in the figure. Going beyond

the spinless systems, Fig. 3.6 presents P k(r) results for k = 2 , 3 and 4 for EE with spin

degree of freedom using EGOE(1+2)- s for fermions and for bosons using BEGOE(1+2)-

F and BEGOE(1+2)-S1 . The ensemble averaged numerical results (black histograms)

are compared with Pα(r) (smooth red curves) given by Eq. (3.10). For all the examples

of EE, we find that 〈r〉EE ∼ 〈r〉α . The results presented in Figs. 3.5 and 3.6, show an

excellent agreement between numerical histograms and Pα(r) establishing the universal

feature of Eq. (3.10) in explaining the higher order spacing ratios in many-body interacting

quantum systems, with and without spin degree of freedom. Now we know that when we

include all the levels in the analysis, the NNSD gets affected by the choice of unfolding

function. However when we analyze the distribution of higher order spacing ratios by in-

cluding all the levels, we obtain a good agreement between P k(r) and Pα(r) . In the past it

is shown that the energy levels of EGOE(1+2) close to the ground state (tails of the energy

spectrum) generate large fluctuations compared to that of GOE fluctuations. This is shown

using NNSD [137] and also using P (r) [113]. Going further, it is interesting to test the

validity of Eq. (3.10) close to the ground state. The numerical histograms for these are
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compared with Pα(r) (smooth red curves) in Fig. 3.7. The results show a clear deviation

between embedded ensemble P k(r) and Pα(r) from the trend predicted by Eq. (3.10) and

deviations increasing with increasing k . Also, 〈r〉EE values are found to be smaller than

the corresponding 〈r〉α values. Therefore, although one need not exclude the spectrum tails

while analyzing non-overlapping spacing ratios, Eq. (3.10) does not explain the variation in

spacing ratios close to the ground state.
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Figure 3.5: Probability distribution of the k -th order spacing ratios P k(r) vs. r for a 500

member (a) EGOE(1+2) ensemble and (b) BEGOE(1+2) ensemble with k = 2 , 3 , and 4 .

Black histograms correspond to the numerical results and the red smooth curves represent

Pα(r) obtained using Eq. (3.10) with α values as mentioned in each panel.

3.4.2 Symmetry Structure

The distribution of non-overlapping higher-order spacing ratios discussed in the pre-

vious sections is not only useful in explaining universal features of fluctuation character-

istics but also to reveal quantitative information regarding underlying symmetry structure

of the given complex quantum system. As conjectured by Dyson [41] and proved by Gun-

son [138], the spectral statistics of two superposed circular orthogonal ensemble (COE)
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spectra converge to that of circular unitary ensemble (CUE). This is expected to be echoed

in the distribution of level spacings and spacing ratios as well. In [129] it has been demon-

strated that distribution of higher order spacing ratios carry symmetry information with the

help of various examples like superposed GOE spectra, billiards, spin- 1/2 chains and neu-

tron resonance data.

We begin with an arbitrary sequence of eigenvalues of GOE Hamiltonian H , which is

a superposition of m blocks. Here each block is characterized by good quantum numbers.

Then, in this case we denote the distribution of non-overlapping k -th order spacing ratios

by P k(r,m) . Here P k(r,m) converges to Pα(r) [129], in the same way as Eq.(3.10),

P k(r,m) = Pα(r) when α = k = m. (3.12)

Note that, here P k(r,m = 1) = P k(r) . Therefore, the validity of Eq.(3.12) implies that

in addition to their fluctuation properties P k(r) can also reveal the information about the

symmetry structure of the composite spectra of complex quantum systems. In this chapter

we show this using EE with spin degree of freedom using Eq.(3.12). This has direct applica-

tions in the analysis of nuclear energy levels giving information about isospin and F -spin.

We have seen in chapter 2 that EE models with spin for fermion and boson systems i.e.

EGOE(1+2)- s , BEGOE(1+2)-F and BEGOE(1+2)-S1 , have specific spin structure: for

EGOE(1+2)- s and BEGOE(1+2)-F , the random interaction matrix V (2) in two-particle

spaces is a direct sum of matrices in spin 0 and 1 channels; and for BEGOE(1+2)-S1 , the

V (2) matrix in two-particle spaces is a direct sum of matrices in spin 0, 1 and 2 channels.

The many-particle Hamiltonian matrix is a block diagonal matrix with each block corre-

sponding to EGOE(1+2) with a given spin S . It is interesting to investigate if signatures

of these spin structures are reflected in P k(r) . In order to study this, we superpose m in-

dependent spin blocks and compare non-overlapping k -th order spacing ratio distribution

P k(r,m) with Pα(r) given by Eq. (3.10). The results presented in Figs. 3.8-3.10 corre-

spond to EGOE(1+2)- s , BEGOE(1+2)-F and BEGOE(1+2)-S1 examples discussed in

section 3.2. In these figures, the ensemble averaged histograms for P k(r,m) are obtained

by arranging the spectra of m spin blocks in ascending order for each member of the en-

semble. Then, ensemble average is computed and plotted as a histogram with bin-size of

0.1 for all k values. The results in the upper panel of Fig. 3.8 are for P k(r,m) with

m = 2 obtained by superposing spectra corresponding to S = 0 and S = 1 while that in

the lower panel are with m = 3 obtained by superposing spectra corresponding to S = 0 ,

S = 1 and S = 2 . The smooth red curves are for Pα(r) obtained using Eq. (3.10) with α

values shown in each panel. A very good agreement between ensemble averaged P k(r,m)

results and Pα(r) is found for α = k = m implying that the condition given by Eq. (3.12)

is satisfied. There are clear deviations for all other values. This confirms the presence of m

symmetries. Similarly, results in Figs. 3.9 and 3.10 also show excellent agreement between
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ensemble averaged k -th order spacing ratio distribution and nearest neighbor spacing ratio

results given by Eq. (3.10) with α = k = m confirming the presence of m symmetries.

In order to obtain the best quantitative estimate for α , we calculate χ2 measure defined

as,

χ2(α) = log

{∫ ∞

0

dr(P k(r,m)− Pα(r))
2

}
. (3.13)

Here, minimum value of χ2(α) implies P k(r,m) ∼ Pα(r) . Fig. 3.11 shows the varia-

tion in χ2(α) as a function of α for various m values. The left panel gives the results

for EGOE(1+2)- s and the right panel gives the results for BEGOE(1+2)-F . We have not

included spectra of maximum spin S = Smax for EGOE (1+2)- s and spectra of minimum

spin F = Fmin for BEGOE(1+2)-F due to small matrix dimensions. The minimum value

for χ2(α) is obtained at α = k = m , which is in agreement with the results shown in Figs.

3.8 and 3.9. We have also confirmed this result with other combinations of superposed spec-

tra corresponding to different spin sectors. It is important to note that similar results were

obtained by combining m blocks of EGOE and GOE spectra. Therefore, the distribution

of higher order level spacing ratios are independent of the state density of the spectra and

can also be useful in extracting symmetry information of the composite spectra. There are

deviations from obtaining minimum for χ2(α) at α = k = m when the dimension of a

given spin block is very small. Fig. 3.12 shows variation in χ2(α) as a function of α for

EGOE(1+2)- s (top left panel), BEGOE(1+2)-F (middle left panel) and BEGOE(1+2)-S1

(bottom left panel). Results are shown for various m values. For EGOE (1+2)- s , the min-

imum for χ2(α) is not at α = k = m for m = 4 as it is obtained by superposing four

spin blocks corresponding to S = 0 − 3 . Here, S = 3 is the maximum allowed spin and

has the smallest dimension ( 28 compared to dimensions 1176 , 1512 , 420 respectively for

spins S = 0 , S = 1 and S = 2 ). Similarly, deviations are seen in minimum for χ2(α)

from α = k = m at m = 6 for BEGOE(1+2)-F and for m = 6 − 9 for BEGOE(1+2)-

S1 . Going further, we superposed mGOE spectra of exact same dimensions (see Fig.3.12)

corresponding to EGOE(1+2)- s (top right panel), BEGOE(1+2)-F (middle right panel)

and BEGOE(1+2)-S1 (bottom right panel). These results also show similar deviations in

minimum for χ2(α) confirming that there are finite-size effects.

Similar set of calculations have been performed for BEGOE(1+2) and BEGOE(1+2)-

F with λ = 0.06 and λ = 0.08 respectively, such that the system is in Gaussian domain

[22, 27, 62, 65]. These calculations also give similar results.
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3.5 Conclusions

In this chapter we have studied spectral fluctuations in interacting fermion and boson

systems with and without spin degree of freedom using two spacing distributions. In first

part of this chapter, we have studied the probability distribution of closest neighbor spac-

ings PCN(s) and the farther neighbor spacings PFN(s) . In the past studies it has been

shown that EE exhibit GOE level fluctuations only with proper spectral unfolding. Our

numerical results for various examples of fermion and boson system and shell model, are

consistent with the recently derived analytical expressions using a 3 × 3 random matrix

model and other related quantities [107]. This establishes the universality of these analyti-

cal expressions. Also, it shows that for strong enough interaction, the local level fluctuations

generated by EE follow the results of classical Gaussian ensembles.

The ordered level spacing distribution involves the cumbersome and non-unique pro-

cedure of unfolding to remove the variation in the density of states. A good escape from

this process of unfolding is to use the method of distribution of ratio of consecutive level

spacings P (r) introduced by Oganesyan and Huse. This method does not require the un-

folding process as it is independent of the form of the density of the energy levels. In the

second part of this chapter, the probability distribution of non-overlapping spacing ratios of

higher orders P k(r) are studied. We have obtained excellent agreement between numeri-

cal results for higher order spacing ratios and recently derived Wigner surmise like scaling

relation. Thus, this scaling relation is universal to understand higher order spacing ratios in

such systems. Moving further, we have also shown that these higher order spacing ratio dis-

tributions can also reveal quantitative information about underlying symmetry structure in

these systems. This shows that the analysis of higher order spacing ratios is not only useful

in studying spectral fluctuations but also reveals quantitative information about symmetry

structure of complex quantum systems.

40



Chapter 3. Spacing Distributions

0.0

0.5

1.0

1.5

0 1 2 3
0.0

0.5

1.0

0 1 2 3 0 1 2 3 4

 

 

 

r 1.1765

S = 0, d = 1176

r 1.0849

     EGOE(1+2)-s : m = 6,  = 8,  = 0.1 

r 1.0515

(a)

 k=2
 =4

 k=3
 =8

 k=4
 =13

 k=2
 =4

 k=3
 =8

 k=4
 =13

 

r 1.1759

S = 1, d = 1512

r 1.0849

 r

 P
k (
r) 

r 1.0518

0.0

0.5

1.0

1.5

0 1 2 3
0.0

0.5

1.0

0 1 2 3 0 1 2 3 4

 k=2
 =4

 k=3
 =8

 k=4
 =13

 k=2
 =4

 k=3
 =8

 k=4
 =13

 

 

 

r 1.1848

F = 2, d = 750

(b)

r 1.0928 r 1.0591

 P
k (
r) 

 

r 1.1922

F = 5, d = 286

r 1.0992

 r

     BEGOE(1+2)-F : m = 10,  = 4,  = 0.05 

r 1.0640

0 1 2 3
0.0

0.5

1.0

1.5

0 1 2 3 0 1 2 3 4
(c)

 P
k (
r)  k=2

 =4
 k=3
 =8

 k=4
 =13

S = 4, d = 1841

 

r 1.1787 r 1.0854

 r

  BEGOE(1+2)-S1 : m = 8,  = 4,  = 0.2

r 1.0515

Figure 3.6: Same as Fig. 3.5 but results are for a 500 member (a) EGOE(1+2)- s (b)

BEGOE(1+2)-F and (c) BEGOE(1+2)-S1 . See text for details.
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tom panel) ensembles. The red smooth curves are obtained using Eq. (3.10) with α values

as mentioned in each panel.
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