
Chapter 4

Random k -body Ensembles and

q -Hermite Polynomials

4.1 Introduction

W
e have seen in chapter 2 that EGOE(1+2) models are paradigmatic models to study

the dynamical transition from integrability to chaos in isolated finite interacting many-

body quantum systems. These models initially developed for isolated finite interacting spin-

less fermion and boson systems, are now studied in detail with spin degree of freedom for

both fermion and boson systems. In these investigations, the main focus was on one- plus

two-body part of the interaction as inter-particle interaction is known to be only one-body

and two-body in nature. However, it is seen that the higher body interactions k > 2 play an

important role in strongly interacting quantum systems [71,72], nuclear physics [73], quan-

tum black holes [35,74] and wormholes [75] with SYK model and also in quantum transport

in disordered networks connected by many-body interactions [76–78]. Also, it is found that

the three body interactions play an important role in saturation of nuclear matter [139], su-

per fluidity properties of neutron matter and neutron stars [140],quark dynamics [141] and

so on. Therefore, it is necessary to extend the analysis of EE with two-body interactions

(discussed in chapter 2) to higher k -body interactions in order to address these problems.

They are represented by EGOE( k ) (or BEGOE( k )) for fermion (or boson) systems. In the

presence of mean-field they are represented by EGOE(1+ k ) (or BEGOE(1+ k )) for fermion

(or boson) systems.

Very recently, it is found that q -Hermite polynomials can be used to study spectral

densities of the so-called SYK model [80, 81] and quantum spin glasses [82], along with

studying the strength functions and fidelity decay (also known as survival or return probabil-
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4.2. Embedded Ensembles with k -body Interactions

ity) in EE, both for fermion as well as boson systems [79]. This is because of the fact that the

generating function of q -Hermite polynomials exhibits Gaussian to semi-circle transition,

which is also exhibited by the spectral densities of these systems. The q -Hermite polyno-

mials were first introduced by L. J. Rogers in Mathematics to prove the Rogers–Ramanujan

identities [142] and Szego and Carlitz studied their important properties. They are related

with the Chebyshev, Rogers-Szego, Al-Salam-Chihara polynomials and other polynomi-

als [143]. Now, the reason these polynomials are important is that they are very simple

as they have only one parameter and other complicated families of orthogonal polynomi-

als (i.e having more than one parameter) can be expressed as linear combinations of q -

Hermite polynomials. Over the years lot of developments took place as a result of which

q -Hermite polynomials have recently found applications in non-commutative probability,

quantum physics, combinatorics and so on [143]. Recently, also the q -calculus has at-

tracted many researchers working in the field of special functions as it is a very powerful

tool in quantum computation [144].

In this chapter, firstly we define and describe the construction of EGOE( k ) (or

BEGOE( k )) for fermions (or bosons) and EGOE(1+ k ) (or BEGOE(1+ k )). Then we intro-

duce q -Hermite polynomials along with their generating function and recurrence relations.

Also the so-called q -normal distribution fqN , conditional q -normal distribution fCqN and

bivariate q -normal distribution fbiv−qN are discussed. The analytical formula of q consid-

ering only the one-body part is derived for both fermions and bosons. Also, the formulae of

parameter q in terms of m , N and k for both EGOE( k ) and BEGOE( k ) derived in [79]

are given for completeness. Furthermore, the variation of parameter q is studied as the

interaction strength λ varies in EGOE(1+ k ) (or BEGOE(1+ k )) for a fixed body rank k .

Further, use all this knowledge of q -Hermite polynomials to study the spectral density for

EGOE(1+ k ) and BEGOE(1+ k ). Lastly we give concluding remarks. The work on bosons

presented in this chapter is based on [30] and that of fermions is under preparation to be

published.

4.2 Embedded Ensembles with k -body Interactions

In this section we define and describe the construction of k -body embedded ensem-

bles for fermionic and bosonic systems. Throughout this thesis, we consider the orthog-

onal symmetry i.e. GOE embedding. For fermionic systems these ensembles are called

EGOE( k ) (and EGOE(1+ k ) in the presence of mean-field) and for bosonic systems they

are called BEGOE( k )(and BEGOE(1+ k ) in the presence of mean-field). From the previ-

ous section we know that k = 2, 3, 4 are of physical importance in nuclear reactions and
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strongly interacting quantum systems [35,71,72]. However for the sake of completeness, to

study the generic features of embedded ensembles and the possibility of higher k becom-

ing prominent in future, we address k = 2 to k = m . Initially, a k -particle Hamiltonian

matrix is constructed. Employing the concepts of direct product space and Lie algebra, this

k -particle Hamiltonian matrix is further embedded to the m -particle space. Here, the in-

formation in k -particle space is propagated to m -particle space using Lie algebra. Now

let us see how these ensembles are constructed.

4.2.1 Construction of EGOE(k ) and EGOE(1+k )

Now let us see how we can define and construct EGOE( k ) and EGOE(1+ k ). Consider

m spinless fermions distributed in N degenerate sp states interacting via k -body ( 1 ≤
k ≤ m ) interactions. Distributing these m fermions in all possible ways in N sp states

generates many-particle basis of dimension d =
(
N
m

)
. The k -body random Hamiltonian

V (k) is defined as,

V (k) =
∑

ka,kb

Vka,kbF
†(ka)F (kb) . (4.1)

Here Vka,kb are the antisymmetrized matrix elements of V (k) in the k -particle space with

the matrix dimension being dk =
(
N
k

)
. Here the term Vka,kb represents randomly dis-

tributed independent Gaussian variables with zero mean and unit variance,

Vka,kbVka′ ,kb′ = ν20(1 + δka,k
a
′ ,kb,kb′

) (4.2)

In other words, k -body Hamiltonian is chosen to be a GOE. Here, the overbar denotes

the ensemble average and ν0 = 1 without the loss of generality. For fermions, F †(ka) =

f †
n1
f †
n2

and F (ka) = (F †(ka))
† (n1 < n2) . Also, f †

ni
and fni

are the fermionic creation

and annihilation operators respectively. EGOE( k ) is generated by action of V (k) on the

many-particle basis states. Due to k -body nature of interactions, there will be zero matrix

elements in the many-particle Hamiltonian matrix, unlike a GOE. By construction, we have

a GOE for the case k = m . In realistic systems, fermions also experience mean-field

generated by presence of other fermions in the system and hence, it is more appropriate to

model these systems by EGOE( 1 + k ) defined by,

H = h(1) + λV (k) (4.3)

Here, the one-body operator h(1) =
∑N

i=1 ǫini is described by fixed sp energies ǫi ; ni is

the number operator for the i th sp state. The parameter λ represents the strength of the k -

body interaction and it is measured in units of the average mean spacing of the sp energies
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defining h(1) . In this chapter as well as in the next two chapters we have employed fixed

sp energies ǫi = i+ 1/i in defining the mean-field Hamiltonian h(1) .

4.2.2 Construction of BEGOE(k ) and BEGOE(1+k )

In the previous section we have described the construction of fermionic k -body em-

bedded ensembles. Now let us define and describe the construction of BEGOE( k ) and

BEGOE(1+ k ). Consider a system which contains m spinless bosons interacting via k -

body ( 1 ≤ k ≤ m ) interactions, which occupy N degenerate sp states. When we distribute

these m bosons in all possible ways in N sp states, it generates a many-particle basis of

dimension d =
(
N+m−1

m

)
. The k -body random Hamiltonian V (k) , for such a system is

given as,

V (k) =
∑

ka,kb

Vka,kbB
†(ka)B(kb) . (4.4)

Here, operators B†(ka) and B(kb) are k -boson creation and annihilation operators re-

spectively. They obey the boson commutation relations. Vka,kb are the symmetrized matrix

elements of V (k) in the k -particle space and are chosen to be Gaussian random variables

with zero mean and unit variance. This means that the k -body Hamiltonian is chosen

to be a GOE. The Hamiltonian V (k) in the k -particle space has the matrix dimension

dk =
(
N+k−1

k

)
. BEGOE( k ) is generated by action of V (k) on the many-particle basis

states. The presence of k -body interactions, gives rise to a many-particle Hamiltonian ma-

trix containing zero matrix elements, unlike a GOE. However, the case k = m is a GOE by

construction. For further details about these ensembles, their extensions and applications,

see [31, 145, 146] and references therein.

From section 4.2.1, we know that realistic systems involve an additional one-body

mean-field part and the appropriate model is given in section 4.2.1. Similarly the appro-

priate model for bosonic systems in the presence of mean field is defined by Eq. (4.3) with

V (k) given by Eq. (4.4).
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4.3 q -Hermite Polynomials and Conditional q -Normal

Distribution

In this section, firstly the q -Hermite polynomials, q -normal distribution fqN , condi-

tional q -normal distribution fCqN and bivariate q -normal distribution fbiv−qN are defined

and then their basic properties are discussed. These definitions and properties are used in

section 4.5 of this chapter to describe the spectral density of EE( k ), in chapter 5 to describe

the strength functions of EE( k ) and in chapter 6 to describe NPC, information entropy and

fidelity decay.

Let us begin by defining q -numbers and q -factorials which define the q -Hermite

polynomials. The q -numbers [n]q are defined as [n]q = (1 − q)−1(1 − qn) . We have

[n]q→1 = n . Using the above definition, we can write down the first few q numbers which

are as follows,

[0]q = 0, [1]q = 1, [2]q = 1 + q, [3]q = 1 + q + q2, [4]q = 1 + q + q2 + q3. (4.5)

The q -factorials [n]q! are defined as [n]q! = Πn
j=1[j]q . We have [0]q! = 1 . Now, using

the above definitions of q -numbers and q -factorials, q -Hermite polynomials Hn(x|q) are

defined by the recursion relation [142],

xHn(x|q) = Hn+1(x|q) + [n]q Hn−1(x|q) (4.6)

with H0(x|q) = 1 and H−1(x|q) = 0 .

From the above recursion relation we can obtain the first few q -Hermite polynomials

which are as follows,

H1(x|q) = x

H2(x|q) = x2 − 1

H3(x|q) = x3 − (2 + q)x

H4(x|q) = x4 − (3 + 2q + q2)x2 + (1 + q + q2)

H5(x|q) = x5 − (4 + 3q + 2q2 + q3)x3 + (3 + 4q + 4q2 + 3q3 + q4)x

(4.7)

Note that for q = 1 , the q -Hermite polynomials reduce to normal Hermite poly-
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nomials (related to Gaussian) and for q = 0 they will reduce to Chebyshev polynomials

(related to semi-circle). Importantly, q -Hermite polynomials are orthogonal within the lim-

its ±2/
√
1− q , with the q -normal distribution fqN(x|q) as the weight function. Now let

us define the q -normal distribution fqN(x|q) using a standardized variable x (i.e. x is

zero centered and has unit variance) [83],

fqN(x|q) =
√
1− q

2π
√
4− (1− q)x2

∞∏

i=0

(1− qi+1)[(1 + qi)2 − (1− q)qix2]. (4.8)

Here, −2/
√
1− q ≤ x ≤ 2/

√
1− q . In principal q can take any value from [-1,1].

Throughout this thesis we take q ∈ [0, 1] . Note that
∫
s(q)

fqN(x|q) dx = 1 over the range

s(q) = (−2/
√
1− q, 2/

√
1− q) . It is seen that in the limit q → 1 , fqN(x|q) will take

Gaussian form given by

fqN(x|1) =
1√
2π
exp

−x2
2
. (4.9)

In the limit q = 0 fqN(x|q) will take semi-circle form given by

fqN(x|0) =
1

2π

√
4− x2. (4.10)

Another important property of fqN(x|q) is that the q -Hermite polynomials are orthogonal

with respect to the weight function over the range s(q) which can be inferred from

∫

s(q)

Hn(x|q)Hm(x|q)fqN(x|q) dx = [n]q!δmn. (4.11)

Now having defined the q -Hermite polynomials and fqN(x|q) , let us proceed further

by defining the bivariate q -normal distribution fbiv−qN (x, y|ζ, q) using two standardized

variables x and y .

Then, fbiv−qN (x, y|ζ, q) is defined as follows [83, 147],

fbiv−qN (x, y|ζ, q) = fqN(x|q)fCqN(y|x; ζ, q)

= fqN(y|q)fCqN(x|y; ζ, q)
(4.12)

where ζ is the bivariate correlation coefficient and the conditional q -normal densities,
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fCqN can be given as,

fCqN(x|y; ζ, q) = fqN(x|q)
∞∏

i=0

(1− ζ2qi)

h(x, y|ζ, q);

fCqN(y|x; ζ, q) = fqN(y|q)
∞∏

i=0

(1− ζ2qi)

h(x, y|ζ, q);

h(x, y|ζ, q) = (1− ζ2q2i)2 − (1− q)ζqi(1 + ζ2q2i)xy + (1− q)ζ2(x2 + y2)q2i.

(4.13)

In the limit q → 1 , fCqN(x|y; ζ, q) takes the form

fCqN(x|y; ζ, 1) =
1

2π
√
(1− ζ2)

exp− (x− ζy)2

2(1− ζ2)
(4.14)

In the limit q = 0 , fCqN(x|y; ζ, q) takes the form

fCqN(x|y; ζ, 0) =
(1− ζ2)

√
4− x2

2π[(1− ζ2)2 − ζ(1 + ζ2)xy + ζ2(x2 + y2)]
(4.15)

The fCqN and fbiv−qN are normalized to 1 over the range s(q) , which can be inferred

from the following property,

∫

s(q)

Hn(x|q)fCqN(x|y; ζ, q) dx = ζnHn(y|q). (4.16)

Now we have enough knowledge of the conditional q -normal distribution so let us proceed

with the first four moments of fCqN . They are the centroid, variance, skewness ( γ1 ) and

excess ( γ2 ). The generalized formula for moments of all orders of fCqN has been given

in [147]. However, the formula given in [147] is a complicated one. Recently, the simplified

formulae for the first four moments of fCqN were derived using Eq. (4.16) in [84]. The first

four moments of fCqN can be obtained by evaluating

∫

s(q)

ynfCqN (x|y; ζ, q)dy. (4.17)
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The first four moments obtained are as follows,

Centroid = ζy,

Variance = 1− ζ2 ,

Skewness, γ1 = −ζ(1− q)y√
1− ζ2

,

Excess, γ2 = (q − 1) +
ζ2(1− q)2y2 + ζ2(1− q2)

(1− ζ2)
.

(4.18)

4.4 Formula of q -parameter

4.4.1 Formula of qh(1)

In this section, we derive the analytical formula of q for bosons as well as fermions

when the Hamiltonian consists of only the one-body part h(1) i.e. considering λ = 0 in

Eq.(4.3). This analytical formula is derived based on the trace propagation method intro-

duced in [148].

We start with the reduced fourth moment of one-body part denoted by 〈h(1)4〉m and

which is defined as [148],

〈h(1)4〉m =
〈h(1)4〉m

(〈h(1)2〉m)2 (4.19)

Here, 〈h(1)2〉m is the second moment of one-body part and 〈h(1)4〉m is the fourth moment

of one-body part.
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4.4.1.1 For Fermion System:

First let us derive the analytical formula of qh(1) for fermions from the reduced fourth

moment of one-body part. For fermions 〈h(1)2〉m and 〈h(1)4〉m are expressed as follows,

〈h(1)2〉m =
m(N −m)

N(N − 1)

N∑

i=1

ǫ̃i
2

〈h(1)4〉m =
m(N −m)

N(N − 1)

N∑

i=1

ǫ̃i
4

+
m(m− 1)(N −m)(N −m− 1)

N(N − 1)(N − 2)(N − 3)

×[3(
∑N

i=1 ǫ̃i
2)2 − 6

∑N
i=1 ǫ̃i

4].

(4.20)

Using Eq. (4.20), we can obtain the formula of qh(1) as follows,

qh(1) = 〈h(1)4〉m − 2

=
{3(m− 1)N(N − 1)(N −m− 1)

m(N − 2)(N − 3)(N −m)
− 2

}

+
N(N − 1)[N2 +N − 6mN + 6m2]

m(N −m)(N − 2)(N − 3)

∑N
i=1 ǫ̃i

4

(
∑N

i=1 ǫ̃i
2)2

.

(4.21)

Here ǫ̃i are the traceless sp energies of i ’th state. Figs. 4.1 and 4.2 represent qh(1)

results as a function of m for fermion systems. The results are obtained by considering

different values of m/N using Eq. (4.21). In Fig. 4.1 sp energies ǫi = i are used and

in Fig. 4.2 sp energies ǫi = i + 1/i are used. In both these figures the dilute limit curve

represents results for m/N = 0.001 .
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 (
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m
Figure 4.1: Variation of qh(1) as a function of m for various values of m/N for fermion

system. Here, sp energies ǫi = i are used.

4.4.1.2 For Boson System:

Moving further let us derive the analytical formula of qh(1) for bosons. For bosons,

〈h(1)2〉m and 〈h(1)4〉m are expressed as follows [148],

〈h(1)2〉m =
m(N +m)

N(N + 1)

N∑

i=1

ǫ̃i
2

〈h(1)4〉m =
m(N +m)

N(N + 1)

N∑

i=1

ǫ̃i
4

+
m(m− 1)(N +m)(N +m+ 1)

N(N + 1)(N + 2)(N + 3)

×[3(
∑N

i=1 ǫ̃i
2)2 + 6

∑N
i=1 ǫ̃i

4].

(4.22)
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q h
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Figure 4.2: Variation of qh(1) as a function of m for various values of m/N for fermion

system. Here, sp energies ǫi = i+ 1/i are used.

Using Eq.(4.22), we can obtain the formula of qh(1) as follows,

qh(1) = 〈h(1)4〉m − 2

=
{3(m− 1)N(1 +N)(1 +m+N)

m(2 +N)(3 +N)(m+N)
− 2

}

+
m2 + (N +m)2 + (N + 2m)2

m(N +m)

∑N
i=1 ǫ̃i

4

(
∑N

i=1 ǫ̃i
2)2

.

(4.23)

Here ǫ̃i are the traceless sp energies of i ’th state. Considering H = h(1) and taking the sp

energies to be uniform i.e. ǫi = i , for example (m = 5, N = 10 ) Eq.(4.23) gives q = 0.71

and for example (m = 10, N = 5 ) it gives q = 0.68 . While with sp energies used in the

present study i.e. ǫi = i + 1/i , one obtains q = 0.68 for example (m = 5, N = 10 ) and

q = 0.63 for example (m = 10, N = 5 ). In Fig. 4.3 we present the results of variation of

qh(1) as a function of N for various values of m/N for bosonic systems. Here, sp energies
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q h 

(1
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N
Figure 4.3: qh(1) vs. N for various values of m/N for boson system. The values of qh(1)
are obtained using Eq. (4.23).

ǫi = i + 1/i are used. The dense limit curve represents results for m/N = 1000 . It can

be clearly seen that in the dense limit (m → ∞ , N → ∞ and m/N → ∞ ), qh(1) → 1 .

In the dilute limit (m → ∞ , N → ∞ and m/N → 0 ), similar variation in qh(1) can

be observed due to m ↔ N symmetry between the dense limit and the dilute limit as

identified in [59, 148].

4.4.2 Formula of qV (k)

In the previous section, we derived the formula of q for bosons as well as fermions

considering only the one-body part in Eq.(4.3). In this section we discuss the formulae of q

valid in strong interaction domain, qV (k) derived in [79] only for the sake of completeness.

Here strong interaction means λ in Eq.(4.3) is sufficiently high and hence the k -body part

of the Hamiltonian dominates over the one-body part.
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4.4.2.1 For Fermion Systems:

The formula for q using finite N corrections to the fourth order moment for EGOE( k )

given in [79] is as follows,

qV (k) ∼ F (N,m, k)/[T (N,m, k)]2

T (N,m, k) =
(
m
k

)[(
N−m+k

k

)
+ 1

]
,

F (N,m, k) =
(
m
k

)2
+
∑k

s=0

(
m−s
k−s

)2(N−m+k−s
k

)
×
(
m−s
k

)(
N−m

s

)(
m
s

)

×
[
N−2s+1
N−s+1

](
N−s
k

)−1(k
s

)−1{
2 +

(
N+1
s

)}

(4.24)

4.4.2.2 For Boson Systems:

The formula of q for BEGUE( k ) can be used for BEGOE( k ) as well to a good ap-

proximation which is given by [79]

qV (k) ∼
(
N +m− 1

m

)−1 νmax=min[k,m−k]∑

ν=0

X(N,m, k, ν) d(gν)

[Λ0(N,m, k)]2
;

X(N,m, k, ν) = Λν(N,m,m− k) Λν(N,m, k) ;

Λν(N,m, r) =

(
m− ν

r

) (
N +m+ ν − 1

r

)
,

d(gν) =

(
N + ν − 1

ν

)2

−
(
N + ν − 2

ν − 1

)2

.

(4.25)

Further, in the strong interaction domain, one can also apply Eqs.(4.24) and (4.25) to

EGOE(1+ k ) and BEGOE(1+ k ) respectively. This is due to the fact that the k -body part

of the interaction is expected to dominate over one-body part.

4.4.3 Variation of q as a Function of λ

Up till now we have discussed about the formula of q by considering only the one-

body part of the Hamiltonian and also the formula of q in strong interaction domain. Now
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let us see how the value of parameter q varies as a function of the interaction strength λ .

4.4.3.1 Results for Fermion Systems:

First let us study how the parameter q varies with λ in EGOE(1+ k ) for a particular

body rank of interaction k . For this study we consider the following two examples: (i) a

100 member EGOE(1+ k ) ensemble with m = 6 fermions distributed in N = 12 sp states

and (ii) a 20 member EGOE(1+ k ) ensemble with m = 7 fermions distributed in N = 14

sp states. We construct EGOE(1+ k ) ensemble for these examples and use its eigenvalues

to compute the ensemble averaged value of q for various values of k . Fig. 4.4 and Fig.

4.5 represent these results. In these figures the horizontal marks on the left correspond to

value of parameter q for the case H = h(1) and that on the right correspond to the case

H = V (k) respectively. One can observe that when the value of λ is very small, the

ensemble averaged values of q are found very close to the values of qh(1) . Now as we

gradually increase λ and reach a sufficiently large value of λ , the ensemble averaged q

values approach the corresponding qV (k) values given by Eq.(4.24). In the case when λ

is sufficiently large, the k -body part of the Hamiltonian dominates over the one-body part.

This trend is true for all body rank k .

4.4.3.2 Results for Boson Systems:

Moving further, let us see the variation of the parameter q as a function of λ in

BEGOE(1+ k ) for a fixed body rank k . For this study we consider the example of m = 10

bosons occupying N = 5 sp states. The ensemble averaged value of q is computed for this

example using 100 member BEGOE(1+ k ) ensemble. The results are presented in Fig. 4.6.

q estimates are also shown in the figure by horizontal marks for H = h(1) and H = V (k)

on left and right vertical axes respectively. One can see that for very small values of λ ,

ensemble averaged q values are found very close to qh(1) for all body rank k . While

for a sufficiently large λ , where k -body part dominates over one-body part, the ensemble

averaged q values approach the corresponding qV (k) values given by Eq.(4.25).

From the variation of ensemble averaged q values in Figs. 4.4, 4.5 and 4.6, one can see

that the shape of the state density takes intermediate form between Gaussian to semi-circle

as λ changes in both EGOE(1+ k ) and BEGOE(1+ k ) for a fixed k . Therefore, the q -

normal distribution fqN formula can be used to describe the transition in the state density

with any value of λ and k in both EGOE(1+ k ) and BEGOE(1+ k ).
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Figure 4.4: Variation of ensemble averaged q as a function of λ for EGOE(1+ k ) ensemble

by distributing m = 6 fermions in N = 12 sp states for k = 2 to k = m = 6 . An

ensemble of 100 members is considered. See text for more details.

4.5 Spectral Density

In order to know the distribution of energy between identical particles in a quantum

system, it is important to have the knowledge of number of available states in a given en-

ergy interval. The spectral density (or eigenvalue density or state density) gives us this

information.

From the past studies we know that the spectral density for EE( k )(and also EE(1+ k ))

in general exhibits Gaussian to semi-circle transition as k increases from 1 to m [58].

This is now well verified in many numerical calculations and analytical proofs obtained via

lower order moments [10, 31, 34, 61, 145, 149]. This is known for both EGOE( k )(also for

EGOE(1+ k )) and BEGOE( k )(also for BEGOE(1+ k )) for a system of m fermions/bosons

distributed in N sp states [31, 34, 55, 79].

Very recently it was shown that the smooth form of spectral density can be described
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Figure 4.5: Variation of ensemble averaged q as a function of λ for EGOE(1+ k ) ensemble

by distributing m = 7 fermions in N = 14 sp states for k = 2, 3, 4 and k = m = 7 . An

ensemble of 20 members is considered. See text for more details.

by the so-called q -normal distribution fqN . The formulas for parameter q in terms of

m , N and k are derived for fermionic and bosonic EE( k ) which explain the Gaussian to

semi-circle transition in spectral densities, in many-body quantum systems as k changes

from 1 to m . This is shown both for EGOE( k ) and their Unitary variants EGUE( k ), both

for fermion and boson systems [79]. In this section we present the spectral density results

for both fermion and boson systems.

4.5.1 Results for Fermion Systems

We present the spectral density results by taking two different examples: (i) a 100

member EGOE(1+ k ) ensemble with m = 6 fermions occupying N = 12 sp states and

(ii) a 20 member EGOE(1+ k ) ensemble with m = 7 fermions occupying N = 14 sp

states. We take different values of λ . For various ranks of interaction (i.e k = 2,3,4 and

k = m = 6 ), we first obtain the eigenvalue spectrum which is then zero centered (with

ǫH as centroid) and scaled to unit width σH for each member. Histograms representing
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Figure 4.6: Ensemble averaged q vs. λ for a 100 member BEGOE(1+ k ) ensemble with

m = 10 bosons in N = 5 sp states for different k values. The horizontal black mark on

left q -axis indicates q estimate for H = h(1) given by Eq. (4.23), while the colored marks

on right q -axis represent the q values, given by Eq. (4.25), for corresponding k -body rank

with H = V (k) . See text for more details.

the ensemble averaged spectral density are constructed using these normalized eigenvalues.

Here bin size is 0.2. These results are presented in Fig. 4.7 and Fig. 4.8. The Gaussian

to semi-circle transition in the spectral density can be clearly observed from the histograms

as k changes from 2 to k = m for both the systems. The numerical results obtained

from the histograms are compared with the normalized spectral density ρ(E) = d fqN(x|q)
with ǫH − 2σH√

1−q
≤ E ≤ ǫH + 2σH√

1−q
. Here the corresponding ensemble averaged values of

parameter q are taken.

4.5.2 Results for Boson Systems

Now moving further, we demonstrate this Gaussian to semi-circle transition in spec-

tral densities for boson systems. We consider a system of m = 10 bosons distributed in

N = 5 sp states in Fig. 4.9. Histograms represent the numerical results for a 100 member
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BEGOE( 1 + k ) ensemble with λ = 0.04, 0.1 and 0.5. The continuous black curves are

obtained using the theoretical form of fqN with corresponding ensemble averaged q val-

ues. As in the case of fermions, here also the eigenvalue spectrum for each member of the

ensemble is zero centred and scaled to unit width prior to the construction of the histograms.

A bin size of 0.2 is considered to plot the histograms. In the strong coupling domain, one

can also apply Eq.(4.25) to BEGOE(1+ k ) [79]. The numerical results in Fig. 4.9 clearly

display the Gaussian to semi-circle transition in the spectral density as k changes from 2 to

k = m = 10 and are in excellent agreement with the theoretical curves of fqN .

One can see that the numerical results in Figs. 4.7, 4.8 and 4.9 are well described

by the theoretical forms of q -normal distribution fqN . These results mainly show that

the q -normal distribution fqN describes the transition in spectral density of EGOE(1+ k )

and BEGOE(1+ k ) not only in strong interaction domain but in all domains of interaction

strength.

4.6 Conclusion

Taking motivation from recently known importance of higher k -body ranks of inter-

actions in interacting many-particle quantum systems, we extend the embedded random

matrix ensembles of two-body interactions to k -body interactions in presence of a mean-

field. The definition and construction of embedded random matrix ensembles of k -body

interactions in presence of a mean-field is given for fermions (denoted by EGOE(1+ k )) and

bosons (denoted by BEGOE(1+ k )) in the beginning of this chapter. Moving further, the

q -Hermite polynomials along with their generating function and recurrence relations, q -

normal distribution fqN , conditional q -normal distribution fCqN and bivariate q -normal

distribution fbiv−qN are introduced. The analytical formula of q considering only the one-

body part is derived for both fermions and bosons. We proceeed further with the variation of

parameter q as a function of the interaction strength λ in EGOE(1+ k ) and BEGOE(1+ k )

for a fixed body rank k . Lastly, we have used all this preliminary knowledge of q -Hermite

polynomials to study the spectral density for EGOE(1+ k ) and BEGOE(1+ k ). It is shown

that the Gaussian to semi-circle transition exhibited by the spectral density as body rank

k of the interaction increases is described by the q -normal density fqN for any value of

interaction strength λ .
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Figure 4.7: Histograms represent the spectral density vs. normalized energy E results of

the spectra of a 100 member EGOE( 1 + k ) ensemble with m = 6 fermions in N = 12
sp states. Results are shown for different values of interaction strength λ = 0.04, 0.1 and

0.5 for k = 2, 3, 4 and k = m = 6 . In all the plots
∫
ρ(E)dE = d = 924 . Ensemble

averaged spectral density histogram is compared with q -normal distribution (continuous

curves) given by fqN(x|q) with the corresponding ensemble averaged q values.
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Figure 4.8: Histograms represent the spectral density vs. normalized energy E results of

the spectra of a 20 member EGOE( 1 + k ) ensemble with m = 7 fermions in N = 14
sp states. Results are shown for different values of interaction strength λ = 0.04, 0.1 and

0.5 for k = 2, 3, 4 and k = m = 7 . In all the plots
∫
ρ(E)dE = d = 3432 . Ensemble

averaged spectral density histogram is compared with q -normal distribution (continuous

curves) given by fqN(x|q) with the corresponding ensemble averaged q values.
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Figure 4.9: Ensemble averaged spectral density ρ(E) vs. normalized energy E results

for a 100 member BEGOE( 1 + k ) ensemble with m = 10 bosons in N = 5 sp states

for different k values. Results are shown for λ = 0.04, 0.1 and 0.5. In all the plots∫
ρ(E)dE = 1001 . The continuous black curves are obtained using q -normal distribution

given by fqN (x|q) with the corresponding ensemble average q values.
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