
Chapter 5

Strength Function (or Local Density of

States (LDOS)) and its Width

5.1 Introduction

T
he energy spectra (or eigenvalues) and wave functions of isolated finite interacting

many-body quantum systems carry signatures of quantum chaos. Various spectral

statistics like nearest neighbor spacing distribution (NNSD) and its higher orders, ratio of

spacings and their higher orders, ordered level spacings, etc. are popular measures of chaos,

which use the energy spectra of such systems. Analyzing the structure of wave functions

of these systems, can give more information about their chaotic dynamics. Measures like

number of principle components (NPC), localization length ( lH - defined by information

entropy S info ), fidelity decay (or survival probability), etc. which use the wavefunctions

of such systems can give more information about their chaotic dynamics. In the chapters

so far, we have analyzed the spectral properties of isolated finite interacting many parti-

cle systems. The spectral properties given by the ordered level spacing distribution and

the higher order ratio of spacings distribution are discussed in chapter 3. However if we

know the structure of eigenfunctions in addition to the spectral properties of these systems,

we can study various other interesting quantities like information entropy (S info ), number

of principal components (NPC), occupational entropy (Socc ), etc. These quantities also

quantify chaos in these systems. In this chapter as well as in the upcoming chapter 6, we

will analyze the wavefunction properties of these systems. Now when we talk about the

wavefunction properties, it becomes very important to analyze the strength functions (also

known as local density of states). They play a crucial role in the analysis of wavefunction

properties as they give information about how a particular basis state spreads over the eigen-
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5.2. Strength Function

states. The importance of studying strength functions has increased enormously after they

have become experimentally measurable [8]. These strength functions are known to exhibit

delta function to Breit Wigner (BW) to Gaussian transition in their shape, with increase in

the strength of two body inter-particle interaction in fermion and boson systems described

by EGOE(1+2) [24, 150–152] and BEGOE(1+2) [63] respectively. Now with the recently

known importance of higher body rank k in interacting particle systems, the strength func-

tions for higher k have been studied. It is found that as k increases and reaches k = m ,

the strength functions exhibit a transition from Gaussian to semi-circle for strong enough

interaction strength (i.e. in the thermodynamic region) [30, 79].

In this chapter, we analyze the strength function and its width for both fermions and

bosons using EGOE(1+ k ) and BEGOE(1+ k ) respectively. Firstly in section 5.2, we de-

fine the strength functions and present the strength function results as body rank k of the

interaction increases in the strong coupling limit (i.e. λ > λt ). Further, in section 5.3, a

complete analytical description of the variance of the strength function in terms of the corre-

lation coefficient ζ , as a function of λ and k is derived. Also, in section 5.4 the (m,N, k)

dependence of marker λt , defining thermalization region is derived analytically from the

analytical expression of ζ . Also, the lower order moments of the strength functions are

studied in section 5.5. Finally section 5.6 gives the concluding remarks of this chapter. The

work on bosons presented in this chapter is based on [30] and that of fermions is under

preparation to be published.

5.2 Strength Function

When m -particles are distributed in N sp states the m -particle Hamiltonian H is

generated with basis state |κ〉 . We take the basis states |κ〉 to be eigenstates of h(1) .

The diagonal matrix elements of H are denoted as energy ξκ , so that ξκ = 〈κ|H|κ〉 . By

diagonalization of the full Hamiltonian H , we obtain the eigenstates |Ei〉 and eigenvalues

Ei ,

H|Ei〉 = Ei|Ei〉 (5.1)

The eigenstates |Ei〉 can be expressed as a linear combination of the basis states |κ〉 ,

|Ei〉 =
∑

i

C i
κ |κ〉 (5.2)

70



Chapter 5. Strength Function and its Width

Also, the basis states |κ〉 can be expressed as a linear combination of the eigenstates |Ei〉
with the same transformation coefficients C i

κ ,

|κ〉 =
∑

i

C i
κ |Ei〉 (5.3)

Here the coefficients C i
κ are real due to the time reversal invariance. With this we can

define the strength function corresponding to a particular basis state |κ〉 as,

Fξκ(E) =
∑

i

|C i
κ|

2
δ(E − Ei). (5.4)

The basis state |κ〉 starts spreading into the eigenstates |Ei〉 as soon as the inter-particle

interaction is switched on. The strength function shows how this basis state spreads. This

gives us an idea about how much of the m -body space is occupied by the eigenstate. Since

the strength functions are experimentally measurable quantities they are of great importance

[8].

The shape of strength function demonstrates various transitions as we switch on and

then gradually increase the two-body inter particle interaction strength λ . The chaos mark-

ers λδ , λc and λF show these transitions. Initially when there is no inter particle inter-

action i.e. λ = 0 , only the one-body interaction is present in the system. In this case the

basis states have not yet started spreading into the eigenstates of the system i.e. the basis

states coincide with the eigensates and they are fully localized. In this case the shape of the

strength function is represented by the delta functions. Now as we switch on the inter parti-

cle interaction i.e. increase λ , the states start mixing due to this interaction. As a result the

basis states start to spread over the eigenstates of the system i.e. they start to delocalize. As

a result the strength functions make a transition from delta function to BW form at λ = λδ .

This region from λ = 0 to λ = λδ can be called the δ domain. With further increase in

λ , the strength function continues to exhibit BW form even after crossing λ = λc . As we

further increase λ , at point λ = λF , the strength functions will take up the Gaussian form.

This region from λ = λδ to λ = λF is called the BW domain. If we increase λ even

beyond λ = λF , after a point λ = λt the system will thermalize i.e. the different basis

dependent quantities like temperature, entropy, specific heat, etc. will behave alike irrespec-

tive of their basis. The region λ ∼ λt >> λF is called the thermodynamic region [34].

With further increase in λ , the eigenstates become fully delocalized (or chaotic) and in this

case the strength functions are represented by the Gaussian form. Hence the strength func-

tions exhibit a delta to BW to Gaussian transition with increase in inter particle interaction

λ and this is a generic feature of EE. Now when we also increase the body rank k from

2 to m , these strength functions further exhibit a Gaussian to semi-circle transition in the

thermodynamic domain.
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5.2. Strength Function

In order to study the strength functions in EGOE( 1+k ) and BEGOE( 1+k ), we choose

the value of k -body interaction strength such that λ > λt , i.e. the system exists in the

region of thermalization [10, 27]. Now to construct ensemble averaged strength functions,

the eigenvalues Ei and κ -energies ξκ of the system are first scaled to have zero centroid

and unit variance. For each member, all |C i
κ|

2
are summed over the basis states κ with

energy ξ in the energy window ξ ± ∆ . Then, the ensemble averaged Fξ(E) vs. E are

constructed as histograms by applying the normalization condition
∫
s(q)

Fξ(E) dE = 1 .

The numerical results represented by histograms are compared with the conditional q -

normal density function given by,

Fξ(E) = fCqN(x = E|y = ξ; ζ, q). (5.5)

5.2.1 Results for Fermion Systems

Now in order to study these strength functions, we consider two examples:(i) a 500

member EGOE( 1 + k ) ensemble with m = 6 fermions in N = 12 sp states and (ii) a 20

member EGOE(1+ k ) ensemble with m = 7 fermions in N = 14 sp states. Here λ = 0.5 .

The strength function Fξ(E) results for both these examples are presented in Fig. 5.1 and

Fig. 5.2. Results are presented for ξ = 0,±0.5,±1.0,±1.5,±2.0 for k = 2, 3, 4 and

k = m . In these figures histograms correspond to the numerical results while the smooth

black curves for each k are obtained via Eq.(5.5) using corresponding ensemble averaged

ζ and q values. The dotted lines for each k value correspond to their respective centroids.

For all k values, the numerical histograms are in very good agreement with the fCqN

curves. This agreement is obtained for both ξ = 0 and ξ 6= 0 .

5.2.2 Results for Boson Systems

Now moving further we study strength function in BEGOE( 1 + k ). Histograms in

Figs. 5.3, 5.4 and 5.5 represent ensemble averaged Fξ(E) results using a 250 member

BEGOE(1+ k ) ensemble with a system of m = 10 bosons in N = 5 sp states for various

body rank k values. In this analysis we take λ = 0.5 . The Fξ(E) results for ξ = 0 are

given in Fig. 5.3. Going further, we also obtain Fξ(E) results for ξ 6= 0 . These results are

shown in Fig. 5.4 for ξ = ±1.0 and in Fig. 5.5 for ξ = ±2.0 . The smooth black curves in

these figures for each k are obtained via Eq.(5.5) using corresponding ensemble averaged

ζ and q values. With λ >> λt , ζ2 << 1/2 , the q value in Eq.(5.5) can fairly be given

from chapter 4 [84]. The results in Figs. 5.3, 5.4 and 5.5 clearly show very good agreement

between the numerical histograms and continuous black curves for all body rank k .
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Chapter 5. Strength Function and its Width

All these results for fermion and boson systems using EGOE( 1+ k ) and BEGOE( 1+

k ) tell us about nature of the strength functions which is as follows. The symmetric nature

of strength functions for ξ = 0 and the Gaussian to semi-circle transition with increase in k

is observed. The smooth form given by Eq.(5.5) interpolates this transition very well. Now

as we move away from the center of the spectrum, i.e. ξ 6= 0 , the Fξ(E) are asymmetrical

about E as demonstrated earlier in [22]. Also, Fξ(E) are skewed more in the positive

direction for ξ > 0 and skewed more in the negative direction for ξ < 0 . From all the

above numerical results which are in very good agreement with the fCqN curves for ξ = 0

and also for ξ 6= 0 , we can conclude that the strength functions of many-fermion and

many-boson systems with random k -body interactions, follow the conditional q -normal

distribution fCqN . The results are also consistent with the analytical forms derived in [84].
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EGOE(1+k): N = 12, m = 6

Figure 5.1: Ensemble averaged strength function as a function of normalized energy E for a

500 member EGOE(1+ k ) ensemble with m = 6 fermions occupying N = 12 sp states for

body rank k =2, 3, 4 and k = m = 6 . Here λ = 0.5 . Histograms correspond to strength

functions for ξ = 0,±0.5,±1.0,±1.5 and ±2.0 . In the plots
∫
Fξ(E)dE = 1 . The

continuous black curves are due to fitting with fCqN given by Eq. (5.5) with corresponding

ensemble averaged q and ζ values. See text for more details.

74



Chapter 5. Strength Function and its Width

0.0
0.1
0.2
0.3
0.4
0.5
0.6

x = 0 x = -0.5 x = 0.5 x = 1.0x = -1.0 x = -1.5 x = 1.5

0.0
0.1
0.2
0.3
0.4
0.5
0.6

k = 2

E

St
re

ng
th

 F
un

ct
io

n
x = -2.0 x = 2.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6

k = 7

k = 4

k = 3

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6

-3 -2 -1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6

EGOE(1+k): N = 14, m = 7

Figure 5.2: Same as Fig. 5.1 but for a 20 member EGOE(1+ k ) ensemble with m = 7
fermions occupying N = 14 sp states for body rank k =2, 3, 4 and k = m = 7 .
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Figure 5.3: Strength function vs. normalized energy E for a system of m = 10 bosons

in N = 5 sp states with λ = 0.5 for different k values in BEGOE(1+ k ) ensemble. An

ensemble of 250 members is used for each k . Strength function plots are shown for ξ = 0 .

In the plots
∫
Fξ(E)dE = 1 . The smooth black curves are due to fitting with fCqN given

by Eq. (5.5) using q and ζ values obtained from q vs. λ results (from chapter 4) and

Eq. (5.16), respectively. See text for more details.
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Figure 5.4: Same as Fig. 5.3 but for ξ = −1.0 and 1.0 .

5.3 Correlation Coefficient ζ

In this section we will proceed by studying the width of the strength functions dis-

cussed in the previous section 5.2. The width of the strength functions σF is related to

the parameter ζ by σ2
F = 1 − ζ2 . Since ζ and σF are related, here we will discuss

width of the strength functions in terms of ζ . The correlation between full Hamiltonian H

and the diagonal part Hdia of the full Hamiltonian can be determined from the correlation
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Figure 5.5: Same as Fig. 5.3 but for ξ = −2.0 and 2.0 .

coefficient denoted by ζ which is defined as,

ζ =

√

1−
σ2
Hoff-dia

σ2
H

=
√
1− σ2

F , σF =
σHoff-dia

σH
(5.6)

Here, σ2
H is the variance of the eigenvalue distribution using full Hamiltonian and σ2

Hoff-dia

is the variance of the eigenvalue distribution by taking all diagonal matrix elements as zero,

i.e. by considering only the off-diagonal matrix elements. Now we will derive the ana-

lytical expression of ζ for fermionic and bosonic systems modeled by EGOE(1+ k ) and
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Chapter 5. Strength Function and its Width

BEGOE(1+ k ) using the method of trace propagation.

5.3.1 Formula of ζ for Fermion Systems

First let us derive the analytical expression of ζ for fermionic system. For H = V (k)

i.e. with all sp energies as degenerate, we have [61],

σ2
H=V (k) = T (N,m, k)

(
N

k

)−1 ∑

α,β

w2
αβ ,

where, T (N,m, k) = Λ0(N,m, k)

(
N

k

)−1

Λ0(N,m, k) =
(
m
k

)(
N−m+k

k

)

T (N,m, k) =
(
m
k

)(
N−m+k

k

)(
N
k

)−1

(5.7)

Here, α and β denote k -particle states. We know that in k -particle space, the H matrix

is GOE. Therefore, the k -particle matrix elements wαβ are Gaussian random variables

with zero mean and unit variance. The variance of diagonal matrix elements is w2
αα = 2

while that of off-diagonal matrix elements is w2
αβ = 1 for (α 6= β ). With this,

σ2
H=V (k) = T (N,m, k)

(
N

k

)−1

{2× no-dia + 2× no-offdia} , (5.8)

For fermions, the number of independent diagonal k -body matrix elements is ’no-dia’=(
N
k

)
and that of off-diagonal is ’no-offdia’=

(
N
k

)
{
(
N
k

)
− 1} . Similarly, σHoff-dia

is given by

removing the contribution of diagonal k -body matrix elements from the above equation.

For one body h(1) part of the Hamiltonian defined by the external sp energies ǫi we have,

σ2
h(1) = m(N−m)

N(N−1)

∑
ǫ̃i

2. (5.9)

Going further, when we include the one-body part, then for the full Hamiltonian we have,

σ2
H = σ2

h(1) + λ2 σ2
V (k)

= m(N−m)
N(N−1)

∑
ǫ̃i

2 + λ2 σ2
V (k).

(5.10)

The analytical expression for ζ2 can be given by,

ζ2 =

m(N−m)
N(N−1)

∑
ǫ̃i

2 + 2 λ2 T (N,m, k)

m(N−m)
N(N−1)

∑
ǫ̃i

2 + λ2 T (N,m, k)
{
1 +

(
N
k

)} . (5.11)
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In the above equation, the contribution from the diagonal part of V (k) is also included

into the numerator term. Now we test the above Eq. (5.11) with numerical ensemble aver-

aged EGOE(1+ k ) results. We consider two examples for this analysis: (i) a 100 member

EGOE(1+ k ) ensemble with m = 6 fermions in N = 12 sp states and (ii) a 20 member

EGOE(1+ k ) ensemble with m = 7 fermions in N = 14 sp states. The variation of ζ2 as a

function of k body interaction strength λ is studied for body ranks k = 2,3,4 and k = m

for both these examples. These ζ2 vs. λ results are presented in Figs. 5.6 and 5.7. In all

the plots in Figs. 5.6 and 5.7, the solid circles represent the numerical ensemble averaged

results while the black smooth curves are analytical results obtained using Eq. (5.11). The

analytical results are obtained using fixed sp energies ǫi = i+1/i . A very good agreement

between the numerical and analytical results for all k values can be observed for both these

examples.
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Figure 5.6: Ensemble averaged ζ2 (solid circles) as a function of interaction strength λ for

a 100 member EGOE(1+ k ) ensemble with m = 6 and N = 12 are shown for body ranks

k = 2,3,4 and k = m = 6 . The ensemble averaged results are compared with the analytical

curves given by Eq.(5.11) (smooth black curves) and a very good agreement between both

the curves can be seen.
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Figure 5.7: Same as Fig. 5.6 but for a 20 member EGOE(1+ k ) ensemble with m = 7 and

N = 14 . Results are shown for body ranks k = 2,3,4 and k = m = 7 .

5.3.2 Formula of ζ for Boson Systems

In a similar manner, the analytical expression of ζ for bosonic system can be obtained.

From [61] we have

σ2
H=V (k) = T (N,m, k)

(
N + k − 1

k

)−1 ∑

α,β

w2
αβ ,

where, T (N,m, k) = Λ0(N,m, k)/

(
N + k − 1

k

)
,

Λ0(N,m, k) =
(
m
k

)(
N+m−1

k

)

T (N,m, k) =
(
m
k

)(
N+m−1

k

)
/
(
N+k−1

k

)
.

(5.12)
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Since the variance of diagonal matrix elements is twice the variance of off-diagonal matrix

elements, we have

σ2
H=V (k) = T (N,m, k)

(
N + k − 1

k

)−1

{2× no-dia + 2× no-offdia} , (5.13)

Here the number of independent diagonal and off-diagonal k -body matrix elements are

’no-dia’=
(
N+k−1

k

)
and ’no-offdia’= 1

2

(
N+k−1

k

)
{
(
N+k−1

k

)
− 1} respectively. Similarly,

σHoff-dia
is given by removing the contribution of diagonal k -body matrix elements from the

above equation. Then using Eq.(5.6) for H = V (k) ,

ζ2 =
4(

N+k−1
k

)
+ 1

. (5.14)

Here, it can be immediately seen that ζ2 is independent of m for BEGOE( k ). In the dense

limit, with k << m , ζ2 ∝ 1/Nk , hence as N → ∞ , σF → 1 which implies ζ → 0 [62].

Going further, with inclusion of one-body part defined by the external sp energies ( ǫi ), and

with H = h(1) + λV (k) , we have

σ2
H = σ2

h(1) + λ2 σ2
V (k),

= m(N+m)
N(N+1)

∑
ǫ̃i

2 + λ2 σ2
V (k).

(5.15)

The analytical expression for ζ2 can be given by,

ζ2 =

m(N+m)
N(N+1)

∑
ǫ̃i

2 + 2 λ2 T (N,m, k)

m(N+m)
N(N+1)

∑
ǫ̃i

2 + λ2 T (N,m, k)
{
1 +

(
N+k−1

k

)} . (5.16)

The analytical expression for ζ2 given by Eq.(5.16) is tested with the numerical ensemble

averaged results obtained using an example of 100 member BEGOE(1+ k ) ensemble with

m = 10 and N = 5 . The results of ζ2 as a function of k -body interaction strength λ for

different body rank k are presented in Fig. 5.8. The red solid circles represent ensemble

averaged numerical results while the continuous black smooth curve in each plot is obtained

using Eq.(5.16) with fixed sp energies employed in the present study. It can be seen from

the results that there is a very good agreement between the ensemble averaged results and

the smooth forms obtained by Eq.(5.16) for all k values. Small difference with large λ ,

for k < 5 , is due to neglect of induced sp energies. The contribution of induced sp energies

reduces as λ and k increases.

The results of ζ2 for both fermion and boson systems presented in Figs. 5.6, 5.7 and

5.8 show that the width of the strength function strongly depends on λ . For λ → 0 ,

ζ2 → 1 for all k and the strength functions are known to be represented by δ functions.
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With increase in λ i.e. λ ≥ λC , the strength functions are known to be described by

the Briet-Wigner (Lorentz) form. With further increase in λ i.e. λ >> λF , ζ2 goes on

decreasing smoothly leading to a fully chaotic domain giving the Gaussian or semi-circle

or intermediate to Gaussian and semi-circle character of the strength functions depending

upon the values of λ and k . One can also observe the BW to Gaussian to semi-circle

transition in strength functions by changing both λ and k . Therefore, it is possible to have

a shape intermediate to BW and semi-circle for some values of λ and k [153].
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Figure 5.8: Ensemble averaged ζ2 vs. λ calculated for BEGOE(1+ k ) ensemble with

N = 5, m = 10 example for different k values. Solid circles represent numerical ensemble

averaged results and the smooth black curves are obtained using Eq.(5.16). Refer text for

more details.

5.4 Chaos marker λt

The thermodynamic region can be identified from chaos marker λt . This is the region

where different quantities defining the eigenstate properties like entropy, strength functions,

temperature, etc. give the same values irrespective of the defining basis. This means that

once the interaction strength between the particles λ goes beyond λt , the quantum system

thermalizes and then we can define quantities like temperature, entropy, etc. of the system.

We can obtain λt from the correlation coefficient ζ discussed in previous section 5.3.

In [27, 152] for two-body interaction, it is shown that λt can be obtained from ζ2 using

83



5.4. Chaos marker λt

the condition ζ2 = 0.5 i.e. the spreading produced by one-body part and two-body part

are equal. Using this condition, we can also obtain the analytical expression for marker λt

for k -body interactions in presence of mean field by considering the spreading produced

by one-body part and k -body part equal, for both fermion and boson system.

5.4.1 Formula of λt for Fermion Systems

First let us obtain the analytical expression of λt for fermion system. We put ζ2 = 0.5

in Eq. (5.11) and solve it for λ . In this way we can obtain the marker λt in terms of m ,

N and k which is given by,

λt =

√
m(N −m)

∑
ǫ̃i

2

N(N − 1)Λ0(N,m, k)(1− 3
(
N
k

)−1
)
. (5.17)

The results of the variation of marker λt as a function of m for fermion systems modeled

by EGOE(1+ k ) are presented Fig. 5.9. This analysis is done for k = 2,3 and 4 by taking

m/N values 0.1 and 0.5.

5.4.2 Formula of λt for Boson Systems

Now moving further let us derive the analytical expression for boson system with

BEGOE(1+ k ). As in the case of fermions, we put ζ2 = 0.5 in Eq. (5.16) and solve

it for λ to obtain (m , N , k ) dependence of λt . In this way we obtain the analytical

expression of λt given by,

λt =

√√√√ m(N +m)
∑
ǫ̃i

2

N(N + 1)Λ0(N,m, k)(1− 3
(
N+k−1

k

)−1
)
. (5.18)

Fig. 5.10 shows the variation of marker λt in dense boson systems as a function of N for

the fixed sp energies used in the present study. The results are shown for body rank values

k = 2, 3 and 4 , and with m/N = 2 and 5 .

These results for both fermion and boson systems show that as the body rank of inter-

action k among the particles increases, the value of λt decreases i.e. the thermalization

sets in faster in the system.
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Figure 5.9: Marker λt vs. m for fermion system. Results are obtained using Eq.(5.17) for

k =2,3 and 4 and for various values of m/N .

5.5 Lower Order Moments

In this section, we analyze the lower order moments of the strength functions discussed

in section 5.2. We have computed the first four moments viz. centroid, variance, skewness

( γ1 ) and excess ( γ2 ) of the strength functions for both fermion and boson systems. These

numerically computed results are also compared with the analytical forms of the first four

moments of fCqN [84] discussed in chapter 4.

5.5.1 Results for Fermion Systems

Let us first analyze the first four moments for fermion systems. Figs. 5.11 and 5.12

represent results for centroid, γ1 and γ2 for fermion systems. For this calculation, we

consider the example of m=6 fermions in N =12 sp states. We study these three moments

as a function of λ for various values of ξ = 0 , ±1.0 and ±2.0 for body rank of interaction
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Figure 5.10: Variation of marker λt as a function of N for dense boson systems with

BEGOE(1+ k ). Results are shown for body rank values k = 2, 3 and 4 , for various values

of m/N determined from Eq.(5.18).

k = 2 and 3. The solid symbols represent the numerical results while the smooth forms

are analytical results given by the corresponding equations of moments of fCqN discussed

in chapter 4. It can be observed from the plots that no variation is observed between the

numerical results and smooth forms for the first moment i.e. centroid, by changing the

interaction strength λ . Though not shown here, similarly no variation is observed in the

second moment i.e. variance as well. Now the interesting case is of the third and fourth

moments i.e. γ1 and γ2 . These are the moments which can also give us the marker λt .

Initially when the interaction strength λ is very low (i.e. λ < λt ), we can observe variation

in the numerical and analytical results. But as we approach the λt , we no longer observe

this variation in both these results. And for λ ≥ λt this variation can no longer be observed.

In this way we can also obtain the marker λt from the moments of strength functions. In

Figs. 5.11 and 5.12, the marker λt is shown by dotted lines for each k value. These values

of λt are obtained from the analytical results presented in section 5.4 and the numerical

results of λt obtained from the the lower order moments are in good agreement with these

analytical values.
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5.5.2 Results for Boson Systems

Now let us move forward by analyzing the lower order moments for boson systems.

Fig. 5.13 represents results of centroid, variance, γ1 and γ2 of the strength function results

of bosons for the body rank k going from 2 to k = m = 10 . The results are shown for

various values of ξ . As discussed earlier in section 5.2, the variance of the strength func-

tions is independent of ξ and simply related to correlation coefficient. From the numerical

results of lower order moments of strength functions, one can clearly see that in the ther-

modynamic domain, lower order moments follow moments of the conditional q -normal

distribution fCqN . The results are also consistent with the analytical forms derived in [84]

and discussed in chapter 4.

5.6 Conclusion

The strength functions that play a very crucial role in studying the wavefunction

structure in finite interacting particle systems have been analyzed in this chapter. The

strength function along with its width has been analyzed for both fermions and bosons

using EGOE(1+ k ) and BEGOE(1+ k ) respectively. It is shown that in the strong coupling

limit (i.e. λ > λt ), the conditional q -normal density fCqN describes Gaussian to semi-

circle transition in strength functions as body rank k of the interaction increases. Further,

a complete analytical description of the variance of the strength function in terms of the

correlation coefficient ζ , as a function of λ and k is derived. Using this analytical ex-

pression of ζ , the (m,N, k) dependence of marker λt , defining thermalization region is

derived analytically. Finally the lower order moments of the strength functions are studied

for BEGOE(1+ k ) as a function of body rank k . For EGOE(1+ k ), the lower order mo-

ments of the strength functions are studied as a function of interaction strength λ and using

these results it is shown that the marker λt can also be determined from the lower order

moments of the strength functions.
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Figure 5.11: Variation of the moments of strength functions i.e. centroid, γ1 and γ2 as a

function of λ . The results are shown for various values of ξ for a system of m=6 fermions

in N =12 sp states for k = 2 . These results give us the marker λt . For more details refer

the text.
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Figure 5.12: Same as Fig. 5.11 but for k = 3.
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Figure 5.13: Ensemble averaged (a) Centroid, (b) γ1 and (c) γ2 as a function of body rank

k for the strength function results for bosons. Results are shown for various values of ξ .
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