
Chapter 8

Conclusions and Future Outlook

8.1 Conclusions

T
he work presented in this thesis has addressed the two very recently popular open prob-

lems of quantum statistical physics i.e. quantum many-body chaos and thermalization

in isolated finite interacting many-particle systems. The main motivation for this study

comes from the recent experimental developments on ultra-cold quantum gases and pro-

duction of Bose-Einstein (BE) condensates, which allow us to artificially simulate these

complex quantum systems. In order to address these problems the spectral and wavefunc-

tion properties of these systems are analyzed. Embedded random matrix ensembles being

paradigmatic models to study finite interacting many-body quantum systems are used for

this study. Throughout this thesis we have modeled these systems using orthogonal vari-

ant of these embedded ensembles called the Embedded Gaussian Orthogonal Ensemble

(EGOE). The conclusions of this entire study are as follows.

In chapter 2, various EGOEs of one plus two-body interactions [EGOE(1+2)] used to

model interacting fermion and boson systems with and without spin degree of freedom in

the present study are introduced. Spinless fermion (or boson) systems are modeled using

EGOE(1+2) (or BEGOE(1+2)). Moving ahead with spin degree of freedom, fermion sys-

tems with spin s = 1/2 are modeled using EGOE(1+2)- s . For bosons with a fictitious F

spin 1/2 degree of freedom we have BEGOE(1+2)-F and with spin-one degree of free-

dom we have BEGOE(1+2)-S1 . The basic construction of the Hamiltonian of all these

ensembles is given in this chapter.

Now having defined these ensembles, we proceed with the study of their spectral prop-

erties using eigenvalues obtained from their respective Hamiltonian. The spectral fluctua-
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tions reveal whether the complex system under study is in regular (or integrable) or chaotic

domain. Spacing distributions are measures to study these spectral fluctuations.

In chapter 3, we use the eigenvalues obtained from various EGOE(1+2) discussed in

chapter 2 to study these spectral fluctuations using two spacing distributions. In the first part

of this chapter, the distributions of closest neighbor spacings PCN(s) and farther neighbor

spacings PFN(s) for interacting fermion and boson systems with and without spin degree

of freedom are studied. Our numerical results for various examples of fermion and boson

systems and shell model, are consistent with the recently derived analytical expressions us-

ing a 3 × 3 random matrix model and other related quantities [107]. This concludes that

these analytical expressions are universal and the local level fluctuations generated by EE

follow the results of classical Gaussian ensembles when the two-body interaction is strong

enough. Going further, for EGOE(1+2) and BEGOE(1+2) using 〈sCN〉 and 〈sFN〉 we

have also obtained the transition marker λC . Using this marker it is possible to study a

transition from Poisson to GOE in level fluctuations with increase in the strength of the

two-body interaction λ [24,62,65,115,135]. The analysis of these distributions involve the

cumbersome and non-unique procedure of unfolding to remove the variation in the density

of eigenvalues. However if we use the method of ratio of spacings [109] we can escape from

this unfolding procedure. In the second part of this chapter going beyond ratio of spacings,

we have analyzed the distributions of higher order level spacing ratios P k(r) for interact-

ing fermion and boson systems with and without spin degree of freedom. Our numerical

results for higher order spacing ratios are in excellent agreement with the recently derived

Wigner surmise like scaling relation. From this we can conclude that, this scaling relation

is universal to understand higher order spacing ratios in complex many-body fermionic as

well as bosonic quantum systems preserving rotational and time-reversal symmetry with

and without spin degree of freedom. We have also shown that the higher order spacing ratio

distributions can reveal quantitative information about underlying symmetry structure. This

further concludes that this analysis of higher order spacing ratios is not only useful in study-

ing spectral fluctuations but also reveals quantitative information about symmetry structure

of complex quantum systems.

These EGOE(1+2) models used in the chapters so far, to study interacting fermion and

boson systems with and without spin degree of freedom, focused on one- plus two-body

part of the interaction as inter-particle interaction is known to be only one-body and two-

body in nature. However, recently the importance of higher body interactions i.e. k > 2 is

discovered in strongly interacting quantum systems [71,72], nuclear physics [73], quantum

black holes [35, 74] and wormholes [75] with SYK model and also in quantum transport in

disordered networks connected by many-body interactions [76–78]. Therefore, it is neces-

sary to extend the analysis of EE with two-body interactions to higher k -body interactions

and study their statistical properties in order to address these problems. They are denoted

122



Chapter 8. Conclusions and Future Outlook

by EGOE( k ) (or BEGOE( k )) for fermion (or boson) systems. In the presence of mean-

field they are denoted by EGOE(1+ k ) (or BEGOE(1+ k )) for fermion (or boson) systems.

The generating function of q -Hermite polynomials exhibits Gaussian to semi-circle transi-

tion. The spectral densities of SYK model and these EGOEs also show this same transition.

Hence recently q -Hermite polynomials are used to study spectral density in these mod-

els [80–82] and also in EGOE( k ) [79].

In chapter 4, we firstly define and describe the construction of Hamiltonian of

EGOE(1+ k ) and BEGOE(1+ k ). We then introduce q -Hermite polynomials, q -normal

distribution fqN , conditional q -normal distribution fCqN and bivariate q -normal distri-

bution fbiv−qN . Further we have derived the analytical formula of parameter q consid-

ering only the one-body part of the Hamiltonian for both fermions and bosons. Also the

variation of parameter q as a function of the interaction strength λ in EGOE(1+ k ) and

BEGOE(1+ k ) is studied for a fixed body rank k . Lastly, we show that the Gaussian to

semi-circle transition in spectral density of EGOE(1+ k ) and BEGOE(1+ k ) is well de-

scribed by fqN for any value of interaction strength λ .

In the chapters so far, the spectral properties of isolated finite interacting many par-

ticle systems are analyzed using the eigenvalues of the Hamiltonian. Going beyond the

eigenvalues, the eigenfunctions give us knowledge of the structure of wavefunctions of

these systems. This in turn is useful to study various other interesting quantities like in-

formation entropy (S info ), number of principal components (NPC), occupational entropy

(Socc ), etc. These quantities also quantify chaos in these systems. The strength functions

(also known as local density of states) are very fundamental in the analysis of wavefunction

structure in finite interacting particle systems. Strength functions carry the information of

spreading of a particular basis state over the eigenstates. In chapter 5, we have analyzed

the strength function along with its width for both fermions and bosons using EGOE(1+ k )

and BEGOE(1+ k ) respectively using the eigenfunctions obtained from their corresponding

Hamiltonian. It is shown that for strong enough inter-particle interaction (i.e. λ > λt ), the

shape of strength functions show a transition from Gaussian to semi-circle form as the body

rank k of the interaction increases. This transition is very well described by fCqN . Moving

ahead, a complete analytical description of the variance of the strength function in terms of

the correlation coefficient ζ , as a function of λ and k is derived for both EGOE(1+ k )

and BEGOE(1+ k ). Analytical expression of marker λt , defining thermalization region is

derived in terms of the system parameters m,N and k using the analytical expression of ζ

for both EGOE(1+ k ) and BEGOE(1+ k ). Lastly the lower order moments of the strength

functions are studied for BEGOE(1+ k ) as a function of body rank k . Using EGOE(1+ k ),

we have shown that the marker λt can also be determined from the lower order moments

of the strength functions. For this analysis we have studied the lower order moments of the

strength functions as a function of interaction strength λ .

123



8.2. Future Outlook

Now moving ahead, we apply the analysis of strength functions presented in chapter 5,

to study two chaos qauntifiers viz. NPC and S info in chapter 6. We use the interpolating

conditional q -normal form fCqN of the strength functions and fqN form to analyze NPC.

We have obtained an analytical formula in terms of two parameters ζ and q as a function

of energy for k -body interaction. We tested this formula with the numerical EE results for

both EGOE(1+ k ) and BEGOE(1+ k ) when the interaction strength is strong enough. We

found that there is a good match between numerical EE results and the analytical formula

in strong interaction domain. Now moving to the next chaos quantifier, we have studied the

localization length lH related to S info . lH is studied numerically using the interpolating

conditional q -normal form fCqN of the strength functions. The study has been carried out

for both EGOE(1+ k ) and BEGOE(1+ k ) as a function of energy for k -body interaction

and these results are in good agreement with the smooth forms. Till now we have stud-

ied these quantities as a function of energy. We now end this chapter with study of time

evolution in these systems. In the study of time evolution, fidelity decay is an important

quantity to investigate. We study the fidelity decay in boson systems after the application

of k -body interaction quench. This is studied using BEGOE(1+ k ) using the interpolating

form of strength functions. From all the results presented in chapters 4, 5 and 6 and from the

previous studies [79, 83, 84], we conclude that the q -Hermite polynomials play a very sig-

nificant role in analyzing many-body quantum systems interacting via k -body interaction.

Due to the recently known contribution of 3-body and 4-body parts in nuclear interactions

and the possibility of higher body interactions becoming prominent in strongly interacting

quantum systems in future [35,71,72], the generic results presented in these chapters are im-

portant for a complete description of many-body quantum systems interacting via k -body

interaction.

Finally in the last chapter 7, we have applied the embedded ensembles with k -body

interactions to study the role of centrosymmetry in quantum transport across disordered

networks connected by many-body interactions. We modeled the fermionic and bosonic

networks using EGOE( k ) and BEGOE( k ) respectively. We studied the transport efficien-

cies in these networks and found out that the presence of centrosymmetry in m -particle

space is responsible for the enhancement of transport efficiency in a small network and re-

sults are in good agreement with [76]. Further we have verified that the centrosymmetry is

essentially needed in both k as well as m particle spaces to enhance quantum efficiency.

8.2 Future Outlook

Following problems are for future work on the lines mentioned in this thesis:
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• In the past, the criterion for the chaos marker λC for EGOE(1+2) models [31, 62],

based on the perturbation theory was derived by Jacquod and Shepelyansky [196].

The validity of the perturbation theory gives λC . Hence, in future it is important to

analyze PCN(s) distribution and related measures in the context of onset of chaos in

embedded ensembles.

• In future, the higher order spacing ratios can be utilized to get new information about

symmetries such as isospin symmetry and F -spin symmetry in the following nuclei:

(i) in 26 Al and 30 P energy levels up to ∼ 8 MeV excitation with isospin T = 0 and

T = 1 [197] and they can be analyzed using EGOE(1+2)- s with spin being isospin;

(ii) scissors levels in 2.5 to 4 MeV excitation in heavy deformed nuclei with the low-

lying levels having F = N/2 and scissors levels F = N/2−1 [198] and they can be

analyzed using BEGOE(1+2)-F ; (iii) excited 2+ and 4+ levels in nuclei across the

periodic table with various symmetries of IBM and its extensions [199]; (iv) analyzing

energy levels from large shell model and also IBM-2 and IBM-3 models. The higher

order spacing ratios may give new information about symmetries in these nuclei. In

the past, all these data have been analyzed using NNSD but the analysis of their higher

order spacings still remains to be carried out in future [31].

• It is also known that the strength functions and the entanglement essentially capture

the same information about eigenvector structure [155, 200] and therefore in future

it is important to study entanglement properties using embedded ensembles with k -

body forces.

• The fidelity decay W0 is expected to surely demonstrate a power-law behavior i.e.

W0(t) ∝ t−γ with γ ≥ 2 implying thermalization [201], over very long times, no

matter how fast the decay may initially be. It is shown in [201], that the power-

law behavior appears due to the fact that the energy spectrum is bounded from both

the ends. This condition is essentially satisfied by fCqN . Therefore, in future it

is important to analyze the long-time behavior of fidelity decay using EE firstly to

establish its universality and secondly to test whether it can be explained with the use

of fCqN .

• Using these results, in future it is possible to design networks with good efficiency

even in presence of certain many-body random perturbations. For example, the ef-

ficiency in nano-structure such as quantum wires, it is interesting to check the case

with filling factors close to one, where many body interactions lead to very good

efficiencies. Another example is of efficient single electron transport in a linear ar-

ray of tunnelcoupled quantum dots, which can further be used as an ideal quantum

channel in quantum computers [185] and efficient transmission of qubits between the

different quantum registers in a quantum bus based on semiconductor self-assembled
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quantum dots [186]. Also, controlling strong interactions between ultra-cold atoms

trapped in optical lattices can serve in efficient quantum computation [187]. Finally,

the results presented in this chapter can be useful to understand the good efficiency

properties experimentally observed in exciton transport in certain biomolecules such

as the Fenna- Matthews-Olson complex [176]. Also in future it will be interesting to

study the transfer of quantum states from one location to another which is the base of

Quantum Information Science, using EE with spin degree of freedom.
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