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Abstract. Random matrix ensembles defined by a mean-field one-body
and chaos generating two-body interaction are proved to describe sta-
tistical properties of complex interacting many-body quantum systems
in general and complex atomic nuclei (or nuclei in the chaotic region)
in particular. These ensembles are generically called embedded ensem-
bles of (1 + 2)-body interactions or simply EE(1 + 2) and their GOE
random matrix version is called EGOE(1 + 2). In this paper, we study
the distribution of non-overlapping spacing ratios of higher-orders in
EGOE(1 + 2) for both fermion and boson systems including spin degree
of freedom (also without spin) that have their origin in nuclear shell
model and the interacting boson model [V.K.B. Kota, N.D. Chavda,
Int. J. Mod. Phys. E 27, 1830001 (2018)]. We obtain a very good cor-
respondence between the numerical results and a recently proposed
generalized Wigner surmise like scaling relation. These results confirm
that the proposed scaling relation is universal in understanding spacing
ratios in complex many-body quantum systems. Using spin ensembles,
we demonstrate that the higher order spacing ratio distributions can
also reveal quantitative information about the underlying symmetry
structure (examples are isospin in lighter nuclei and scissors states in
heavy nuclei).

1 Introduction

The study of spectral fluctuations is very crucial for understanding the inherent
complexities of complex quantum systems. The spectral fluctuation measures, used
in many different fields, are modeled through Random Matrix Theory (RMT) [1–3].
These are useful in characterizing distinct phases observed in physical systems such as
localized or delocalized phase [4], insulating or metallic phase of many-body systems
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[5,6], integrable or chaotic limit of the underlying classical system [7], and low-lying
shell model or mixing regime of nuclear spectra [8,9]. It is now well established that
a quantum system is chaotic if its spectral properties follow one of the three classical
ensembles, the Gaussian orthogonal (GOE), unitary (GUE) or symplectic (GSE)
ensemble depending on the symmetries of the Hamiltonian [10].

The nearest neighbor spacing distribution (NNSD), P (s), giving degree of level
repulsion is one of the most popular measures in the study of spectral fluctuations. For
time reversal and rotational invariant systems (represented by GOE), as conjectured
by Bohigas et al. [11] and proved for certain systems by Haake et al. [12], if a quantum
system is chaotic, NNSD follows the Wigner surmise, P (s) = (π/2)s exp(−πs2/4),
which indicates the presence of ‘level repulsion’. However, as established by Berry
and Tabor [13], if a quantum system is integrable, NNSD follows Poisson distribution,
P (s) = exp(−s), displaying ‘level clustering’.

For a given set of energy levels (or eigenvalues), construction of NNSD requires
‘unfolding’ of the spectra in order to remove the secular variation in the density
of eigenvalues [9,10]. This is a cumbersome and non-unique numerical procedure.
Also, for many-body systems such as Bose–Hubbard model, unfolding procedure of
the spectra becomes non-trivial as the density of states is not a smooth function
of energy in the strong interaction domain [14–16]. Similarly, though in the nuclear
shell model to a good approximation the density of states is close to an Edgeworth
corrected Gaussian, in the interacting boson models of atomic nuclei, the smooth
form of the density of states is not determined. Moreover, there are discrepancies
between spectral and ensemble unfolding for non-ergodic random matrices [9,17,18].

In the past, Oganesyan and Huse [14] introduced the distribution P (r) of the ratio
of consecutive level spacings of the energy levels which does not require unfolding as it
is independent of the form of the density of the energy levels. Importantly, Atas et al
[19] derived expressions for P (r) for the classical GOE, GUE and GSE ensembles
of random matrices. The statistics of ratio of spacings has been used to quantify
the distance from integrability on finite size lattices [15,16], to investigate many-
body localization [14,20–22], to establish that finite many particle quantum systems,
modeled by embedded random matrix ensembles, with strong enough interactions
follow GOE [23], to study spectral correlations in diffused van der Waals clusters
[24] and to analyze spectra of uncorrelated random graph network [25]. Recently, an
approximate form for the distribution of spacing ratios for random and localized states
in quantum chaotic systems is derived using the 3× 3 random matrix model with a
possible correction term to it in [26] and a generalized form of Wigner surmise has
been proposed for the distribution of non-overlapping spacing ratios of higher-orders
[27]. An extension of the Wigner surmise for distribution of higher order spacing ratios
was also proposed in the past [28,29] and applied to systems with mixed regular-
chaotic dynamics [30].

The Hamiltonian matrix H of a complex quantum system in finite dimensional
space contains all information about the system. The nature of the matrix depends
on various symmetries imposed on the system. In the presence of symmetries, the
Hilbert space of the system splits into invariant subspaces giving block diagonal form
for H. Each block is characterized by good quantum numbers corresponding to the
respective symmetries. The spectral fluctuations obtained using the discrete levels
drawn from the same subspace of the complex quantum systems are known to follow
RMT. For mixed spectra, the levels from different blocks are superposed ignoring
the symmetries, resulting in level clustering as the actual correlation between the
levels is lost. This may give rise to misleading results since the level clustering is
also a spectral signature of integrable systems [13]. Recently, in [31] with rigorous
numerical evidence, it is shown that the higher order level spacing ratio can also
reveal information about symmetry structure of measured or computed levels without
desymmetrization, i.e. without symmetry decomposition of the spectra of quantum



Role of Symmetries in Nuclear Physics 2605

systems. With this result, it is also possible to analyze any arbitrary sequence of
experimentally observed levels, whose symmetry structure is unknown. This method
is straightforward compared to the complicated and approximate methods based on
two-level cluster function for a composite spectrum [32,33].

It is important to add that the EGOE(1 + 2) for fermions with spin degree of free-
dom correspond to isospin degree of freedom in nuclear shell model [34], for bosons
with a fictitious (f) spin degree of freedom correspond to the proton–neutron inter-
acting boson model (or IBM-2) with F -spin [35] and for bosons with spin one degree
of freedom correspond to isospin invariant interacting boson model or IBM-3 [36].
For more detailed discussion regarding this correspondence and their significance, see
[37–39].

In a large number of investigations carried out during last two decades, it is well
established that embedded Gaussian orthogonal ensembles [17,40] of one plus two-
body interactions [EGOE(1 + 2)] apply in a generic way to isolated finite interacting
many-particle quantum systems such as nuclei, atoms, quantum dots, small metal-
lic grains, interacting spin systems modeling quantum computing core and so on
[37,41–44]. Recently, these models have also been used successfully in understanding
high energy physics related problems. Random matrix models with two-body interac-
tions [EGOE(2)] among complex fermions are known as complex Sachdev–Ye–Kitaev
models in this area [45–47]. In the present work, we analyze generic properties of
non-overlapping higher order spacing ratios for several embedded ensembles, both for
fermionic and bosonic systems, with and without spin degree of freedom. We also
show that the quantitative information about the symmetry structure of the system
can be obtained using higher order spacing ratios for embedded ensembles with spin
degree of freedom.

The paper is organized as follows. Analytical results for the probability distri-
bution of the ratio of consecutive level spacings and higher order spacing ratios for
GOE are briefly discussed in Section 2. The five different EGOEs, used in the present
analysis, are defined in Section 3. Numerical results of the distribution of higher order
ratio of consecutive spacings and related averages are presented in Section 4. Finally,
Section 5 gives the concluding remarks.

2 Probability distribution of higher order spacing ratios

Understanding and deriving generic results for fluctuation properties has widespread
applications in all branches of physics, mathematics, engineering and so on [3,48–52].
Consider an ordered set of eigenvalues (energy levels) en, where n = 1, 2, . . . , d. The
consecutive eigenvalue spacings are given by sn = en+1 − en and the ratios of two
nearest neighbor or consecutive eigenvalue spacings are rn = sn+1/sn. Using an exact
calculation for 3× 3 Gaussian random matrices, the probability distribution P (r) for
consecutive eigenvalue spacings for GOE is derived to be given by [19],

P (r) =
27

8

(r + r2)

(1 + r + r2)5/2
. (1)

Nearest neighbor spacing ratios r probe fluctuations in spectral scales of the order of
unit mean spacing. Many different variants of consecutive level spacing ratios have
been studied recently [23,26,53]

The non-overlapping higher order spacing ratios can be defined as,

r(k)n =
s
(k)
n+k

s
(k)
n

=
en+2k − en+k
en+k − en

; n, k = 1, 2, 3 . . . (2)
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such that there is no shared eigenvalue spacing in the numerator and denominator.
Higher order spacing ratios r(k) probe fluctuations in spectral interval of k mean
spacings. Recently, it is shown that there exists a scaling relation between the non-
overlapping kth order probability distribution P k(r) and the nearest neighbor spacing
ratio distribution Pα(r) with modified parameter α for the class of Wigner–Dyson
random matrices [27]. This is verified with numerical evidence from Gaussian and
circular ensembles of random matrix theory and for several physical systems such as
spin chains, chaotic billiards, Floquet systems and measured nuclear resonances. For
GOE, the nearest neighbor spacing ratio distribution Pα(r) is given as,

Pα(r) = Cα
(r + r2)α

(1 + r + r2)1+3α/2
, (3)

where Cα is the normalization constant. If the model producing P k(r) follows RMT,
then,

P k(r) = Pα(r),

with α =
(k + 2)(k + 1)

2
− 2, k ≥ 1.

(4)

The modified parameter α ≥ 4 can take large integer values and it accounts for
the dependence on order k of the spacing ratio. It is also useful to consider
〈r〉 =

∫
r P k(r) dr, the average values of spacing ratios r. Similarly, the average values

of spacing ratios 〈r〉α can be defined from Pα(r). The values of 〈r〉α corresponding to
k = 2, 3 and 4 are 1.1747, 1.0855 and 1.0521 respectively. P k(r), Pα(r) and 〈r〉 are
used in the analysis of energy levels presented in Section 4.

Further, the distribution of higher-order spacing ratios can also be used to under-
stand quantitative information regarding underlying symmetry structure in addition
to explaining universal features of fluctuation characteristics. As conjectured by
Dyson [54–56] and proved by Gunson [57], the spectral statistics of two superposed
circular orthogonal ensemble (COE) spectra converge to that of circular unitary
ensemble (CUE). This is expected to be echoed in the distribution of level spac-
ings and spacing ratios as well. Using examples of superposed GOE spectra, billiards,
spin-1/2 chains and neutron resonance data, it has been demonstrated that distribu-
tion of higher order spacing ratios carry symmetry information [31]. Let us consider
an arbitrary sequence of eigenvalues of GOE Hamiltonian H, which is a superposi-
tion of m blocks with each block characterized by good quantum numbers. Then,
non-overlapping kth order distribution of spacing ratios, denoted by P k(r,m) con-
verges to the nearest neighbor spacing ratio distribution Pα(r) [31], in the same way
as equation (4),

P k(r,m) = Pα(r) when α = k = m. (5)

Note that, here P k(r,m = 1) = P k(r). Therefore, the validity of equation (5) implies
that in addition to their fluctuation properties P k(r) can also reveal the information
about the symmetry structure of the composite spectra of complex quantum system.

We analyze P k(r) for embedded ensembles for fermion and boson systems with
and without spin degree of freedom and show that the functional form of P k(r)
is generically identical to Pα(r) for complex many-body quantum systems. Let us
add that we are using the ensembles without spin for testing the applicability of
equation (4) for quantum many particle systems with interactions. On the other
hand, the results for the EE with spin degree of freedom using equation (5) have
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direct applications in the analysis of nuclear energy levels giving information about
isospin and F -spin; see the discussion at the end of Section 1 and also Section 4
ahead.

3 Embedded ensembles for fermion and boson systems
with and without spin degree of freedom

In this section, we define the models that we use to represent complex many-body
interacting quantum systems and they are introduced first in nuclear physics in
the context of nuclear shell model [9,17,37,40,44]. Embedded Gaussian Orthogonal
Ensembles (EGOE) are random matrix models with two-body interactions among its
constituents (fermions or bosons) that model Hamiltonians H of interacting many-
body quantum systems [9,17,37,40,44]. Given m (m > 2) number of spin-less particles
(fermions or bosons), they are distributed among N number of single particle (sp)
states. As the particles are in an average field generated by other particles, it is
appropriate to add a mean-field term h(1) to the Hamiltonian. Thus, with random
two-body interactions V (2), the model Hamiltonian is defined by,

H = h(1) + λ{V (2)}. (6)

Here, the parameter λ is the strength of the two-body interactions in the units of
the average spacing ∆ of the sp states and notation { } denotes an ensemble. The
V (2) matrix is chosen to be a GOE in two-particle spaces. The one-body Hamiltonian
h(1) =

∑
i εini is defined by sp energies εi and ni are number operators acting on

sp states i = 1, 2, . . . , N . Distributing these m particles in N sp levels generates
the d-dimensional many-particle basis. Action of Hamiltonian H on these many-
particle basis states generates EGOE(1 + 2). When we have fermions as constituents,

d =
(
N
m

)
and the two-body matrix elements, chosen to be from GOE, are properly anti-

symmetrized. These models are denoted by EGOE(1+2) for spin-less fermions. When

we have bosons as constituents, d =
(
N+m−1

m

)
and two-body matrix elements, chosen

to be from GOE, are symmetrized. These models are denoted by BEGOE(1 + 2).
In order to analyze universal properties of systems with spin degree of free-

dom, it is important to include spin s as an additional degree of freedom in
these models. In nuclei the spin s corresponds to isospin of the nucleons. Given m
fermions distributed in Ω number of sp orbitals each with spin s = 1/2, the num-
ber of sp states is N = 2Ω. As two-particle spin s can take two values (0 and
1), V (2) = V s=0(2) ⊕ V s=1(2), that is, V (2) is a direct-sum matrix of matrices
in spin s = 0 and s = 1 spaces, chosen to be independent GOEs, with respective
dimensions Ω(Ω + 1)/2 and Ω(Ω − 1)/2. The many-particle spin S can take val-
ues m/2,m/2− 1, . . . , 0 or 1/2. Thus, EGOE(1 + 2)-s is defined by the Hamiltonian
H = h(1) + λ0{V s=0(2)} + λ1{V s=1(2)} [58,59]. The many-particle Hamiltonian
matrices are first constructed in smallest spin projection basis (Mmin

S ) using spin-
less formulation and then the states with a given S value are projected using the
S2 operator. Many-particle Hamiltonian matrices have a block diagonal structure
with each block corresponding to an embedded ensemble with a given total spin
S. Similarly, for two species boson systems (as in the proton-neutron interact-
ing boson model of nuclei), it is possible to consider bosons with a fictitious spin
(f = 1/2) degree of freedom. Then, we have BEGOE(1 + 2)-F defined by Hamiltonian
H = h(1) + λ0{V f=0(2)} + λ1{V f=1(2)} [62,63]. Here, V f=0(2) and V f=1(2) are
chosen to be independent GOEs in two particle spaces, with respective dimensions
Ω(Ω− 1)/2 and Ω(Ω + 1)/2. The many-particle spin F = m/2,m/2− 1, . . . , 0 or 1/2.
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Usually, one associates integer spins with bosonic systems and therefore, we
have also analyzed boson systems with spin-one degree of freedom, denoted by
BEGOE(1 + 2)-S1 [64]. In the IBM-3 model that applies to medium mass nuclei
(no. of protons ∼ no. of neutrons), the spin one is isospin T = 1 degree of freedom
of the bosons in this model [35,36]. Consider m bosons distributed in Ω orbitals
each with spin 1. Here, N = 3Ω and the random interaction V (2) will be of the
form V (2) = V s=0(2) ⊕ V s=1(2) ⊕ V s=2(2) as the two-particle spins are s = 0, 1
and 2. Here, V s=0(2), V s=1(2) and V s=2(2) are chosen to be independent GOEs in
two-particle spaces with dimensions Ω(Ω + 1)/2, Ω(Ω− 1)/2 and Ω(Ω + 1)/2 respec-
tively. Thus, BEGOE(1+2)-S1 is defined by Hamiltonian H = h(1)+λ0{V s=0(2)}+
λ1{V s=1(2)}+ λ2{V s=2(2)}. The many-particle spin S = m,m− 1,m− 2, . . . , 0. In
all the five ensembles, without loss of generality, the average spacing between the sp
levels is chosen to be unity so that all λs are unit-less.

In the present work, we make the following choices to analyze spacing ratios:

1. EGOE(1 + 2) with m = 6 and N = 12 resulting in H matrix dimension d = 924.
The sp energies are chosen as εi = i + 1/i, i = 1, 2, . . . , 12 and the interaction
strength λ = 0.1; see reference [41] for details.

2. EGOE(1 + 2)-s with m = 6, Ω = 8, S = 0− 3 with H matrix dimensions 1176,
1512, 420 and 28 respectively. The sp energies are chosen as εi = i + 1/i, i =
1, 2, ..., 8 and the interaction strength λ = λ0 = λ1 = 0.1; see references [58,59]
for details.

3. BEGOE(1 + 2) with m = 10 and N = 5 resulting in H matrix dimension
d = 1001. The sp energies are chosen as εi = i + 1/i, i = 1, 2, . . . , 5 and the
interaction strength λ = 0.03; see references [60,61] for details.

4. BEGOE(1 + 2)-F with m = 10, Ω = 4, and F = 0–5 with H matrix dimensions
196, 540, 750, 770, 594 and 286 respectively. The sp energies are chosen as
εi = i+ 1/i, i = 1, 2, 3, 4 and the interaction strength λ = λ0 = λ1 = 0.05; see
references [62,63] for details.

5. BEGOE(1 + 2)-S1 with m = 8, Ω = 4, S = 0−8 with H matrix dimensions 714,
1260, 2100, 1855, 1841, 1144, 840, 315 and 165 respectively. The sp energies are
chosen as εi = i+ 1/i, i = 1, 2, 3, 4 and the interaction strength λ = λ0 = λ1 =
λ2 = 0.2; see reference [64] for details.

In all the cases, an ensemble of 500 members each was used. It is important to
note that, the value of interaction strength, λ, in all five examples is chosen such that
the level fluctuations are GOE type as the focus in the present work is mainly on level
fluctuations. With λ = 0.1, fermion systems are always in Gaussian domain, i.e. eigen-
value density is Gaussian, local density of states is Gaussian and level fluctuations
are GOE type, both for EGOE(1 + 2) [41] and EGOE(1 + 2)-s [58,59]. For spin-less
boson BEGOE(1 + 2) example, λ = 0.03 is sufficiently large so that the level fluc-
tuations are GOE [60,61]. Similarly, for boson ensembles with spin degree examples,
BEGOE(1 + 2)-F with λ = 0.05 [62,63] and BEGOE(1 + 2)-S1 with λ = 0.2 [64],
again the systems exhibit GOE level fluctuations. Now, we will present numerical
results.

4 Numerical results

Using the definition given in Section 2, we have constructed kth order spacing ratio
distribution P k(r) for the EGOE(1 + 2) models defined in Section 3. We construct
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Fig. 1. Histograms represent probability distribution of the kth order spacing ratios r
(represented by P k(r)) for a 500 member (a) EGOE(1 + 2) ensemble and (b) BEGOE(1 + 2)
ensemble with k = 2, 3, and 4. The red smooth curves (represented by Pα(r)) are obtained
using equation (3) with α values as mentioned in each panel.

numerical histograms for P k(r) with a bin-size of 0.1 and k = 2, 3 and 4 using middle
80% of the spectrum. Figure 1 shows the spacing ratio distribution P k(r) (black his-
togram) for embedded ensembles for fermion and boson without spin, EGOE(1 + 2)
and BEGOE(1 + 2) respectively. The average values of spacing ratios, 〈r〉, are also
shown in the figure. The ensemble averaged P k(r) results are compared with Pα(r)
(smooth red curves) given by equation (3). Here, the α values are 4, 8 and 13 for
k = 2, 3 and 4 respectively. Similarly, Figure 2 shows variation in P k(r) compared
with Pα(r) for embedded ensembles with spin degree of freedom, EGOE(1 + 2)-s,
BEGOE(1 + 2)-F and BEGOE(1 + 2)-S1. For all the examples of embedded ensem-
bles(EE), we find that 〈r〉EE ∼ 〈r〉α. We also obtain good agreement when we include
all the levels in the analysis, unlike for nearest neighbor spacing distribution which
also gets affected by the choice of unfolding function. As seen from these figures,
we obtain excellent agreement between numerical histograms and Pα(r) establishing
that equation (4) explains the universal features in variation of higher order spacing
ratios in many-body interacting quantum systems, with and without spin degree of
freedom.

It is shown that the energy levels of EGOE(1 + 2) close to the ground state (tails
of the energy spectrum) generate large fluctuations compared to that of GOE fluc-
tuations by examining NNSD [65] and also P (r) [23]. Going further, it is interesting
to test the validity of equation (4) close to the ground state. We analyzed spac-
ing ratio distributions P k(r) using the lowest 20 energy levels for EGOE(1 + 2) and
BEGOE(1 + 2) ensembles with the choice of parameters as outlined in Section 3.
The numerical histograms for these are compared with Pα(r) (smooth red curves)
in Figure 3. The results show a clear deviation between embedded ensemble P k(r)
and Pα(r) from the trend predicted by equation (4) and deviations increasing with
increasing k. Also, 〈r〉EE values are found to be smaller than the corresponding 〈r〉α
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Fig. 2. Same as Figure 1 but results are for a 500-member (a) EGOE(1 + 2)-s (b)
BEGOE(1 + 2)-F and (c) BEGOE(1 + 2)-S1. See text for details.
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Fig. 3. Probability distribution P k(r) (histograms) of the kth order spacing ratios r for
the lowest 20 energy levels using EGOE(1 + 2) (top panel) and BEGOE(1 + 2) (bottom
panel) ensembles. The red smooth curves are obtained using equation (3) with α values as
mentioned in each panel.

values. Therefore, although one need not exclude the spectrum tails while analyzing
non-overlapping spacing ratios, equation (4) does not explain the variation in spacing
ratios close to the ground state.

As pointed out in Section 3, the EGOE(1 + 2) models with spin, EGOE(1 + 2)-s,
BEGOE(1 + 2)-F and BEGOE(1 + 2)-S1, have specific spin structure: for
EGOE(1 + 2)-s and BEGOE(1 + 2)-F , the random interaction matrix V (2) in two-
particle spaces is a direct sum of matrices in spin 0 and 1 channels; and for
BEGOE(1 + 2)-S1, the V (2) matrix in two-particle spaces is a direct sum of matri-
ces in spin 0, 1 and 2 channels. The many-particle Hamiltonian matrix is a block
diagonal matrix with each block corresponding to EGOE(1 + 2) with a given spin
S. In order to investigate whether P k(r) carries signatures of these spin structures,
we superpose m independent spin blocks and compare non-overlapping kth order
spacing ratio distribution P k(r,m) with Pα(r) given by equation (3).

For the choice of parameters outlined in Section 3, results are presented in Fig-
ures 4–6 respectively for EGOE(1 + 2)-s, BEGOE(1 + 2)-F and BEGOE(1 + 2)-S1
examples. In these figures, the ensemble averaged histograms for P k(r,m) are
obtained by arranging the spectra of m spin blocks in ascending order for each mem-
ber of the ensemble. Then, ensemble average is computed and plotted as a histogram
with bin-size of 0.1 for all k values. The results in the upper panel of Figure 4 are
for P k(r,m) with m = 2 obtained by superposing spectra corresponding to S = 0
and S = 1 while that in the lower panel are with m = 3 obtained by superposing
spectra corresponding to S = 0, S = 1 and S = 2. The smooth red curves are for
Pα(r) obtained using equation (3) with α values shown in each panel. A very good
agreement between ensemble averaged P k(r,m) results and Pα(r) is found for with
α = k = m implying that the condition given by equation (5) satisfy. There are clear
deviations for all other values. These confirm the presence of m symmetries. Similarly,
results in Figures 5 and 6 also show excellent agreements between ensemble averaged
kth order spacing ratio distribution and nearest neighbor spacing ratio results given
by equation (3) with α = k = m confirming the presence of m symmetries.
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Fig. 4. Histograms represent probability distribution of non-overlapping kth order spacing
ratios r of m independent superposed spin blocks (represented by P k(r,m)) for a 500 mem-
ber EGOE(1 + 2)-s ensemble. Upper panel shows results for m = 2, with spins S = 0–1,
while lower panel shows results for m = 3, with spins S = 0−2. The histograms are com-
pared with the red smooth curves obtained using equation (3) with α values as mentioned
in each panel.

Fig. 5. Same as Figure 4 but results are for m superposed spectra of a 500-member
BEGOE(1 + 2)-F ensemble. Upper panel shows results for m = 2 with spins F = 0–1 while
lower panel shows results for m = 3 with spins F = 0–2. See Figure 4 for details.
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Fig. 6. Same as Figure 4 but results are for m superposed spectra of a 500 member
BEGOE(1 + 2)-S1 ensemble. Upper panel shows results for m = 3 with spins S = 0–2 while
lower panel shows results for m = 4 with spins S = 0–3. See Figure 4 for details.

Fig. 7. Variation in χ2(α) vs. α for EGOE(1 + 2)-s ensemble (left panel) and
BEGOE(1 + 2)-F ensemble (right panel) for different m values as mentioned in the panel.
The minimum values of χ2(α) indicates P k(r,m) ∼ Pα(r) for m superposed spectra.

In order to obtain the best quantitative estimate for α, we calculate χ2 measure
defined as,

χ2(α) = log

{∫ ∞
0

dr(P k(r,m)− Pα(r))2
}
. (7)

Here, minimum value of χ2(α) implies P k(r,m) ∼ Pα(r). Figure 7 shows the variation
in χ2(α) as a function of α for various m values. The left panel gives the results for
EGOE(1 + 2)-s and the right panel gives the results for BEGOE(1 + 2)-F . We have
not included spectra of maximum spin S = Smax for EGOE (1 + 2)-s and spectra
of minimum spin F = Fmin for BEGOE(1 + 2)-F due to small matrix dimensions.
The minimum value for χ2(α) is obtained at α = k = m, which is in agreement
with the results shown in Figures 4 and 5. We have also confirmed this result with
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Fig. 8. Variation in χ2(α) vs. α for EGOE(1 + 2)-s (top left panel), BEGOE(1 + 2)-F
(middle left panel) and BEGOE(1 + 2)-S1 (bottom left panel) for different m values as
indicated in the panel. Right panel represents variation in χ2(α) vs. α for superposed
mGOE spectra of exactly same dimensions corresponding to results in the left panel for
EGOE(1 + 2)-s, BEGOE(1 + 2)-F and BEGOE(1 + 2)-S1 respectively. See text for further
details.

other combinations of superposed spectra corresponding to different spin sectors. It
is important to note that similar results were obtained by combining m blocks of
EGOE and GOE spectra. Therefore, the distribution of higher order level spacing
ratios are independent of the state density of the spectra and can also be useful in
extracting symmetry information of the composite spectra.

There are deviations from obtaining minimum for χ2(α) at α = k = m when the
dimension of a given spin block is very small. Figure 8 shows variation in χ2(α) as a
function of α for EGOE(1+2)-s (top left panel), BEGOE(1+2)-F (middle left panel)
and BEGOE(1 + 2)-S1 (bottom left panel). Results are shown for various m values.
For EGOE (1 + 2)-s, the minimum for χ2(α) is not at α = k = m for m = 4 as it is
obtained by superposing four spin blocks corresponding to S = 0–3. Here, S = 3 is the
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maximum allowed spin and has the smallest dimension (28 compared to dimensions
1176, 1512, 420 respectively for spins S = 0, S = 1 and S = 2). Similarly, deviations
are seen in minimum for χ2(α) from α = k = m at m = 6 for BEGOE(1 + 2)-F
and for m = 6–9 for BEGOE(1 + 2)-S1. Going further, we superposed mGOE
spectra of exact same dimensions (see Fig. 8) corresponding to EGOE(1 + 2)-s
(top right panel), BEGOE(1 + 2)-F (middle right panel) and BEGOE(1 + 2)-S1
(bottom right panel). These results also show similar deviations in minimum for
χ2(α) confirming that there are finite-size effects.

Turning to the important question of applications, a re-examination of nuclear
data for energy levels in nuclei using the results of higher order spacing ratios reported
here is expected to give new information about symmetries in nuclei. For example:
(i) in 26Al and 30P energy levels up to ∼8 MeV excitation with isospin T = 0 and
T = 1 are available [66,67] and they can be analyzed using EGOE(1 + 2)-s with spin
being isospin; (ii) scissors levels in 2.5–4 MeV excitation in heavy deformed nuclei
with the low-lying levels having F = N/2 and scissors levels F = N/2 − 1 [68] and
they can be analyzed using BEGOE(1 + 2)-F ; (iii) excited 2+ and 4+ levels in nuclei
across the periodic table with various symmetries of IBM and its extensions [69–73].
In addition, analyzing energy levels from large shell model and also IBM-2 and IBM-3
models for higher order spacing ratios may give new information about symmetries in
nuclei. These studies are for future. In the past NNSD but not higher order spacings
are used in the analysis of all the data listed above [37].

5 Conclusion

We have analyzed higher order level spacing ratios for interacting many-body quan-
tum systems with and without spin degree of freedom. Complex many-body systems
such as atomic nuclei are modeled by EGOE(1 + 2) for fermionic and bosonic sys-
tems with and without spin degree of freedom. We have obtained excellent agreement
between numerical results for higher order spacing ratios and Wigner surmise like
scaling relation. Thus, this scaling relation is universal to understand higher order
spacing ratios in complex many-body quantum systems (fermionic as well as bosonic)
with rotational and time-reversal invariance, with and without spin degree of free-
dom. We have shown that the higher order spacing ratio distributions can also reveal
quantitative information about underlying symmetry structure. Hence, the analysis
of higher order spacing ratios is not only useful in studying spectral fluctuations but
also reveals quantitative information about symmetry structure of complex quan-
tum systems. As briefly mentioned at the end of the previous section, there is good
amount of nuclear structure data that can be analyzed to give new information about
symmetries such as isospin symmetry and F -spin symmetry but the data analysis is
postponed to a future publication. Although not shown explicitly, these results are
expected to extend to the unitary versions EGUE(1 + 2) (for both fermionic and
bosonic systems, with and without spin degree of freedom) as well. It would be inter-
esting to analyze complex spacing ratios [74] to characterize integrable and chaotic
dynamics for the embedded unitary ensembles with various symmetries like spin, par-
ity, total angular momentum etc. [37,44] and characterize universality of transition
to chaos [75].
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Wavefunction structure is analyzed for dense interacting many-boson systems using Hamiltonian H , 
which is a sum of one-body h(1) and an embedded GOE of k-body interaction V (k) with strength λ. In 
the first analysis, a complete analytical description of the variance of the strength function as a function 
of λ and k is derived and the marker λt defining thermalization region is obtained. In the strong coupling 
limit (λ > λt ), the conditional q-normal density describes Gaussian to semi-circle transition in strength 
functions as body rank k of the interaction increases. In the second analysis, this interpolating form of 
the strength function is utilized to describe the fidelity decay after k-body interaction quench and also to 
obtain the smooth form for the number of principal components, a measure of chaos in finite interacting 
many-particle systems. The smooth form very well describes embedded ensemble results for all k values.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

It is now well established that Random Matrix Theory, due 
to its universality [1], successfully describes the spectral as well 
as wavefunction properties of isolated finite many-particle quan-
tum systems [2]. The spectral statistics deals only with the energy 
eigenvalues while the statistical properties related to the structure 
of the wavefunctions can reveal different layers of chaos and hence 
give profound understanding of various problems in the field of 
quantum many-body chaos and thermalization, in isolated finite 
interacting particle systems such as atomic nuclei, atoms, meso-
scopic systems (quantum dots, small metallic grains), interacting 
spin systems modeling quantum computing core, ultra-cold atoms 
and quantum black holes with SYK model and so on [2–9]. To ana-
lyze the wavefunction properties, it is very crucial to examine the 
so-called strength functions (also known as local density of states) 
in detail, as they give information about how a particular basis 
state spreads onto the eigenstates. The chaos measures like num-
ber of principal components (NPC), information entropy, fidelity 
decay etc. can also be determined by examining the general fea-
tures of the strength functions [2].

The statistical properties of isolated finite many-particle quan-
tum systems investigated by employing random matrix ensembles 

* Corresponding author.
E-mail address: ndchavda-apphy@msubaroda.ac.in (N.D. Chavda).

are generally referred as Gaussian ensembles (and in particular 
the Gaussian orthogonal ensemble (GOE)) for m-particle system. 
They involve interaction up to m-body in character and are dom-
inated by the m-body interactions. However, constituents of iso-
lated quantum systems interact via few-body interactions. Hence 
the concept of embedded ensemble (EE) of k-body interaction, 
in particular EGOE(k) (GOE version of EE(k)) was introduced by 
French and co-workers [10,11]. These models for the particles in 
a mean-field and interacting via two-body interactions (k = 2) and 
their various extended versions form good models for understand-
ing various aspects of chaos in interacting particle systems [2] and 
they are investigated in detail both for fermion systems (called 
EGOE(1+2)) [12–17] as well as boson systems (called BEGOE(1+2) 
with ‘B’ for bosons) [18–23]. Here, with m particles distributed 
in N single particle (sp) states, two limiting situations exist, one 
is the dilute limit (defined as m → ∞, N → ∞ and m/N → 0) 
and another is the dense limit (defined by m → ∞, N → ∞ and 
m/N → ∞). In the dilute limit, one can expect similar behavior 
for both fermion and boson systems while the dense limit is fea-
sible only for boson systems and therefore the focus was on the 
dense limit in BEGOE investigations [18–24]. For EGOE(1+2) in di-
lute limit and for BEGOE(1+2) in dense limit, as a function of the 
two-body interaction strength λ (measured in units of the aver-
age spacing between the one-body mean-field sp levels), exhibits 
three transition or chaos markers (λC , λF , λt): (a) as the two-body 
interaction is turned on, level fluctuations exhibit a transition from 
Poisson to GOE at λ = λC ; (b) with further increase in λ, the 
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strength functions make a transition from Breit-Wigner (BW) form 
to Gaussian form at λ = λF > λC ; and (c) beyond λ = λF , there is a 
region of thermalization around λ = λt where the basis dependent 
thermodynamic quantities like entropy behave alike. It is impor-
tant to note that the transitions mentioned above are inferred from 
large number of numerical calculations and they are well verified 
to be valid in the bulk part of the spectrum. For further details 
see [2] and references there in.

Going beyond two-body interaction, it is seen that the higher 
body interactions i.e. k > 2 play an important role in strongly in-
teracting quantum systems [25,26], nuclear physics [27], quantum 
black holes [7,28] and wormholes [29] with SYK model and also 
in quantum transport in disordered networks connected by many-
body interactions [30–32]. Therefore, it is necessary to extend the 
analysis of EE to higher k-body interactions in order to understand 
these problems. From the previous studies, it is known that with 
EGOE(k) or (BEGOE(k)), the eigenvalue density for a system of m
fermions/bosons in N sp states changes from Gaussian form to 
semi-circle as k changes from 2 to m [2,6,13,33]. Very recently, 
q-Hermite polynomials have been employed to study spectral den-
sities of the so-called SYK model [34,35] and quantum spin glasses 
[36], along with studying the strength functions and fidelity de-
cay (also known as survival or return probability) in EE, both for 
fermion as well as boson systems [33]. The smooth form of eigen-
value density can be given by the so-called q-normal distribution 
fqN and formulas for parameter q in terms of m, N and k are de-
rived for fermionic and bosonic EE(k) in [33] which explain the 
Gaussian to semi-circle transition in spectral densities, strength 
functions and fidelity decay in many-body quantum systems as a 
function of rank k of interactions. Recently, the lower-order bivari-
ate reduced moments of the transition strengths are examined for 
the action of a transition operator on the eigenstates generated by 
EGOE(k) and it is shown that the ensemble averaged distribution 
of transition strengths follows a bivariate q-normal distribution 
fbiv−qN and a formula for NPC in the transition strengths from 
a state is obtained [37]. Very recently, analytical formulas for the 
lowest four moments of the strength functions for fermion systems 
modeled by EGOE(1+k) are derived and it is shown that the con-
ditional q-normal density fCqN can be used to represent strength 
functions in the strong coupling limit [38]. One can expect similar 
behavior for isolated finite interacting boson systems with k-body 
interactions in the dense limit. The purpose of the present letter 
is firstly to demonstrate that in strong coupling domain (in the 
thermalization region), the strength functions indeed can be repre-
sented by the conditional q-normal distribution fCqN in the dense 
interacting boson systems interacting via k-body interaction. Sec-
ondly, using fCqN form and parameters that enter in this form, 
fidelity decay is described in BEGOE(1+k) and an analytical formula 
for NPC is derived.

The Letter is organized as follows. We briefly introduce
BEGOE(1+k) and q-Hermite polynomials along with their gener-
ating function and conditional q-normal distribution in Section 2. 
The numerical results of the variation of parameter q as a function 
of k-body interaction strength λ in BEGOE(1+k) are presented in 
Section 3. Also the formula of q for BEGOE(k) is given for the sake 
of completeness, even though it is clearly given in [6,33]. Further, 
a complete analytical description of the variance of the strength 
function, in terms of the correlation coefficient ζ , for BEGOE(1+k) 
is given and (m, N , k) dependence of marker λt is derived. In Sec-
tion 4, the results for the variation of strength function, in the 
strong coupling domain (λ >> λt ), are presented as a function of 
body rank k and ensemble averaged results are compared with 
smooth forms given by fCqN . In Section 5 the interpolating form 
fCqN for the strength function is utilized to describe the fidelity 
decay after random k-body interaction quench in BEGOE(1+k) in 
the thermalization region. Further, two-parameter (ζ and q) an-

alytical formula for NPC is derived as a function of energy for 
k-body interaction and tested with numerical embedded ensemble 
results in Section 6. Finally, the concluding remarks are given in 
Section 7.

2. Preliminaries

2.1. Embedded bosonic ensembles - BEGOE(1+k)

Consider m spinless bosons distributed in N degenerate sp 
states interacting via k-body (1 ≤ k ≤ m) interactions. Distribut-
ing these m bosons in all possible ways in N sp states generates 
many-particle basis of dimension d = (N+m−1

m

)
. The k-body random 

Hamiltonian V (k) is defined as,

V (k) =
∑
ka,kb

Vka,kb B†(ka)B(kb) . (1)

Here, operators B†(ka) and B(kb) are k-boson creation and anni-
hilation operators. They obey the boson commutation relations. 
Vka,kb are the symmetrized matrix elements of V (k) in the k-

particle space with the matrix dimension being dk = (N+k−1
k

)
. They 

are chosen to be randomly distributed independent Gaussian vari-
ables with zero mean and unit variance, in other words, k-body 
Hamiltonian is chosen to be a GOE. BEGOE(k) is generated by 
action of V (k) on the many-particle basis states. Due to k-body 
nature of interactions, there will be zero matrix elements in the 
many-particle Hamiltonian matrix, unlike a GOE. By construction, 
we have a GOE for the case k = m. For further details about these 
ensembles, their extensions and applications, see [2,39,40] and ref-
erences therein.

In realistic systems, bosons also experience mean-field gener-
ated by presence of other bosons in the system and hence, it is 
more appropriate to model these systems by BEGOE(1 + k) defined 
by,

H = h(1) + λV (k) (2)

Here, the one-body operator h(1) = ∑N
i=1 εini is described by fixed 

sp energies εi ; ni is the number operator for the ith sp state. The 
parameter λ represents the strength of the k-body interaction and 
it is measured in units of the average mean spacing of the sp en-
ergies defining h(1). In this analysis, we have employed fixed sp 
energies εi = i + 1/i in defining the mean-field Hamiltonian h(1). 
As the dense limit is more interesting for bosons, for numerical 
study, we have chosen N = 5, m = 10 with space dimensionality of 
d = 1001 and varied k from 2 to m. It is now known that in nuclear 
reactions and strongly interacting quantum systems k = 2, 3, 4 are 
of physical importance [7,25,26]. However for the sake of com-
pleteness, to study the generic features of embedded ensembles 
and the possibility of higher k becoming prominent, we address 
k = 2 to m.

2.2. q-Hermite polynomials and conditional q-normal distribution

The q-Hermite polynomials were first introduced by L. J. Rogers 
in Mathematics. Consider q numbers [n]q defined as [n]q = (1 −
q)−1(1 −qn). Then, [n]q→1 = n, and [n]q! = ∏n

j=1[ j]q with [0]q! = 1. 
Now, q-Hermite polynomials Hn(x|q) are defined by the recursion 
relation [41],

x Hn(x|q) = Hn+1(x|q) + [n]q Hn−1(x|q) (3)

with H0(x|q) = 1 and H−1(x|q) = 0. Note that for q = 1, the q-
Hermite polynomials reduce to normal Hermite polynomials (re-
lated to Gaussian) and for q = 0 they will reduce to Chebyshev 

2
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polynomials (related to semi-circle). Importantly, q-Hermite poly-
nomials are orthogonal within the limits ±2/

√
1 − q, with the 

q-normal distribution fqN(x|q) as the weight function defined by 
[37],

fqN(x|q) =
√

1 − q

2π
√

4 − (1 − q)x2

×
∞∏

i=0

(1 − qi+1)[(1 + qi)2 − (1 − q)qi x2]. (4)

Here, −2/
√

1 − q ≤ x ≤ 2/
√

1 − q and q ∈ [0, 1]. Note that∫
s(q)

fqN(x|q) dx = 1 over the range s(q) = (−2/
√

1 − q, 2/
√

1 − q). 
It is seen that in the limit q → 1, fqN(x|q) will take Gaussian form 
and in the limit q = 0 semi-circle form. Now the bivariate q-normal 
distribution fbiv−qN (x, y|ζ, q) is defined as follows [37,42],

fbiv−qN(x, y|ζ,q) = fqN(x|q) fCqN(y|x; ζ,q)

= fqN(y|q) fCqN(x|y; ζ,q)
(5)

where ζ is the bivariate correlation coefficient and the conditional 
q-normal densities, fCqN can be given as,

fCqN(x|y; ζ,q) = fqN(x|q)

∞∏
i=0

(1 − ζ 2qi)

h(x, y|ζ,q)
;

fCqN(y|x; ζ,q) = fqN(y|q)

∞∏
i=0

(1 − ζ 2qi)

h(x, y|ζ,q)
;

h(x, y|ζ,q) = (1 − ζ 2q2i)2 − (1 − q)ζqi(1 + ζ 2q2i)xy

+(1 − q)ζ 2(x2 + y2)q2i.

(6)

The fCqN and fbiv−qN are normalized to 1 over the range s(q), 
which can be inferred from the following property,∫
s(q)

Hn(x|q) fCqN(x|y; ζ,q) dx = ζn Hn(y|q). (7)

The first four moments of the fCqN can be given [38] as,

Centroid = ζ y,

Variance = 1 − ζ 2 ,

Skewness, γ1 = −ζ(1 − q)y√
1 − ζ 2

,

Excess, γ2 = (q − 1) + ζ 2(1 − q)2 y2 + ζ 2(1 − q2)

(1 − ζ 2)
.

(8)

Recently, it is shown that generating function for q-Hermite 
polynomials describes Gaussian to semi-circle transition in the 
eigenvalue density as k changes from 1 to m in spectral densi-
ties using k-body EGOE and their Unitary variants EGUE, both for 
fermion and boson systems [33]. Very recently, in the strong cou-
pling domain the lowest four moments of the strength function 
for k-body fermionic embedded ensemble are obtained and it is 
shown that they are essentially same as that of fCqN [38]. There-
fore, one can use fCqN distribution to represent the smooth forms 
of the strength functions and analyze the wavefunction structure in 
quantum many-body systems with k-body interactions. With this, 
the width of fCqN (and also of the strength function) is related to 
the correlation coefficient ζ by Eq. (8). In the next section, we will 
present our results for the variation of parameter q and the cor-
relation coefficient ζ as a function of k-body interaction strength 
λ in BEGOE(1+k). Also, a complete analytical description of ζ , in 
terms of N, m, k and λ, for BEGOE(1+k) is given.

3. Parameter dependence of q and ζ : results for BEGOE(1+k)

3.1. Formula of q-parameter

It has already been demonstrated that the state density for 
EE(k) (and also EE(1+k)) in general exhibits Gaussian to semi-circle 
transition as k increases from 1 to m [17]. This is now well verified 
in many numerical calculations and analytical proofs obtained via 
lower order moments [2,6,9,20,39,43]. Fig. 1(a) represents ensem-
ble averaged state density obtained for a 100 member BEGOE(1+k) 
ensemble with m = 10 bosons distributed in N = 5 sp states and 
the body rank of interaction changing from k = 2 to 10. In these 
calculations, the eigenvalue spectrum for each member of the en-
semble is first zero centered (εH is centroid) and scaled to unit 
width (σH is width) and then the histograms are constructed. The 
results clearly display transition in the spectral density from Gaus-
sian to semi-circle form as k changes from 2 to m = 10. With E as 
zero centered and using x = E/σH , the numerical results are com-
pared with the normalized state density ρ(E) = d fqN(x|q) with 
εH − 2σH√

1−q
≤ E ≤ εH + 2σH√

1−q
. Here the parameter q is computed 

using the formula, valid for BEGOE(k) (i.e. H = V (k)), given in [33],

qV (k) ∼
(

N + m − 1

m

)−1 νmax=min[k,m−k]∑
ν=0

X(N,m,k, ν) d(gν)[

0(N,m,k)

]2
;

X(N,m,k, ν) = 
ν(N,m,m − k) 
ν(N,m,k) ;

ν(N,m, r) =

(
m − ν

r

) (
N + m + ν − 1

r

)
,

d(gν) =
(

N + ν − 1

ν

)2

−
(

N + ν − 2

ν − 1

)2

.

(9)

In the strong coupling domain, one can also apply Eq. (9) to 
BEGOE(1+k), as the k-body part of the interaction is expected to 
dominate over one-body part. One can see that the ensemble av-
eraged results in Fig. 1(a) are in excellent agreement with the 
smooth forms obtained using fqN . With λ = 0 in Eq. (2) i.e. one-
body part h(1) only, the analytical formula of q for bosons, based 
on trace propagation method [44], can be given as,

qh(1) = 〈h(1)4〉m − 2

= {3(m − 1)N(1 + N)(1 + m + N)

m(2 + N)(3 + N)(m + N)
− 2}

+m2 + (N + m)2 + (N + 2m)2

m(N + m)

∑N
i=1 ε̃i

4

(
∑N

i=1 ε̃i
2
)2

.

(10)

Here, 〈h(1)4〉m
is the reduced fourth moment of one-body part 

and ε̃i are the traceless sp energies of i’th state. With H = h(1)

and uniform sp energies εi = i, Eq. (10) gives q = 0.71 for (m =
5, N = 10) and q = 0.68 for (m = 10, N = 5). While with sp ener-
gies εi = i + 1/i, used in the present study, one obtains q = 0.68
for (m = 5, N = 10) and q = 0.63 for (m = 10, N = 5). Fig. 1(b) 
shows variation of qh(1) as a function of N for various values of 
m/N . Here, sp energies εi = i + 1/i are used. It can be clearly 
seen that in the dense limit (m → ∞, N → ∞ and m/N → ∞), 
qh(1) → 1. In the dilute limit (m → ∞, N → ∞ and m/N → 0), 
similar variation in qh(1) can be observed due to m ↔ N symme-
try between the dense limit and the dilute limit as identified in 
[18,44]. Furthermore, the variation of parameter q is also studied 
as the interaction strength λ varies in BEGOE(1+k) for a fixed body 
rank k. Here, the ensemble averaged value of q is computed for a 
system of 100 member BEGOE(1+k) ensemble with m = 10 bosons 
in N = 5 sp states and results are shown in Fig. 1(c). q estimates 
are also shown in the figure by horizontal marks for H = h(1) and 
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Fig. 1. (a) Histograms represent the state density vs. normalized energy E results of the spectra of a 100 member BEGOE(1 + k) ensemble with m = 10 bosons in N = 5
sp states for different k values. The strength of interaction λ = 0.5 is chosen and in the plots ∫ ρ(E)dE = d. Ensemble averaged state density histogram is compared with 
q-normal distribution (continuous black curves) given by fqN (x|q) with the corresponding q values given by Eq. (9). (b) qh(1) vs. N for various values of m/N . qh(1) is obtained 
using Eq. (10) with sp energies εi = i + 1/i. Dense limit curve corresponds to the result with m/N = 1000. (c) Ensemble averaged q vs. λ for a 100 member BEGOE(1+k) 
ensemble with m = 10 bosons in N = 5 sp states for different k values. The horizontal black mark on left q-axis indicates q estimate for H = h(1) given by Eq. (10), while 
the colored marks on right q-axis represent the q values, given by Eq. (9), for corresponding k-body rank with H = V (k). See text for more details. (For interpretation of the 
colors in the figures, the reader is referred to the web version of this article.)

H = V (k) on left and right vertical axes respectively. One can see 
that for very small values of λ, ensemble averaged q values are 
found very close to qh(1) for all body rank k. While for a suffi-
ciently large λ, where k-body part dominates over one-body part, 
the ensemble averaged q values reach corresponding qV (k) given 
by Eq. (9). From the variation of ensemble averaged q values in 
Fig. 1(c), one can see that the shape of the state density takes in-
termediate form between Gaussian to semi-circle as λ changes in 
BEGOE(1+k) for a fixed k. Therefore, the q-normal distribution fqN

formula can be used to describe the transition in the state density 
with any value of λ and k in BEGOE(1+k).

3.2. Formula of ζ

The parameter ζ , which is the correlation coefficient between 
full Hamiltonian H and the diagonal part Hdia of the full Hamil-
tonian, is related to the width σF of the strength functions, given 
by,

ζ =
√√√√1 − σ 2

Hoff-dia

σ 2
H

=
√

1 − σ 2
F , σF = σHoff-dia

σH
(11)

In the above equation, σ 2
H and σ 2

Hoff-dia
are variances of the eigen-

value distribution using full Hamiltonian and by taking all diagonal 

matrix elements as zero, respectively. Since ζ and σF are sim-
ply related as σ 2

F = 1 − ζ 2, here the discussion is in terms of ζ . 
For BEGOE(1+k) ensemble, analytical expression for ζ based on 
the method of trace propagation can be derived as follows. For 
H = V (k) i.e. with all sp energies as degenerate, it is known that 
[20],

σ 2
H=V (k)

= T (N,m,k)

(
N + k − 1

k

)−1 ∑
α,β

w2
αβ ,

T (N,m,k) = 
0(N,m,k)/

(
N + k − 1

k

)
.

(12)

Here, α and β denote k-particle states. In k-particle space, the H
matrix is GOE. Therefore, the k-particle matrix elements wαβ are 
Gaussian random variates with zero mean and unit variance. The 
variance of diagonal matrix elements is w2

αα = 2 while that of off-

diagonal matrix elements is w2
αβ = 1 for (α �= β). With this,

σ 2
H=V (k) = T (N,m,k)

(
N + k − 1

k

)−1

× {2 × no-dia + 2 × no-offdia} , (13)

here the number of independent diagonal k-body matrix ele-
ments is ‘no-dia’= (N+k−1

k

)
and that of off-diagonal is ‘no-offdia’=

4



P. Rao and N.D. Chavda Physics Letters A 399 (2021) 127302

Fig. 2. Ensemble averaged ζ 2 (red solid circles) as a function of interaction strength λ, calculated for BEGOE(1+k) ensemble with N = 5, m = 10 example, is shown for 
different k values. The smooth black curves are due to Eq. (16) using fixed sp energies εi = i + 1/i employed in the present study.

1
2

(N+k−1
k

){(N+k−1
k

)− 1}. Similarly, σHoff-dia is given by removing the 
contribution of diagonal k-body matrix elements from the above 
equation. Then using Eq. (11) for H = V (k),

ζ 2 = 4(N+k−1
k

)+ 1
. (14)

Here, it can be immediately seen that ζ 2 is independent of m for 
BEGOE(k). In the dense limit with N → ∞ and m → ∞, σF → 1
giving ζ → 0 as was suggested in [21]. Also, with k << m, ζ 2 ∝
1/Nk . Using m ↔ N symmetry between the dense limit and the 
dilute limit formula [18,44], we have ζ 2 ∝ 1/mk in the dilute limit 
and this result is in agreement with [38]. Going further, with in-
clusion of one-body part defined by the external sp energies (εi ), 
and with H = h(1) + λV (k), we have

σ 2
H = σ 2

h(1)
+ λ2 σ 2

V (k)
,

= m(N+m)
N(N+1)

∑
ε̃i

2 + λ2 σ 2
V (k)

.
(15)

The analytical expression for ζ 2 can be given by,

ζ 2 =
m(N+m)
N(N+1)

∑
ε̃i

2 + 2 λ2 T (N,m,k)

m(N+m)
N(N+1)

∑
ε̃i

2 + λ2 T (N,m,k) {1 + (N+k−1
k

)} . (16)

In the above equation, the contribution from the diagonal part 
of V (k) is also included into the numerator term. The analytical 
expression for ζ 2 given by Eq. (16) is tested with the numerical en-
semble averaged results obtained using a 100 member BEGOE(1+k) 
ensemble with (m = 10, N = 5). The results of ζ 2 as a function of 
k-body interaction strength λ for different body rank k are pre-
sented in Fig. 2. The black smooth curve in each plot is obtained 
using Eq. (16) with fixed sp energies employed in the present 
study. It can be seen from the results that agreement between 
the ensemble averaged values (red solid circles) and the smooth 
forms obtained by Eq. (16) is very good for all k values. Small 
difference with large λ, for k < 5, is due to neglect of induced 
sp energies. The contribution of induced sp energies reduces as 
λ and k increases. One can see from the results shown in Fig. 2
that the width of the strength function is strongly dependent on 
λ. For λ → 0, ζ 2 → 1 for all k and the strength functions are 
known to be represented by δ functions. With increase in λ i.e. 
λ ≥ λC , the strength functions are known to be described by the 
Briet-Wigner (Lorentz) form. With further increase in λ >> λF , ζ 2

goes on decreasing smoothly leading to a fully chaotic domain giv-
ing the Gaussian or semi-circle or intermediate to Gaussian and 

Fig. 3. Variation of marker λt as a function of N for dense boson systems with 
BEGOE(1+k). Results are shown for various values of (k, m/N) using Eq. (17).

semi-circle character of the strength functions depending upon the 
values of λ and k. One can also observe the BW to Gaussian to 
semi-circle transition in strength functions by changing both λ and 
k. Therefore, it is possible to have a shape intermediate to BW and 
semi-circle for some values of λ and k [45].

For two-body interaction, the thermodynamic region λ = λt

can be determined using the condition ζ 2 = 0.5 [23,46]; i.e. the 
spreading produced by one-body part and two-body part are equal. 
Similarly, one can obtain marker λt for k-body interactions in 
presence of mean field by considering the spreading produced by 
one-body part and k-body part equal in Eq. (16). Solving it for λ, 
(m, N, k) dependence of marker λt is given by,

λt =
√√√√ m(N + m)

∑
ε̃i

2

N(N + 1)
0(N,m,k)(1 − 3
(N+k−1

k

)−1
)

. (17)

Fig. 3 shows the variation of marker λt in dense boson systems 
with BEGOE(1+k) as a function of N for the fixed sp energies used 
in the present study. The results are shown for body rank values 
k = 2, 3 and 4, and with m/N = 2 and 5. From the results one 
can clearly see that λt decreases as the rank of the interaction k
increases. Hence, the thermalization sets in faster as the rank of 
interaction k increases.
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Recently, using k-body embedded ensembles both for fermions 
and bosons, it is demonstrated that in the thermalization region 
(λ ≥ λt ), shape of the strength functions changes from Gaussian to 
semi-circle for the states close to the center of the spectrum as 
the rank of the interaction k increases and they can be well rep-
resented by fqN form for all k values in V (k) [33]. The strength 
functions are symmetrical in E near the center of the spectrum 
as is the result with fqN . However, it is seen in some calculations 
with k = 2 that the strength functions become asymmetrical in E
as one moves away from the center [24]. This feature can be in-
corporated by representing strength function using fCqN which can 
not be generated by fqN . This will be verified with a numerical ex-
ample in the next section and more importantly, a single interpo-
lating function fCqN , in terms of parameters q and ζ , is considered 
for describing Gaussian to semi-circle transition in the strong cou-
pling domain as the body rank k in BEGOE(1+k) is changed.

4. Strength function

Given m-particle basis state |κ〉, the diagonal matrix elements 
of m-particle Hamiltonian H are denoted as energy ξκ , so that 
ξκ = 〈κ |H |κ〉. The diagonalization of the full matrix H gives the 
eigenstates |Ei〉 with eigenvalues Ei , where |κ〉 = ∑

i C i
κ |Ei〉. The 

strength function that corresponds to the state |κ〉 is defined as 
Fξκ (E) = ∑

i |C i
κ |2 δ(E − Ei). In the present study, we take the |κ〉

states to be the eigenstates of h(1). In order to get an ensemble 
averaged form of the strength functions, the eigenvalues Ei are 
scaled to have zero centroid and unit variance for the eigenvalue 
distribution. The κ-energies, ξκ , are also scaled similarly. Now, for 
each member, all |C i

κ |2 are summed over the basis states κ with 
energy ξ in the energy window ξ ± �. Then, the ensemble aver-
aged Fξ (E) vs. E are constructed as histograms by applying the 
normalization condition 

∫
s(q)

Fξ (E) dE = 1. In Fig. 4, histograms 
represent ensemble averaged Fξ (E) results for all body rank k
values with λ = 0.5 using a 250 member BEGOE(1+k) ensemble 
with m = 10 and N = 5 system. The strength function plots are 
obtained for ξ = 0.0, ±1.0 and ±2.0. The value of k-body interac-
tion strength is chosen such that λ >> λt , i.e. the system exists in 
the region of thermalization [9,23]. The histograms, representing 
BEGOE(1+k) results of strength functions, are compared with the 
conditional q-normal density function as given by,

Fξ (E) = fCqN(x = E|y = ξ ; ζ,q). (18)

The smooth black curves in Fig. 4 for each k are obtained via Eq. 
(18) using corresponding ensemble averaged ζ and q values. With 
λ >> λt , ζ 2 << 1/2, the q value in Eq. (18) can fairly be given by 
Eq. (9) [38]. The results in Fig. 4 clearly show very good agreement 
between the numerical histograms and continuous black curves for 
all body rank k. The Fξ (E) results for ξ = 0 are given in Fig. 4(a) 
which clearly demonstrate that the strength functions are symmet-
ric and also exhibit a transition from Gaussian form to semi-circle 
as k changes from 2 to m = 10. The smooth form given by Eq. 
(18) using the conditional q-normal density function interpolates 
this transition very well. Going further, Fξ (E) results for ξ �= 0 are 
shown in Figs. 4(b) and 4(c). One can see that Fξ (E) results are 
asymmetrical about E as demonstrated earlier [24]. Also, Fξ (E) are 
skewed more in the positive direction for ξ > 0 and skewed more 
in the negative direction for ξ < 0 and their centroids vary linearly 
with ξ . We have also computed the first four moments (centroid, 
variance, skewness (γ1) and excess (γ2)) of the strength function 
results shown in Fig. 4 for the body rank k going from 2 to m = 10. 
Fig. 5 represents results for centroid, γ1 and γ2 for various values 
of ξ . As discussed earlier in Section 3, the variance of the strength 
functions is independent of ξ and simply related to correlation 

coefficient; for more details, see results of ζ 2 (Fig. 2). From the nu-
merical results obtained for strength functions (Fig. 4) along with 
results of lower order moments (Fig. 5), one can clearly see that 
in the thermodynamic domain, the strength functions of dense in-
teracting many-boson systems, with k-body interaction, follow the 
conditional q-normal distribution fCqN . The results are also consis-
tent with the analytical forms derived in [38].

In the study of thermalization and relaxation dynamics of an 
isolated finite quantum system after a random interaction quench, 
strength functions play an important role. Having tested that in the 
thermodynamic region with λ >> λt , ensemble averaged strength 
functions of dense boson systems with k-body interaction can be 
represented by smooth forms given by fCqN , we will now utilize 
these interpolating forms, in the coming sections, to study fidelity 
decay and NPC in dense boson systems with k-body interaction.

5. Fidelity decay after an interaction quench

Fidelity decay or return probability of a quantum system af-
ter a sudden quench is an important quantity in the study of 
relaxation of a complex (chaotic) system to an equilibrium state. 
Let’s say the system is prepared in one of the eigenstates (ψ(0) =
|κ〉) of the mean-field Hamiltonian H = h(1). With the quench 
at t = 0 by λV (k), the system evolves unitarily with respect to 
H → h(1) + λV (k) and the state changes after time t to ψ(t) =
|κ(t)〉 = exp(−iHt) |κ〉. Then, the probability to find the system in 
its initial unperturbed state after time t , called fidelity decay, is 
given by,

W0(t) = | 〈ψ(t)|ψ(0)〉 |2 =
∣∣∣∑E

[
C E

k

]2
exp −iEt

∣∣∣2
= ∫

Fξ (E)exp −iEt dE

= ∫
s(q)

fCqN(E|ξ ; ζ,q)exp −iEt dE .

(19)

Thus, fidelity decay is the Fourier transform in energy of the 
strength function; this is valid for times not very short or very 
long. In the thermalization region, the form of Fξ (E) is Gaussian 
for k = 2 while it is semi-circle for k = m. These two extreme 
situations are recently studied, both analytically [47] as well as 
numerically [48–50]. The formula for W0(t) can be given in terms 
of width of λV (k) scaled by σH . Clearly, following the results of 
the previous section, fCqN can be used to obtain W0(t) generated 
by BEGOE(1+k). As analytical formula for the Fourier transform of 
fCqN is not available, therefore we evaluated Eq. (19) numerically. 
Fig. 6 shows results for W0(t) (red solid circles) for a 100 member 
BEGOE(1+k) ensemble with m = 10, N = 5 and λ = 0.5 for various 
k values and they are compared with numerical Fourier transform 
(black smooth curves) of Eq. (18). Here, we have used normalized 
eigenenergies in the computation of W0 and therefore the time 
t is measured in the units of 1/σH . It is clear from the results 
that the Fourier transform of fCqN describes the short-time behav-
ior nicely and also captures the positions of the oscillations. The 
results generated here are consistent with the reported results in 
[33], obtained using fqN form for Fξ (E).

It is known that in the strong interaction domain, the decrease 
in W0 (for k = 2) follows quadratic in time and this Gaussian de-
crease can last for a quite large time and after that an exponential 
one emerges [51]. The transition time depends on the ratio of the 
spectral width and the square of the second moment of strength 
function (σ 2

F ). As here λ >> λt , ζ 2 → 0 giving σ 2
F ≈ 1, t is in 1/σH

units and the spectral width will be in σH units. Therefore, the 
results in Fig. 6 describe W0 nicely for short time and the stan-
dard exponential decrease for long time for k = 2 seems absent. 
The long time behavior of fidelity decay is of great interest as it 
is expected that W0 surely demonstrates a power-law behavior i.e. 
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Fig. 4. Strength function vs. normalized energy E for a system of m = 10 bosons in N = 5 sp states with λ = 0.5 for different k values in BEGOE(1+k) ensemble. An ensemble 
of 250 members is used for each k. Strength function plots are obtained for (a) ξ = 0 (purple histogram), (b) ξ = −1.0 (blue histogram) and 1.0 (red histogram) and (c) 
ξ = −2.0 (blue histogram) and 2.0 (red histogram). In the plots ∫ Fξ (E)dE = 1. The continuous black curves are due to fitting with fCqN given by Eq. (18) using q and ζ
values obtained by Eq. (9) and Eq. (11), respectively. See text for more details.
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Fig. 5. Ensemble averaged (a) Centroid, (b) γ1 and (c) γ2 as a function of body rank k for the strength function results presented in Fig. 4. Results are shown for various 
values of ξ .

Fig. 6. Fidelity decay W0(t) as a function of time for a 100 member BEGOE(1+k) ensemble with N = 5 and m = 10 represented by the red solid circles; the ψ(0) here 
corresponds to middle states of h(1) spectrum. Here t is measured in the units of σ−1

H . The black smooth curves are obtained by taking numerical Fourier transform of the 
strength functions represented by Eq. (18).

W0(t) ∝ t−γ with γ ≥ 2 implying thermalization [52], no matter 
how fast the decay may initially be. As shown in [52], the power-
law behavior appears due to the fact that the energy spectrum is 
bounded from both the ends. This condition is essentially satisfied 
by fCqN . Therefore, it is important to analyze the long-time behav-
ior of fidelity decay for embedded ensembles first to establish its 
universality and second to test whether it can be explained with 
the use of fCqN . These are open questions.

In the study of fidelity decay, strength function with ξ = 0 is 
involved. However, the statistical properties, related to wavefunc-
tion structure, namely NPC and S info can be written as integrals 
involving strength functions over all ξ energies. Very recently, an 
integral formula for NPC in the transition strengths from a state 
as a function of energy for fermionic EGOE(k) using the bivariate 
q-normal form is presented in [37]. In the past, the smooth forms, 
for NPC and S info, were derived in terms of energy and correla-
tion coefficient ζ for two-body interaction [53]. In the next section, 
we present our results for NPC and S info using fCqN forms for the 
strength functions and compare with those for dense interacting 
boson systems with k-body interaction.

6. NPC and information entropy

The NPC in wavefunction characterizes various layers of chaos 
in interacting particle systems [16,54,55] and for a system like 
atomic nuclei, NPC for transition strengths is a measure of fluc-

tuations in transition strength sums [37]. For an eigenstate |Ei〉
spread over the basis states |κ〉, with energies ξκ = 〈κ |H |κ〉, NPC 
(also known as inverse participation ratio) is defined as,

NPC(E) =
{∑

κ

∣∣∣C i
κ

∣∣∣4
}−1

(20)

NPC essentially gives the number of basis states |κ 〉 that con-
stitute an eigenstate with energy E . The GOE value for NPC is 
d/3. NPC can be studied by examining the general features of the 
strength functions Fξ (E). The smooth forms for NPC(E) can be 
written as [53],

NPC(E) = d

3

{∫
dξ

ρHκ (ξ)[Fξ (E)]2

[ρH (E)]2

}−1

, (21)

where ρHκ (ξ) and ρH (E) are normalized eigenvalue densities gen-
erated by diagonal Hamiltonian Hκ matrix and full Hamiltonian H
matrix, respectively. Taking E and ξ as zero centered and scaled by 
corresponding widths, the above equation can be written in terms 
of fqN and fCqN [37,38],

NPC(E) = d

3

⎧⎪⎨
⎪⎩
∫

s(q)

dξ
fqN(ξ |q)[ fCqN(E|ξ ; ζ,q)]2

fqN(E|q)

⎫⎪⎬
⎪⎭

−1

. (22)
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Fig. 7. Ensemble averaged NPC as a function of normalized energy E for a 100 member BEGOE(1+k) with m = 10 interacting bosons in N = 5 sp states for different values 
of k. Ensemble averaged BEGOE(1+k) results are represented by solid circles while continuous curves correspond to the theoretical estimates in the chaotic domain obtained 
using Eq. (23). The ensemble averaged ζ and q values are also given in the figure. GOE estimate is represented by dotted line in each graph.

In general, q’s in the above equation need not be same [37,38]. 
However, in the thermalization region, with ζ 2 ≤ 1/2, one can ap-
proximate γ2 ≈ (q − 1) in Eq. (8). Then, the formula for q given 
by Eq. (9) is valid for fqN as well as for fCqN . This is well ver-
ified numerically in Section 2. Also, the results of γ2 in Fig. 5(c) 
corroborate this claim. With this, it is possible to simplify Eq. (22)
using Eqs. (6) and (7) and a simple two-parameter formula, valid 
in chaotic domain, for NPC can be written as,

NPC(E) = d

3

{ ∞∑
n=0

ζ 2n

[n]q! H2
n(E|q)

}−1

. (23)

It is easy to see from above formula that NPC(E) approaches GOE 
value d/3 as ζ → 0. Also for q → 1, fqN and fCqN in Eq. (22) re-
duce to Gaussian and then Eq. (23) gives similar results obtained 
for k = 2 in [53]. We have tested this formula with numerical 
ensemble averaged BEGOE(1+k) results. Fig. 7 shows results for en-
semble averaged NPC vs. normalized energy, for a 100 member 
BEGOE(1+k) with m = 10 and N = 5 example for different values 
of λ and k. The ensemble averaged NPC values are shown with 
red solid circles and continuous lines are obtained using the theo-
retical expression given by Eq. (23). One can see from the results 
that with fixed k (i) for small value of λ, where the one-body 
part of the interaction is dominating, the numerical NPC values 
are zero and the theoretical curve is far away from the numerical 
results indicating that the wavefunctions are completely localized 
(the bottom panels in Fig. 7); (ii) with further increase in λ, the 
theoretical estimate for NPC in the chaotic domain is much above 
the ensemble averaged curve indicating that the chaos has not yet 
set in; (iii) However, with sufficiently large λ, we see that the en-
semble averaged curve is matching with the theoretical estimate 

given by Eq. (23), indicating that system is in chaotic domain cor-
responding to the thermalization region given by ζ 2 ∼ 1/2 [23]
and the strength functions Fξ (E) are well represented by condi-
tional q normal distribution. Again with further increase in λ (the 
top panels in Fig. 7), the match between the theoretical chaotic 
domain estimate and the ensemble averaged values is very well in 
the bulk part of the spectrum (|E| < 2) for all values of k with de-
viations near the spectrum tails. Hence, in the chaotic domain, the 
energy variation of NPC(E) using Eq. (23) is essentially given by 
two parameters, ζ and q. The results clearly show that the ther-
malization sets in faster with increase in the body rank k.

Another statistical quantity normally considered is the
information entropy defined by S info(E) = − 

∑
κ pi

κ ln pi
κ =

− 
∑

κ |C i
κ |2 ln |C i

κ |2, here pi
κ is the probability of basis state κ in 

the eigenstate at energy Ei . The localization length, lH is related to 
S info(E) by lH (E) = exp

{
Sinf o(E)

}
/(0.48d). Then the correspond-

ing embedded ensemble expression for lH involving Fξ (E), can be 
written as [53],

lH (E) = −
∫

dξ
Fξ (E) ρHκ (ξ)

ρH (E)
ln

{
Fξ (E)

ρH (E)

}
. (24)

Replacing ρHκ (ξ) and ρH (E) by fqN and Fξ (E) by fCqN , formula 
for lH valid in chaotic domain is given by,

lH (E) = −
∫

dξ

∫
s(q)

fCqN(E|ξ ; ζ,q) fqN(ξ |q)

fqN(E|q)
ln

{
fCqN(E|ξ ; ζ,q)

fqN(E|q)

}
.

(25)

Simplifying Eq. (25) for lH is an open problem and therefore, it 
is evaluated numerically and results are compared with ensemble 
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Fig. 8. Ensemble averaged localization lengths lH vs. normalized energy E for a 100 member BEGOE(1+k) with m = 10 interacting bosons in N = 5 sp states for different 
k values. Here, λ = 1 is chosen for all k. Ensemble averaged BEGOE(1+k) results (red solid circles) are compared with the smooth forms obtained via Eq. (25) involving 
parameters ζ and q. The ensemble averaged ζ values are given in the figure and Eq. (9) is used for q values. Dotted lines in each graph represent GOE estimate.

averaged numerical results of BEGOE(1+k). Fig. 8 shows results for 
ensemble averaged lH vs. normalized energy E for a 100 member 
BEGOE(1 + k) with m = 10 bosons in N = 5 sp states for differ-
ent values of k. Here, we choose k-body interaction strength λ = 1
so that the system will be in thermalization region. Numerical 
embedded ensemble results (red solid circles) are compared with 
theoretical estimates (black curves) obtained using Eq. (25). The ζ
values are shown in the figure. A very good agreement between 
numerical results and smooth form is obtained for all values of k
in the bulk of the spectrum with small deviations near the spec-
trum tails. Hence, in the chaotic domain, the energy variation of 
lH (E), with Eq. (25), is essentially given by conditional q forms for 
the strength functions.

7. Conclusions

In the present work, we have analyzed wavefunction struc-
ture of dense many-body bosonic systems with k-body interac-
tion by modeling the Hamiltonian of these complex systems using 
BEGOE(1+k). We have shown that for dense boson systems with 
BEGOE(1+k), the q-Hermite polynomials are used to describe the 
transition from Gaussian to semi-circle in the state density as the 
strength of the k-body interaction increases. A complete analyt-
ical description of the correlation coefficient ζ , which is related 
to variance of strength functions, is obtained in terms of N , m, 
k and λ and it is found to describe the embedded ensemble re-
sults very well for all the values of rank of interaction k. Also, in 
the dense limit ζ → 0. We have also obtained formula for λt in 
terms of (m, N , k). Further, it is shown that in the strong inter-
action domain (λ >> λt ), the strength functions make transition 
from Gaussian to semi-circle as the rank of interaction k increases 
in BEGOE(1+k) and their smooth forms can be represented by 
the q-normal distribution function fCqN to describe this crossover. 
Moreover, the variations of the lowest four moments of strength 
functions computed numerically are in good agreement with the 
analytical formulas obtained in [38]. With this, we have first uti-
lized the interpolating form for strength function fCqN to describe 
the fidelity decay in dense boson systems after k-body random in-
teraction quench. Secondly, using smooth forms for fqN and fCqN , 
we have also derived two-parameter (q and ζ ) formula for NPC 
valid in thermalization region and shown that these smooth forms 
describe BEGOE(1+k) ensemble averaged results very well. There-
fore, the results of this work, along with [33,37,38], establish that 

the q-Hermite polynomials play a very significant role in analyzing 
many-body quantum systems interacting via k-body interaction. 
The generic features explored in this work are important for a 
complete description of many-body quantum systems interacting 
via k-body interaction as the nuclear interactions are now known 
to have some small 3-body and 4-body parts and higher body in-
teractions may become prominent in strongly interacting quantum 
systems [7,25,26].

Following the work in [52], it is interesting to analyze power-
law behavior of fidelity decay for very long time using embed-
ded ensembles with k-body forces as smooth forms of strength 
functions can be represented by fCqN . Further, as smooth forms 
for the density of states can be represented by fqN , it is possi-
ble to study normal mode decomposition of the density of states 
for various k values using fqN [13,17,56] and thereby one can 
study spectral statistics in strongly interacting quantum systems. 
This is for future. It is also known that the strength functions and 
the entanglement essentially capture the same information about 
eigenvector structure [55,57] and therefore it is important to study 
entanglement properties using embedded ensembles with k-body 
forces.
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Abstract. The probability distributions of the closest neighbour (CN) and farther neighbour (FN) spacings from
a given level have been studied for interacting fermion/boson systems with and without spin degree of freedom
constructed using an embedded Gaussian orthogonal ensemble (GOE) of one plus random two-body interactions.
Our numerical results demonstrate a very good consistency with the recently derived analytical expressions using
a 3 × 3 random matrix model and other related quantities by Srivastava et al, J. Phys. A: Math. Theor. 52, 025101
(2019). This establishes conclusively that local level fluctuations generated by embedded ensembles (EE) follow
the results of classical Gaussian ensembles.
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1. Introduction

Random matrix theory (RMT) originally introduced
by Wishart [1] in statistics and further introduced by
Wigner to study nuclear spectra [2], is now established
as a good model to describe spectral fluctuations arising
from complex quantum systems from a wide variety of
fields like quantum chaos, finance [3], econophysics [4],
quantum chromodynamics [5], functional brain struc-
tures [6] and many more. These spectral fluctuations
reveal whether the given complex quantum system is
in regular (or integrable) or chaotic domain and they
describe transition from regular to chaotic domain. One
of the most popular measure of RMT widely used for
this purpose is the nearest-neighbour spacing distribu-
tion (NNSD), P(s), which tells us about the short-range
correlations between nearest neighbours of energy lev-
els (or eigenvalues) of the complex quantum system.
Dyson gave three-fold classification of classical random
matrix ensembles based on the symmetries present in
their Hamiltonian, viz. Gaussian orthogonal ensemble
(GOE), Gaussian unitary ensemble (GUE) and Gaus-
sian symplectic ensemble (GSE) [7]. For the case of
GOE, which corresponds to quantum systems that are
time reversal invariant without spin, the energy levels

are correlated (corresponding to the chaotic behaviour)
and NNSD obeys the Wigner surmise which is essen-
tially the GOE result P(s) = (π/2)s exp(−πs2/4) [8],
whereas if the energy levels of a complex quantum
system are uncorrelated (corresponding to the regular
behaviour), then the form of NNSD is given by the
Poisson distribution P(s) = exp(−s) [9]. For a given
set of energy levels, the construction of NNSD involves
unfolding of the spectra to remove the variation in the
density of eigenvalues [7,10]. Recently, NNSD has been
used to study this transition from regular to chaotic
domain in wormholes [11] and open quantum systems
[12].

Complex systems can be represented in the form of
a network and the spectral properties of these networks
are now known to follow RMT. This opened a route to
predict and control functional behaviour of these com-
plex systems [13,14]. In some complex systems such
as cancer networks, the short-range correlations given
by NNSD may give information only about the random
connections in these networks. However, the long-range
correlations given by spectral rigidity can give further
details about the underlying structural patterns in these
systems [15]. In such systems, study of measures giving
long-range correlations, such as the number variance
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and spectral rigidity, are important [10,16–18]. These
days, a very good alternative to NNSD called the ratio
of level spacings [19] is gaining a lot of attention [15,20–
24] as it is simple to compute and no unfolding is needed
as it is independent of the form of density of the energy
levels. The higher orders of ratio of spacings have also
been studied in [25,26]. The distribution intermediate
of Poisson and GOE is described by Brody distribution
[27]. Recently, intermediate semi-Poissonian statistics
[28] and cross-over random matrix ensembles [29] are
also reported. Going beyond this, recently, the distri-
bution of the closest neighbour (CN) spacing, sCN, and
farther neighbour (FN) spacing, sFN, from a given level
are introduced [30]. The distribution of sCN is important
in the context of perturbation theory, as the contribution
from the CN is prominent due to smaller energy spacing
[31]. The distribution of sFN is complementary to that
of sCN. It is important to note that the ratio of two con-
secutive level spacings introduced in [19] is given by
r̃ = sCN/sFN. The numerical results for the integrable
circle billiard, fully chaotic cardioid billiard, standard
map with chaotic dynamics and broken time reversal
symmetry, and the zeros of the Riemann zeta function
are shown to be in very good agreement with the ana-
lytical formulas derived in [30] for the random matrix
ensembles GOE, GUE and GSE based on a 3×3 matrix
modelling and Poisson spectra. In the present work,
we analyse distributions of sCN and sFN using random
matrix ensembles defined by one-plus chaos generat-
ing two-body interactions operating in many-particle
spaces, to conclusively establish that these measures
are universal and local level fluctuations generated by
many-particle interacting systems follow the results of
classical Gaussian ensembles [32–34]. These ensem-
bles are generically called the embedded ensembles of
(1 + 2)-body interactions or simply EE(1 + 2) and their
GOE random matrix version is called EGOE(1 + 2).
These models, both for fermion and boson systems,
including spin degree of freedom and without spin, have
their origin in nuclear shell model and the interacting
boson model [35].

Now, it is very well established that EGOE(1 + 2)

ensembles apply in a generic way to isolated finite inter-
acting many-particle quantum systems such as nuclei,
atoms, quantum dots, small metallic grains, interact-
ing spin systems modelling quantum computing core
and so on [33,36]. For sufficiently strong interaction,
EGOEs exhibit average-fluctuation separation in eigen-
values with the smoothed eigenvalue density being a
corrected Gaussian and the local fluctuations are of GOE
type [10,34,37]. Recently, these models have also been
used successfully in understanding high-energy physics
related problems. Random matrix models with two-
body interactions [EGOE(2)] among complex fermions

are known as complex Sachdev–Ye–Kitaev models in
this area [38–40]. EGOE(1 + 2) can be defined for
fermions and bosons with spin degree of freedom and
also with many other symmetries [34,36]. Now we shall
give a preview.

The rest of this paper is organised as follows. In §2,
we briefly describe the construction of five different
EGOEs used in the present paper. Analytical results for
the probability distribution for the CN spacings and the
FN spacings are discussed in §3. Section 4 presents the
numerical results for the probability distribution for the
CN spacings and the FN spacings. Finally, we draw con-
clusions in §5.

2. Embedded ensembles for fermion and boson
systems

In this section, we describe the construction of various
embedded random matrix ensembles used in this paper.
Let us begin with embedded ensemble (EE) for spinless
systems. For defining such ensembles, one can consider
a system of m spinless particles (fermions or bosons)
which are to be distributed in N single particle (sp) states
and interacting via (1 + 2) body interaction. Let these
N sp states be denoted by |vi 〉 where i = 1, 2, 3, ..., N .
A two-particle Hamiltonian matrix can be constructed
and then it can be further embedded to the m-particle
space by using the concepts of direct product space
and Lie algebra. With GOE embedding, these ensem-
bles are called EGOE(2) for fermions (or BEGOE(2)
for bosons). For such a system, one can define the two-
body Hamiltonian matrix by the expression

V (2) =
∑

α,γ

V2;α,γ A
†
2,αA2,γ , (1)

where the term V2;α,γ is the Gaussian random variate
with zero mean and constant variance,

V2;α,γ V2;α′,γ ′ = ν2
0(1 + δα,α′,γ,γ ′), (2)

where the overbar denotes the ensemble average and
ν0 = 1 without the loss of generality. For fermions,
A†

2,α = a†
v1
a†
v2

; A2,α = (A†
2,α)† (v1 < v2), whereas

for bosons, A†
2,α = Cb†

v1
b†
v2

; A2,α = (A†
2,α)† (v1 ≤

v2), where C is the normalisation constant given by
C = (1 + δv1v2)

−1/2 and α simplifies the notation of
indices. Also, a†

vi
and avi are the creation and annihila-

tion operators respectively for fermions and b†
vi

and bvi

are the creation and annihilation operators respectively
for bosons. One should also note that the dimension of
Hamiltonian matrix for fermions would be d(N ,m) =(N
m

)
and for bosons d(N ,m) = (N+m−1

m

)
, with the
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two-body independent matrix elements (TBME) being
[d(N , 2)(d(N , 2) + 1)]/2 for both. V2;α,γ in eq. (1), are
anti-symmetrised TBME for fermions and symmetrised
TBME for bosons.

In such a manner, one can construct an embedded
two-body random matrix ensemble. When the mean
field one-body part is added to the Hamiltonian, they
are generally called one plus two-body random matrix
ensembles [EGOE(1 + 2)]. Thus, with random two-
body interactions V (2), we can define the Hamiltonian
of EGOE(1 + 2) as follows:

H = h(1) + λ{V (2)}. (3)

Here, h(1) = ∑
i εi ni is the one-body part of the Hamil-

tonian. The sp energies are defined as εi and ni are
number operators acting on sp states. λ is the two-
body interaction strength and notation { } denotes an
ensemble. The V (2) matrix is chosen to be a GOE in
two-particle spaces [36]. Due to (1 + 2)-body nature of
the interaction, many of the matrix elements of H(m)

form > 2 are zero and the non-zero matrix elements are
linear combinations of the sp energies and the TBMEs.

Going beyond spinless systems, we have considered
three embedded ensembles (EE) with spin degree of
freedom. For fermions with spin s = 1/2 degree of
freedom, we have EGOE(1 + 2)-s [41]. Here, the inter-
action V (2) will have two parts as the two-particle spins
are s = 0 and 1, giving EGOE(1 + 2)-s Hamiltonian
H = h(1) + λ0{V s=0(2)} + λ1{V s=1(2)}. For bosons
with spin degree of freedom, we have considered the
following two EE: (i) for two-species boson systems
with a fictitious (F) spin 1/2 degree of freedom, we
have BEGOE(1 + 2)-F [42]. Here also, the interaction
V (2) will have two parts as the two-particle F spins
are f = 0 and 1, giving BEGOE(1 + 2)-F Hamilto-
nian H = h(1) + λ0{V f =0(2)} + λ1{V f =1(2)}, (ii)
for bosons with spin-one degree of freedom, we have
BEGOE(1+2)-S1 [43]. Here, the interaction V (2) will
have three parts as the two-particle spins are s = 0,
1 and 2 giving BEGOE(1 + 2)-S1 Hamiltonian H =
h(1)+λ0{V s=0(2)}+λ1{V s=1(2)}+λ2{V s=2(2)}. Note
that, the sp levels (	) defining one-body part h(1) for EE
will have (2s + 1) degeneracy. For EGOE(1 + 2)-s and
BEGOE(1+2)-F , the sp levels will be doubly degener-
ate (N = 2	), while for BEGOE(1+2)-S1, they will be
triply degenerate (N = 3	). In all the five ensembles,
without loss of generality, we choose the average spac-
ing between the sp levels to be unity so that all strength
of interactions are unitless.

3. Ordered level spacing distribution

Let us consider an ordered set of unfolded eigenvalues
(energy levels) En , where n = 1, 2, ..., d. The nearest-
neighbour spacing is given by sn = En+1 − En . Then,
the CN spacing is defined as sCN

n = min{sn+1, sn} and
the FN spacing is defined as sFN

n = max{sn+1, sn}. The
probability distribution for the CN spacings is denoted
by PCN(s) and for the FN spacings it is denoted by
PFN(s). If the system is in integrable domain, NNSD
is Poisson. Then PCN(s) and PFN(s) are given by

PP
CN(s) = 2 exp(−2s) (4)

and

PP
FN(s) = 2 exp(−s)[1 − exp(−s)] , (5)

respectively. Similarly, if the system is in chaotic
domain, NNSD is GOE and is derived using 3 × 3 real
symmetric matrices. Then PCN(s) and PFN(s) are given
by [30],

PGOE
CN (s) = a

π
s exp(−2as2)

×
[

3
√

6πa s − π exp

(
3a

2
s2

)

×(as2 − 3) erfc

(√
3a

2
s

)]
(6)

and

PGOE
FN (s) = a

π
s exp(−2as2)

[
π exp

(
3a

2
s2

)

×(as2−3)

{
erf

(√
a

6
s

)
−erf

(√
3a

2
s

)}

+√
6πa s

(
exp

(
4a

3
s2

)
− 3

)]
(7)

respectively. Here a = 27/8π . It is important to note
that 2P(s) = PCN(s) + PFN(s). For small spacings s,
PGOE

CN (s) shows level repulsion similar to the NNSD
and PGOE

FN (s) ∝ s4, while for large s, PGOE
FN (s) ∝

exp(−2a
3 s2). For GOE, the average value 〈sCN〉 = 2

3 and
for Poisson it is 1

2 . However, the average value 〈sFN〉 = 4
3

for GOE and 3
2 for Poisson.

Here, spectral fluctuations in EE for fermion and
boson systems with and without spin degree of freedom
are studied using PCN and PFN and it is found that these
forms of distributions are universal. Let us add that the
ensembles without spin and with spin degree of freedom
are used to represent the quantum many-particle systems
with interactions [36]. We present the numerical results
in the next section.
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Table 1. The ensemble averaged skewness γ1 and excess γ2
parameters for various EE examples used.

EE γ1 γ2

EGOE(1 + 2) 0.0008 −0.3431
BEGOE(1 + 2) 0.0922 −0.2329
EGOE(1 + 2)-s

S = 0 0.0202 −0.3034
S = 1 0.0178 −0.3352

BEGOE(1 + 2)-F
F = 0 0.0088 −0.3114
F = 2 0.0469 −0.3129
F = 5 0.0677 −0.2569

BEGOE(1 + 2)-S1
S = 4 0.0349 −0.1111

4. Numerical results

In order to study CN spacing distribution PCN(s) and FN
spacing distribution PFN(s), we consider the following
five EGOEs in many-particle spaces:

1. EGOE(1 + 2) for m = 6 fermions in N = 12 sp
states with H matrix of dimension 924. The inter-
action strength λ = 0.1 (see ref. [32] for details).

2. BEGOE(1 + 2) for m = 10 bosons in N = 5
sp states with H matrix of dimension 1001. The
interaction strength λ = 0.06 (see refs [44,45] for
details).

3. EGOE(1 + 2)-s for m = 6 fermions occupying
	 = 8 sp levels (each doubly degenerate) with
total spin S = 0 and S = 1 giving the H matrices
of dimensions 1176 and 1512 respectively. The
interaction strength λ = λ0 = λ1 = 0.1 (see refs
[41,46]) for details).

4. BEGOE(1 + 2)-F for m = 10 bosons occupying
	 = 4 sp levels (each doubly degenerate) with
total F-spin F = 0, 2 and F = Fmax = 5 giving
the H matrices of dimensions 196, 750 and 286.
The interaction strength λ = λ0 = λ1 = 0.08 (see
refs [42,47] for details).

5. BEGOE(1 + 2)-S1 for m = 8 bosons occupying
	 = 4 sp levels (each triply degenerate) with total
spin S = 4 giving the H matrix of dimension 1841.
The interaction strength λ = λ0 = λ1 = λ2 = 0.2
(see ref. [43] for details).

In the present analysis, an ensemble of 500 members
is used for all the examples. The sp energies defining
h(1) are chosen as εi = (i +1/ i). It is important to note
that as λ increases in these EE (both fermion and boson),
there is Poisson to GOE transition in level fluctuations
at λ = λC and Breit–Wigner to Gaussian transition in
strength functions (also known as local density of states)
at λ = λF > λC . Also, they generate a third chaos
marker at λ = λt > λF , a point or a region where
thermalisation occurs. Values of λ in the ensemble cal-
culations are chosen sufficiently large so that there is
enough mixing among the basis states and the system is
in the Gaussian domain, i.e. λ > λF . For EGOE(1 + 2)

[32] and EGOE(1 + 2)-s [41,46], fermion systems are
always in Gaussian domain with λ = 0.1. For spinless
boson BEGOE(1 + 2), λ = 0.06 is sufficiently large so
that the system is in Gaussian domain [44,45]. Similarly,
for boson ensembles with spin degree, BEGOE(1 + 2)-
F with λ = 0.08 [42,47] and BEGOE(1 + 2)-S1 with
λ = 0.2 [43], again the systems exhibit GOE level fluc-
tuations and the eigenvalue density as well as strength
functions are close to Gaussian.

(a) (b)

Figure 1. The CN spacing distribution PCN(s) and FN spacing distribution PFN(s) (black histograms) for a 500 member (a)
EGOE(1 + 2) ensemble and (b) BEGOE(1 + 2) ensemble. The red smooth curves are due to the corresponding eqs (6) and
(7). The NNSD is shown by the green histogram for comparison.
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(a)

(c)

(b)

Figure 2. The CN spacing distribution PCN(s) and FN spacing distribution PFN(s) for (a) EGOE(1 + 2)-s ensemble for spin
values S = 0 and 1, (b) BEGOE(1+2)-S1 ensemble for spin value S = 4 and (c) BEGOE(1+2)-F ensemble for spin values
F = 0, 2 and 5 (see figure 1 and text for details).

In the analysis, PCN(s) and PFN(s) are obtained using
the following procedure. First the spectrum for each
member of the ensemble is unfolded using the proce-
dure described in [37], with the smooth density as a
corrected Gaussian with corrections involving up to 4–
6th order moments of the density function so that the
average spacing is unity. The ensemble averaged skew-
ness (γ1) and excess (γ2) parameters are shown in table
1 for all the examples of EE analysed in the present
work. The histograms for PCN(s) and PFN(s) are con-
structed using the central 80% part of the spectrum with
the bin size equal to 0.1. The results for EE without

spin, EGOE(1 + 2) and BEGOE(1 + 2), are shown in
figure 1. Similarly, the results for EE with spin degree
of freedom, EGOE(1 + 2)-s and BEGOE(1 + 2)-F and
BEGOE(1 + 2)-S1, are shown in figure 2. A very good
agreement is observed between the numerical EE results
and the theoretical predictions given by eqs (6) and (7)
for all the examples. The ensemble averaged values of
〈sCN〉 and 〈sFN〉, for all the examples, are given in table
2. They are found to be very close to the corresponding
GOE estimates. In addition to this, we have also anal-
ysed shell model example which is a typical member of
EGOE(1 + 2)-JT [32]. This ensemble is usually called
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Table 2. Average values of the CN spacings (〈sCN〉) and FN
spacing (〈sFN〉) obtained numerically for various EE examples
used in the present paper. Average values obtained from theory
for Poisson and GOE are also given.

EE 〈sCN〉 〈sFN〉
EGOE(1 + 2) 0.6613 1.3417
BEGOE(1 + 2) 0.6600 1.3401
EGOE(1 + 2)-s
S = 0 0.6616 1.3411
S = 1 0.6625 1.3409
BEGOE(1 + 2)-F
F = 0 0.6585 1.3421
F = 2 0.6600 1.3404
F = 5 0.6578 1.3420
BEGOE(1 + 2)-S1
S = 4 0.6600 1.3401
Poisson 1/2 3/2
GOE 2/3 4/3

Figure 3. The CN spacing distribution PCN(s) and FN spac-
ing distribution PFN(s) vs. s for nuclear shell model example:
24Mg with 8 nucleons in the (2s1d) shell with angular momen-
tum J = 2 and isospin T = 0. The matrix dimension is 1206
and all levels are used in the analysis (see ref. [37] for further
details). The skewness and excess parameters are γ1 = 0.139
and γ2 = −0.061. 〈sCN〉 and 〈sFN〉 values are also given in
the figure.

TBRE [48]. The result is shown in figure 3. Here also the
shell model results along with the calculated averages
are consistent with the theoretical predictions.

Going further, it is also possible to study a transi-
tion from Poisson to GOE in terms of 〈sCN〉 and 〈sFN〉
for EGOE(1 + 2) and BEGOE(1 + 2) ensembles as
these ensembles demonstrate Poisson to GOE transi-
tion in level fluctuations with increase in the strength of
the two-body interaction λ [22,32,42,44,46]. We have
computed 〈sCN〉 and 〈sFN〉 for spinless fermion and
boson ensembles by varying the interaction strength λ.

Figure 4. Ensemble averaged values of 〈sCN〉 (lower panel)
and 〈sFN〉 (upper panel) as a function of the two-body strength
of interaction λ, obtained for EGOE(1 + 2) ensemble with
(m, N ) = (6, 12) (black circles) and BEGOE(1 + 2) ensem-
ble with (m, N ) = (10, 5) (red circles). In the calculations
sp energies are drawn from the centre of a GOE. The vertical
dash lines represent the position of λC for the corresponding
EGOE(1 + 2) and BEGOE(1 + 2) examples. In each calcu-
lation, an ensemble of 500 members is used. The horizontal
dotted lines represent Poisson estimate (black), GOE estimate
(red) and 〈sCN〉C = 0.62 (and 〈sFN〉C = 1.38) (see text for
further details).

Figure 4 represents these results. It is clearly seen that
for lower values of λ, the values of 〈sCN〉 and 〈sFN〉
are close to Poisson, which gradually reach the GOE
value with increase in λ. Therefore, there is a transi-
tion from Poisson to GOE form in PCN(s) (and also
in PFN(s)). With this, it is possible to define a chaos
marker λC such that for λ > λC , the level fluctuations
follow GOE. This transition occurs when the interaction
strength λ is of the order of the spacing 
 between the
states that are directly coupled by the two-body interac-
tion. In the past, the NNSD [49] and the distribution of
ratio of consecutive level spacings [21] have been used
to study Poisson-to-GOE transition by constructing suit-
able random matrix model and the transition parameters
were used to identify the chaos marker λC in the EE
[22,32,42,44,46]. Corresponding to the critical values
of these transition parameters required for the onset of
GOE fluctuations, we found the critical value of 〈sCN〉,
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〈sCN〉C = 0.62 (and 〈sFN〉C = 1.38). This is represented
by blue dotted lines in figure 4. 〈sCN〉C = 0.62 gives
λC 	 0.028 for EGOE(1+2) example and λC 	 0.024
for BEGOE(1 + 2) example. These values are shown
by dashed vertical lines in figure 4 and are close to
the previously obtained results [22,36]. Therefore, these
measures can also be utilised to identify λC marker using
PCN(s). In the past, the criterion for the chaos marker λC
for EGOE(1+2) models [36,44], based on the perturba-
tion theory, was derived by Jacquod and Shepelyansky
[50]. The validity of the perturbation theory gives λC .
Hence, it is important to analyse PCN(s) distribution and
related measures in the context of the onset of chaos in
EE. This is for future.

5. Conclusion

In this paper, we have studied the CN spacing distri-
bution PCN(s) and the FN spacing distribution PFN(s)
for interacting fermion/boson systems with and with-
out spin degree of freedom. The system Hamiltonian
is modelled by an embedded GOE of one plus two-
body interactions [EGOE(1 + 2)]. In the past, it was
shown [10] that only with proper spectral unfolding, EE
exhibits GOE level fluctuations. Our numerical results
for various examples of fermion/boson system and shell
model, are consistent with the recently derived analyti-
cal expressions using a 3 × 3 random matrix model and
other related quantities [30]. This establishes that these
analytical expressions are universal. Also, it shows that
for strong enough interaction, the local level fluctuations
generated by EE follow the results of classical Gaussian
ensembles.
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a b s t r a c t

The efficient transport of particles or excitations (known as quantum efficiency) within a quantum sys-
tem is a very important as well as a challenging part of nanotechnology. It plays a crucial role in devices at
nano-scale, solar cell physics, quantum computers, photosynthesis, etc. Hence, it is important to find out
under what conditions near-to-perfect transport between two states of such small disordered interacting
quantum system can be improved. In the present work, we study influence of centrosymmetry on trans-
port efficiencies of an initial localized excitation in disordered finite network, modeled by k-body
Embedded Gaussian Orthogonal Ensembles of random matrices EGOE(k). Here firstly we analyze disor-
dered fermionic network of d sites, modeled by three different ensembles that include many-body inter-
actions: (i) EGOE(k) without centrosymmetry, (ii) EGOE(k) with centrosymmetry present in both k as well
as in m particle spaces [denoted as csEGOE(k)] and (iii) EGOE(k) with centrosymmetry present in k-
particle space (not in them-particle space) [denoted as EGOE(k-cs)]. Similarly, we also analyze disordered
bosonic network modeled by these three ensembles. We found that presence of centrosymmetry
enhances quantum efficiency both for fermionic as well as bosonic networks. The results agree with those
obtained in the past by Ortega et al. [Ann. Phys. (Berlin) 527 (2015) 748].
� 2020 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the Recent Advancements in
Materials science And Nanotechnology conference.

1. Introduction

In last about half a century, the world witnessed evolutionary
miniaturization of electronic devices from macro to micro scale.
This in-turn, resulted in a rapidly developing field of nanoscience
and nanotechnology, due to the significant properties that appear
because of novel quantum effects at nano-scale. A very important
as well as a challenging part of this field is Quantum efficiency,
which addresses the efficient transport of particles or excitations
across complex quantum systems. It plays a crucial role in design-
ing nano-scale devices with increased efficiency [1]. Recently, in
the field of condensed matter physics, quantum transport is stud-
ied in one dimensional nano wires(which may have spintronics
applications), Quantum Anomalous Hall (QAH) phase with ultra-
cold atoms, graphene and carbon nanotubes [2], quantum dots
[3], solar cells [4], superconducting nanocircuits [5,6], nano-scale
MOSFET devices [2,7–9]. Quantum efficiency also plays an impor-

tant role in various other fields such as, quantum information
science [10–12], biomolecules [13–18], quantum optics, etc.

So far, various approaches have been developed to study quan-
tum transport in complex quantum systems. Some of these
approaches include the Landauer formula and Buttiker probes,
Boltzmann transport models, scattering approach [19], non-
equilibrium Green’s function (NEGF) formalism, Density Functional
Theory (DFT) [20], etc. The NEGF formalism being the most fre-
quently used [1]. These systems can also be modeled by a disor-
dered random network of nodes and links [21,22]. Random
Matrix Theory (RMT) initially introduced by Wigner and Dyson
in nuclear physics, is now being successfully applied to many other
fields. A lot of progress has been achieved for quantum transport in
open systems using scattering matrix and random-matrix theory of
quantum transport. Topological superconductors, chaotic cavities
[23], metallic carbon nanotubes [24], quantum dot and disordered
wire ([25] and references therein) have been studied using these
approaches. On the other hand, for quantum transport in closed
systems, random Hamiltonian approach is used. One way is to
use RMT. This is studied for disordered quantum dots [26]. How-
ever, quantum transport in closed systems remains barely studied.
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These studies suggest that RMT is well positioned to explore the
universal aspects of quantum transport. However, realistic systems
consist of few-body interactions among its constituents, which are
not considered in classical random matrix ensembles (especially
Gaussian Orthogonal Ensemble (GOE)). Embedded random-
matrix ensembles of k-body interaction (in our case Embedded
Gaussian Orthogonal Ensemble EGOE(k)) [27] address these few-
body interactions also, that are reflected by the correlations in
these networks. Using a disordered network of d sites and employ-
ing GOE for the Hamiltonian, it was shown in [28] that highly effi-
cient quantum transport is possible for the Hamiltonian with
centrosymmetry and a dominant doublet spectral structure.
Recently, it has been shown by Ortega et al. that the transport effi-
ciency can be enhanced just with centrosymmetry when GOE is
replaced by EGOE(k) [29–32]. These works show that efficient
quantum transport is achieved when the Hamiltonian preserves
centrosymmetry.

In one dimensional nanowires, graphene, quantum dots, solar
cells, nano-scale devices, etc. fermions play a very important role.
Also, in QAH phase with ultracold atoms and superconducting
nanocircuits bosons play an important role. This motivated us to
study quantum transport across disordered (fermionic/bosonic)
networks. In the present work, we study the role of centrosymme-
try on transport efficiencies across disordered finite networks of m
(fermions/bosons) distributed in N single particle (sp) states, con-
nected via k-body interactions and modeled by embedded
random-matrix ensembles of k-body interaction. For fermions
these ensembles are symbolized as EGOE(k) and for bosons they
are symbolized as BEGOE(k). We have used three different ensem-
bles that include many-body interactions for both fermionic and
bosonic networks. It is seen that presence of centrosymmetry in
these networks enhances quantum efficiency. However, in the
absence of centrosymmetry (or non-centrosymmetric structure of
the Hamiltonian), quantum transport is not enhanced. Quantum
transport across non-centrosymmetric structures is studied by var-
ious groups using various other approaches as well. Some of these
include the very recent works on magnetic and electrical transport
in non-centrosymmetric Nd7Ni2Pd [33] and charge transport in
non-centrosymmetric superconductors [34].

The rest of this paper is organized as follows. Section 2
describes construction of embedded Gaussian ensembles for fer-
mions and bosons, transport efficiency, definition of centrosymme-
try and hence the construction of centrosymmetric embedded
Gaussian ensembles. Section 3 presents the results and finally,
we draw conclusions in Section 4.

2. Embedded ensembles for disordered networks: introducing
centrosymmetry

In this paper we have modeled the fermionic and bosonic disor-
dered networks using Embedded Gaussian Orthogonal Ensemble of
k-body interaction to study the role of centrosymmetry in quan-
tum transport across them. The nodes of the network are the basis
states of the Hilbert space and the correlations among matrix ele-
ments are related to the links of the network.

2.1. Embedded ensembles

Consider a system which containsm fermions (or bosons) inter-
acting via k-body interaction ðk � mÞ, which occupy N sp states. Let
the N sp states be denoted by jnii, where i ¼ 1;2; � � � ;N. Initially, a
k-particle Hamiltonian matrix is constructed. Employing the con-
cepts of direct product space and Lie algebra, this k-particle Hamil-
tonian matrix is further embedded to the m-particle space. Here,
the information in k-particle space is propagated to m-particle

space using Lie algebra. In the present study, GOE embedding is
considered and these ensembles are called EGOE(k) for fermions
(BEGOE(k) - for bosons). The Hamiltonian for such a system is
given by,

H ¼
X

ka ;kb

Vka ;kbA
yðkaÞAðkbÞ ð1Þ

Here the term Vka ;kb is the Gaussian random variate with zero
mean and constant variance,

Vka ;kbVk
a0 ;kb0

¼ v0
2ð1þ dka ;ka0 ;kb ;kb0

Þ ð2Þ

Here, the overbar denotes the ensemble average and v0 ¼ 1
without the loss of generality.

For fermions, Ay kað Þ ¼ f n1
yf n2

y and A kað Þ ¼ ðAy
kað ÞÞy (n1 < n2).

Whereas for bosons Ay kað Þ ¼ Cbn1
ybn2

y and A kað Þ ¼ ðAy
kað ÞÞy

(n1 � n2). Here C is the normalization constant given by

C ¼ Q2
i¼1ðni!Þ1=2. Also, f ni

y and f ni are the fermionic creation and

annihilation operators respectively and bni
y and bni are the bosonic

creation and annihilation operators respectively. For fermionic net-
work, Vka ;kbare antisymmetrized while they are symmetrized for
bosonic network. The Hamiltonian H in the k-particle space has
matrix dimension dk ¼ N

k

� �
for fermions (dk ¼ Nþk�1

k

� �
for bosons).

When k ¼ m, EGOE(k) (or BEGOE(k)) reduces to GOE. This gener-
ates many-particle basis of dimension d ¼ N

m

� �
for fermions

(d ¼ Nþm�1
m

� �
for bosons). Refer [27,35–38] and references therein

for further details.

2.2. Transport efficiency

In realistic complex quantum systems, only a limited degree of
control is available. Hence, it is very important to find out under
what conditions near-to-perfect transport between two states of
a small disordered interacting quantum system can be improved
[21]. Such systems can be modeled by a disordered random net-
work of nodes and links [21,22]. Initially, the network is prepared
in state jini ¼ jnii and an excitation is introduced. Here, during the
state transfer, only the state jini is controlled and there is no con-
trol over it’s dynamics. As the network evolves unitarily, the exci-
tation propagates to the state jouti ¼ jnf i. Note that the initial jnii
and final jnf i excitations are localized on the nodes of the network.
Then, the maximum transition probability achieved among these
states within a time interval 0; T½ � is termed as the transport effi-
ciency, which is quantitatively defined as [21,39]

Pi;f ¼ max½0;T� hnf jUðtÞjnii
�� ��2 ð3Þ

Here, U tð Þ is the unitary quantum evolution associated with the
Hamiltonian H of the network. The network is said to have perfect
state transfer (PST) when Pi;f ¼ 1 [11].

In general, random disorder adds a constraint to transport due
to Anderson localization. Hence, it is necessary to identify struc-
tural elements which provide efficient quantum transport in the
presence of disorder [29]. Realistic systems preserve additional
symmetries (in addition to particle number m) like angular
momentum, parity, spin-isospin SU(4) symmetry, and so on [27].
Various works suggest that additional strong correlations arise
when realistic systems preserve centrosymmetry, which in turn
remarkably enhances the state transport across such systems
[28,40–42]. In addition to centrosymmetry, decoherence can also
enhance efficiency in disordered networks [29]. However, there
is ongoing debate on the relation between coherence and efficiency
[39].
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2.3. Introducing centrosymmetry in embedded ensembles

Now let us define centrosymmetry. A symmetric d� d matrix H
is defined as centrosymmetric if it commutes with the exchange
matrix J i.e. JH ¼ HJ. The exchange matrix J is defined by
Ji;j ¼ di;d�iþ1,di;j is the Kronecker delta. The exchange matrix is sim-
ply an antidiagonal identity matrix [43]. In the present work, the
matrix H is constructed using Embedded Gaussian Orthogonal
Ensembles with and without centrosymmetry. Centrosymmetry
can be introduced to the k-body embedded ensembles using the
following approaches given in [30]: (i) either at the one-particle
level, which is the core for the definition of the k andm particle Hil-
bert spaces, (ii) at the k-body level, where the actual (random)
parameters of the embedded ensembles are set, or (iii) at the m-
body level, which defines the dynamics.

In the present work, we study transport efficiencies in a small
fermionic as well as bosonic network by employing three models:
(i) EGOE(k) (and BEGOE(k)) without centrosymmetry, (ii) EGOE(k)
(and BEGOE(k)) with centrosymmetry present in both k as well
as m particle space [denoted by csEGOE(k) (and csBEGOE(k))] and
(iii) EGOE(k) (and BEGOE(k)) with centrosymmetry present in k-
particle space [denoted by EGOE(k-cs) (and BEGOE(k-cs))]. In csE-
GOE(k) (and csBEGOE(k)) case, centrosymmetry is imposed in the
one particle space and propagated to k and m particle spaces
[29–31] while in EGOE(k-cs) (and BEGOE(k-cs)), centrosymmetry
is imposed in k-particle space and then propagated to m-particle
space using the many-particle Hilbert space geometry. In the first
case, the final Hamiltonian preserves centrosymmetric structure
while it is not preserved in the latter case.

3. Results

3.1. Transport efficiency for fermions

Initially, we study the role of centrosymmetry in quantum
transport across fermionic networks. We consider network gener-

ated by distributing m = 1 to N-1 fermions in N = 6. We vary the
body rank of interaction k from 1 to m. We computed distribution
of best efficiencies P for each member of the ensemble as the dis-
tribution of efficiencies of the ensemble is rather broad. We pre-
sent the average value (mean) of best efficiencies P by open
squares with vertical bars representing the widths of the distribu-
tions and results are shown as a function of interaction rank k.
Here, it is important to consider all body rank of interactions as
in bio-molecules, correlations among many particles can be pre-
sent. In each calculation, an ensemble of 2000 members is used.
Fig. 1 represents the probability distributions of the best efficien-
cies P as a function of body rank of interaction k for (i) EGOE(k)
(red squares) (ii) csEGOE(k) (black squares) and (iii) EGOE(k-cs)
(green squares). One can observe that the transport efficiencies
for EGOE(k) (network with lack of centrosymmetry) is less than
80% for various values of m and k. However, it can be seen that
below and at half-filling only for k ¼ m ¼ 1 the transport efficiency
reaches above 90% while above half filling, for m = 5 the transport
efficiencies roughly reach 80%.

Now, let us see what happens when we introduce centrosym-
metry across these networks i.e. with csEGOE(k). The black open
squares in Fig. 1 represent this case. Here, there is PST for k = 1
for all values of m, especially when the number of fermions m is
odd. Also, when k or m are odd, the Hamiltonian preserves cen-
trosymmetric structure, as a result efficiency is enhanced. For
example, for k = 3 and m = 5, transport efficiency is 95%. Also,
above half filling, we obtain best efficiencies. These results are in
good agreement with the previous study [30]. Further, it is very
important to know, how efficient the transport will be in such
quantum network if centrosymmetry is imposed in k-particle
space i.e. using EGOE(k-cs). The green open squares in Fig. 1 repre-
sent this case. Here also, PST is achieved for k = 1 for all values ofm,
especially when the number of fermions m is odd. Also, when k or
m are odd, efficiency is enhanced. For example, for k = 3 and m = 5,
transport efficiency is 90%. However, it is important to note that in
this approach, the dimension of k-particle space also plays a crucial

Fig. 1. Mean of the probability distributions of the best efficiencies hPi (denoted by open squares) and corresponding widths of the distributions (denoted by vertical bars) for
a 2000 member (i) EGOE(k) (red squares), (ii) csEGOE(k) (black squares) and (iii) EGOE(k-cs) (green squares) as a function of body rank of interaction k. Here N = 6 sp states
andm is varied from 1 to 5. Here dotted line is just to guide the eye. Refer text for more details. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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role. If the dimension of k-particle space is high, it decreases the
transport efficiency across these networks. This suggests that even
if we have odd values of k or m and above half filling, PST may not
be achieved if the dimension of k-particle space is high. This proves
that these studies are suitable only for phenomena and devices at
nano-scale having low dimensions. We have also carried out sim-
ilar analysis for N = 7 and the results are shown in Fig. 2. Here also
we observe same trend as in the case of N = 6.

3.2. Transport efficiency for bosons

Now, we study the role of centrosymmetry in quantum trans-
port across bosonic networks. It is important to note that with
bosons, it is possible to have dense network, a situation not feasible
for fermions due to applicability of Pauli’s exclusion principle. First,
we consider a network generated by basis states obtained by dis-
tributing m = 9 bosons in N = 2 sp states. The total number of basis
states are d = 10 in this case and we represent the network Hamil-
tonian by a 2000 member (i) BEGOE(k), (ii) csBEGOE(k) and (iii)
BEGOE(k-cs). Open squares represent the average value of proba-
bility distributions of the best efficiencies P of each member of
ensemble, calculated as a function of interaction rank k. The verti-
cal bars represent the width of probability distributions of the best
efficiencies P about the mean of each member of ensemble. The
results are presented in Fig. 3. The red open squares correspond
to BEGOE(k) while the results for csBEGOE(k) are represented by
black open squares. For a two-level (N = 2), csBEGOE(k) and
BEGOE(k-cs) are identical by construction [30]. It is evident from
the results shown in Fig. 3 that the presence of centrosymmetry
enhances transport efficiencies and these results are in good agree-
ment with those obtained in [30].

Moving further, we consider a network generated by basis
states obtained by distributing m = 6 bosons in N = 3 sp states.
The dimensionality of the network is d = 28 in this case. Here, we
varied the number of bosons m from 1 to 6. The results are shown
in Fig. 4. It can be seen that the transport efficiency for BEGOE(k)
(in absence of centrosymmetry) is less than 80% for almost all

the cases. With BEGOE(k-cs), there is a marginal improvement
for all k > 1 as centrosymmetry structure is lost in m-particle space
although it is present in k-particle space. While on the other hand,
in presence of centrosymmetry, with csBEGOE(k), one can observe
that the efficiency is around 90% for k � 3. This clearly demon-
strates that the presence of centrosymmetry enhances the trans-
port efficiency. Note that for k=m, BEGOE(k-cs) and csBEGOE(k)
are identical and they are GOE with centrosymmetry. For csBE-
GOE(k), there is a PST for m = 3 and k � 3. It is interesting to note
that for k = m = 1, BEGOE(k-cs) gives PST for m = 1–6. The lack of
PST for N = 3 levels beyond m = 3 and k � 3 in comparison to

Fig. 2. Same as Fig. 1 but for network with N = 7 and m is varied from 1 to 6. Refer text for more details.

Fig 3. Mean of the probability distributions of the best efficiencies hPi (denoted by
open squares) and corresponding widths of the distributions (denoted by vertical
bars) for a 2000 member (i) BEGOE(k) (red squares) and (ii) csBEGOE(k) (black
squares) with N = 2 sp states and m = 9 as a function of body rank of interaction k.
Here dotted line is just to guide the eye. Note that, BEGOE(k-cs) and csBEGOE(k) are
identical for N = 2. Similar results are reported in [30]. Refer text for more details.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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N = 2 example can be attributed to a systematic appearance of dou-
blets in the spectrum for N = 2 [11]. These results show the impor-
tance of presence of centrosymmetry in optimal transport across
disordered (fermionic/bosonic) networks. The absence of which
will lead to inefficient quantum transport.

4. Conclusions

In this paper, we have studied the effect of centrosymmetry on
transport efficiency across disordered fermionic and bosonic net-
works modeled by k-body embedded Gaussian ensembles EGOE
(k) (for fermions) and BEGOE(k) (for bosons) respectively. We
found that the presence of centrosymmetry in m-particle space is
responsible for the enhancement of transport efficiency in a small
network and results are in good agreement with [30]. Further, we
also verified that the centrosymmetry structure is essentially
needed in both, k-particle as well as inm-particle space, to enhance
quantum efficiency. Following the results of present work, it is pos-
sible to design networks with good efficiency even in presence of
certain many-body random perturbations. For example, the effi-
ciency in nano-structure such as quantum wires, it is interesting
to check the case with filling factors close to one, where many-
body interactions lead to very good efficiencies. Another example
is of efficient single electron transport in a linear array of tunnel-
coupled quantum dots, which can further be used as an ideal quan-
tum channel in quantum computers [44] and efficient transmission
of qubits between the different quantum registers in a quantum
bus based on semiconductor self-assembled quantum dots [45].
Also, controlling strong interactions between ultracold atoms
trapped in optical lattices can serve in efficient quantum computa-
tion [46]. Finally, the results in our paper can be useful to under-
stand the good efficiency properties experimentally observed in
exciton transport in certain biomolecules such as the Fenna-
Matthews-Olson complex [18]. It will be interesting to study the
transfer of quantum states from one location to another which is
the base of Quantum Information Science, using Embedded Ensem-
bles with spin degree of freedom.
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