Content of Figures

Chapter	Title	Page no.
Figure 1.1	Plant growth promotion mechanisms by Plant Growth	4
	Promoting Microorganisms (PGPMs)	
Figure 1.2	Schematic representation of the different associations	5
	between diazotrophs and plant hosts	
Figure 1.3	Schematic representation of the organic acids that may be	6
	produced by PSM and used to solubilize inorganic forms of	
	phosphate	
Figure 1.4	Rhizosphere Engineering Permits Improvement of Plant	16
	and Soil Health	
Figure 1.5	Interactions of the global regulators CcpA and CodY with	22
	carbon overflow metabolism in Bacillus subtilis	
Figure 1.6	Relative distributions of intracellular fluxes in <i>B. subtilis</i>	25
	grown on glucose, a mixture of glucose plus malate and	
	malate	
Figure 1.7	Overview about the PEP-pyruvate-oxaloacetate node, the	28
	malate transport, and the MalKR two-component system in	
	Bacillus subtilis	
Figure 1.8	Schematic representation of the distinct cell types that	29
	differentiate in the communities of Bacillus subtilis	
Figure 1.9	Cartoon model of Gram-positive flagellar architectures	30
(A)		
Figure 1.9	B. subtilis fla/che operon structure and flagellar genetic	31
(B)	hierarchy	
Figure 1.10	Chromosomal organization of genes involved in matrix	33
	synthesis in <i>B. subtilis</i>	
Figure 1.11	The life cycle of a <i>Bacillus subtilis</i> biofilm	33

Figure 1.12	Model for cannibalistic behavior	36
Figure 1.13	The sporulation cycle of spore formation	37
Chapter 3	Effect of constitutive expression of Vitreoscilla	59
	hemoglobin on biofilm formation and sporulation in	
	Bacillus subtilis DK1042	
Figure 3.1	Schematic representation for cloning of promoterless <i>gfp</i> in pUC19	63
Figure 3.2	Schematic representation for cloning of P43-vgb operon	65
	upstream of <i>gfp</i> in pNRM1	
Figure 3.3	Schematic representation of construction of pNRM11	66
	integration vector	
Figure 3.4	Schematic representation for construction of integration	68
	vector with P43 repeats	
Figure 3.5	Schematic representation for construction of integration	69
	vector pNRM1113 and pNRM1114	
Figure 3.6	PCR amplification and restriction digestion confirmation of	71
	pNRM1	
Figure 3.7	PCR amplification and restriction digestion confirmation	72
	of pNRM2	
Figure 3.8	Restriction digestion Sall/EcoRI of pNRM11 and PCR	72
	amplification of P43- <i>lox71-Km^r-lox66</i>	
Figure 3.9	Restriction digestion of pNMR157	73
Figure 3.10	Confirmation of incorporation of <i>vgb-gfp</i> operon under	74
	different P43 promoter setup	
Figure 3.11	Screening of kanamycin resistant colonies on starch agar	75
	plate	
Figure 3.12	Time dependent analysis of GFP fluorescence	75
(A)		

Figure 3.12	GFP Fluorescence on Luria Bertani and M9 minimal	76
(B)	medium	
Figure 3.13	Characterization of biofilm formation in <i>B. subtilis</i>	77
(A)	DK1042 harbouring VHb through colony expansion	
Figure 3.13	Characterization of biofilm formation in <i>B. subtilis</i>	78
(B)	DK1042 harbouring VHb through relative quantification of	
	mRNA expression	
Figure 3.14	Effect of Vitreoscilla haemoglobin on pellicle and colony	79
	biofilm formation by B. subtilis DK1042. Colony	
	Morphology	
Figure 3.15	Growth curves of <i>B. subtilis</i> DK1042 WT and NRM1113	80
	in LB, LBGM and LB broth containing 6% NaCl at	
	different shaking conditions at 30 °C	
Figure 3.16	Effect of VHb on biofilm formation by <i>B. subtilis</i> DK1042	81
	in Msgg medium	
Figure 3.17	Sporulation efficiencies of <i>B. subtilis</i> DK1042 WT and	82
	NRM1113 on LB and LBGM agar (1.5%) medium at 72 h	
Figure 3.18	Production of brown pigment by VHb harbouring <i>B</i> .	84
	subtilis DK1042	
Chapter 4	Development of <i>Bacillus subtilis</i> DK1042 secreting	86
	oxalic acid and characterization of mineral phosphate	
	and potassium solubilization ability	
Figure 4.1	Schematic representation of cloning of <i>oah</i>	91
Figure 4.2	Cloning of P43-FpOAR upstream of oah in PNRM4	92
Figure 4.3	Schematic representation of construction of plasmid	93
	pNRM6	
Figure 4.4	Schematic representation of construction of integration	94
	vector pNRM11O	
	Colony DCD of a sh from E ask transforments	97
Figure 4.5	Colony PCR of <i>oah</i> from <i>E. coli</i> transformants.	71

Figure 4.7	Restriction digestion analysis of pNRM5	98
Figure 4.8	Restriction digestion analysis of pNRM6	98
Figure 4.9	PCR amplification of entire cassette <i>P43-lox71-Km^r-lox66-</i>	99
	(P43) ₃ -P43-vgb-gfp-P43-FpOAR-oah from pNRM11O	
	using <i>amyE</i> F and <i>amyE</i> R	
Figure 4.10	Screening of kanamycin resistant colonies on starch agar	99
	plate	
Figure 4.11	Chromatogram of oxalic acid standard (50mM)	101
Figure 4.12	Chromatogram of tris rock phosphate broth	101
Figure 4.13	Chromatogram of <i>E. coli</i> BL21DE3 WT culture	102
	supernatant	
Figure 4.14	Chromatogram of E. coli BL21DE3 (pUC18) (vector	102
	control) culture supernatant	
Figure 4.15	Chromatogram of <i>E. coli</i> Bl21DE3 culture supernatant	103
Figure 4.16	Example chromatogram provided in the brochure of	103
	Acclaim Organic Acid (OA) column	
Figure 4.17	Growth Curve of <i>B. subtilis</i> DK1042 and the integrants in	105
	M9 Minimal Medium at 200 RPM	
Figure 4.18	pH profile of <i>B. subtilis</i> DK1042 and the integrants in M9	105
	minimal medium at 200 rpm	
Figure 4.19	Chromatogram of oxalic acid standard (10mM)	106
Figure 4.20	Chromatogram of culture supernatant of <i>B. subtilis</i>	107
	DK1042 WT	
Figure 4.21	Chromatogram of culture supernatant of <i>B. subtilis</i>	107
	DK1042 NRM1110	
Figure 4.22	Oxalic acid detection and Quantification by HPLC	108

Figure 4.23	Mineral phosphate solubilization by <i>E. asburiae</i> PSI3	109
(A)	(EPSI), B. subtilis DK1042 and the integrants	
Figure 4.23	Mineral potassium solubilization by <i>E. asburiae</i> PSI3	109
(B)	(EPSI), B. subtilis DK1042 and the integrants	