# Chapter 5 TiO<sub>2</sub>-ZrO<sub>2</sub> Composites

## 5.1 TiO<sub>2</sub>-ZrO<sub>2</sub> Nanocomposites

Mixing of the oxides can produce new crystallographic phases with quite different properties than the original oxides [1]. The use of mixed oxides in many technological fields is an attractive strategy to produce materials with superior properties than the single components [2]. In particular, mixed oxides have been widely used in catalysis, because the surface characteristics of the individual oxides can be changed due to the formation of new sites in the interface between the components or by the incorporation of one oxide into the lattice of the other. It has been reported that incorporation of  $ZrO_2$  into  $TiO_2$  leads to decrease in particle size of  $TiO_2$  and increase in surface area due to the dissimilar nuclei and co-ordination geometry [3]. A mixture of  $ZrO_2$  and  $TiO_2$  is used as an electrode for dye-sensitized solar cell [4].

#### **5.2 Synthesis of Samples**

A series of Titania–Zirconia mixed oxides with various  $TiO_2$ -  $ZrO_2$  content (10, 30, 40, 60, 70 and 90 mol %) were prepared by the hydrothermal method. Titanium isopropoxide, Zirconium propoxide and isopropanol were used as starting chemicals. All chemicals were analytical grade and used as received. The synthesis was carried out as follows: Ti isopropoxide and Zr propoxide were diluted in isopropanol to obtain mixtures in a 1:9, 3:7, 4:6, 6:4, 7:3 and 9:1  $ZrO_2$ :TiO<sub>2</sub> molar ratio. Dilute HNO<sub>3</sub> was added drop wise to the alkoxide solution kept under vigorous stirring in an ice bath. After alkoxide hydrolysis the alcogel was obtained. The alcogel was transferred to a stainless steel autoclave. The temperature was raised to 240 °C and the sample was maintained under autogenic pressure for 24 h.

Then, the sample was oven-dried at 100  $^{\circ}$ C (2 h) and finally calcined at 450  $^{\circ}$ C for 4 hours under static air atmosphere. Mixed oxides in solid form were obtained.

## **5.3 Characterization of Samples**

The structural properties and composition of samples were analyzed by X-ray diffraction. The morphologies of the samples were analyzed with scanning electron microscope. The optical properties of the samples were investigated by UV-Visible spectroscopy.

#### **5.3.1 X-Ray Diffraction Analysis**

The XRD patterns were recorded on Bruker D8 Advance X-ray diffractometer in  $2\theta$  range of  $20^{0}$  to  $90^{0}$  at room temperature with a least count of  $0.05^{0}$ . The  $2\theta$  values are mentioned in degrees. The XRD patterns of samples are given in figures 1 to 6.

XRD pattern of Sample 1 (TiO<sub>2</sub>-ZrO<sub>2</sub> composite in the ratio 9:1) shows broad and intense peaks which indicate formation of material in nano crystallite size with good amount of crystallinity. The presence of both oxides was confirmed from the comparison of d values with JCPDS data base (Anatase TiO<sub>2</sub>: 21-1272, Rutile TiO<sub>2</sub>: 21-1276, Monoclinic ZrO<sub>2</sub>: 83-0944, Tetragonal ZrO<sub>2</sub>: 79-1770). The experimental d values of all the peaks match very closely with JCPDS data. Eight peaks correspond to TiO<sub>2</sub> where as two peaks of ZrO<sub>2</sub> were observed in the pattern. Peaks at 20 value of 25.35<sup>0</sup>, 37.4<sup>0</sup>, 47.9<sup>0</sup>, 62.5<sup>0</sup> and 75.1<sup>0</sup> correspond to Anatase phase of TiO<sub>2</sub> while those at 27.3<sup>0</sup>, 54.3<sup>0</sup> and 70<sup>0</sup> correspond to Rutile phase of TiO<sub>2</sub>. Peak at 20 value of 82.15<sup>0</sup> and 30.4<sup>0</sup> corresponds to Monoclinic and Tetragonal phase of ZrO<sub>2</sub> respectively. The mass fraction of Anatase phase is 50.39%. Sample 2 (TiO<sub>2</sub>-ZrO<sub>2</sub> composite in the ratio of 7:3) shows two phases each of TiO<sub>2</sub> (Anatase and Rutile) and ZrO<sub>2</sub> (Monoclinic and Tetragonal). The peak at 20 value of  $25.15^{\circ}$  shows highest intensity and it is again the characteristic peak of crystal plane (101) of Anatase TiO<sub>2</sub>. There are nine peaks corresponding to TiO<sub>2</sub> and five peaks corresponding to ZrO<sub>2</sub>. Peaks at 20 value of  $25.15^{\circ}$ ,  $37.4^{\circ}$ ,  $47.9^{\circ}$ ,  $53.75^{\circ}$ ,  $62.5^{\circ}$ , and  $82.35^{\circ}$  represent Anatase phase of TiO<sub>2</sub> where as peaks at  $27.3^{\circ}$ ,  $35.75^{\circ}$  and  $70^{\circ}$  correspond to Rutile phase of TiO<sub>2</sub>. Peaks at  $41.15^{\circ}$ ,  $50.65^{\circ}$  and  $54.8^{\circ}$  represents Monoclinc phase of ZrO<sub>2</sub>. Peaks corresponding to Tetragonal phase of ZrO<sub>2</sub> were observed at  $30.4^{\circ}$  and  $74.75^{\circ}$ . The structural parameters of sample are listed in Table 3. The Anatase content is 62.04%.

XRD pattern of sample 3 (TiO<sub>2</sub>-ZrO<sub>2</sub> composite in the ratio of 6:4) has some sharp peaks with a hump in the initial range displaying some degree of amorphicity. The d values of all the peaks are closely matching with JCPDS data. TiO<sub>2</sub> is present in Anatase and Rutile phases where as only one phase i.e. monoclinic phase of  $ZrO_2$ is present in the material. The peak at 20 value of 25.30<sup>0</sup> is the characteristic peak of crystal plane (101) of Anatase TiO<sub>2</sub> and shows highest intensity. Six peaks corresponding to TiO<sub>2</sub> where as two peaks of ZrO<sub>2</sub> were observed in the pattern. Peaks at 20 value of 25.30<sup>0</sup>, 37.4<sup>0</sup>, 47.9<sup>0</sup>, 53.75<sup>0</sup>, and 62.5<sup>0</sup> correspond to Anatase TiO<sub>2</sub> where as only one peak of Rutile TiO<sub>2</sub> has been observed at 27.3<sup>0</sup>. Peaks at 28.75<sup>0</sup> and 55.75<sup>0</sup> represent Monoclinic phase of ZrO<sub>2</sub>. The intensities of peaks are relatively lower. The structural parameters of sample calculated from XRD pattern are given in Table 2. The Anatase mass fraction is 48.71%.

There are fewer peaks with comparatively low intensities in XRD pattern of sample 4 ( $TiO_2$ -ZrO\_2 composite in the ratio of 4:6). This sample also exhibits some amorphicity. All other features are almost same as the other samples. The peak of

highest intensity at  $25.25^{\circ}$  corresponds to the characteristic peak of crystal plane (101) of Anatase TiO<sub>2</sub>. There are seven peaks of TiO<sub>2</sub> and five peaks of ZrO<sub>2</sub>. Peaks at 20 value of  $25.25^{\circ}$ ,  $37.4^{\circ}$ ,  $47.9^{\circ}$ ,  $53.75^{\circ}$ ,  $54.9^{\circ}$  and  $62.5^{\circ}$  correspond to Anatase phase of TiO<sub>2</sub> where as only one peak corresponding to Rutile phase of TiO<sub>2</sub> is observed at  $27.3^{\circ}$ . Peaks at  $28.35^{\circ}$ ,  $70.2^{\circ}$  and  $74.8^{\circ}$  represent Monoclinc phase of ZrO<sub>2</sub>. Peaks corresponding to Tetragonal phase of ZrO<sub>2</sub> were observed at  $68.75^{\circ}$  and  $82.55^{\circ}$ . In this sample too, the intensities of peaks are relatively lower. The Anatase content is 52.88%. The structural parameters of sample are given in Table 4.

XRD pattern of sample 5 (TiO<sub>2</sub>-ZrO<sub>2</sub> composite in the ratio of 3:7) again exhibits low crystallinity of sample with relatively low peak intensities. The d values of all the peaks closely match with JCPDS data. TiO<sub>2</sub> is obtained in Anatase and Rutile phase while ZrO<sub>2</sub> is only in Tetragonal phase. Two peaks corresponding to Antase phase of TiO<sub>2</sub> were observed at 25.3<sup>°</sup> and 47.9<sup>°</sup>. Peak at 27.3<sup>°</sup> and 54.3<sup>°</sup> correspond to Rutile phase of TiO<sub>2</sub>. Tetragonal phase of ZrO<sub>2</sub> was observed at 30.4<sup>°</sup>. The Anatase content is 41.99%. The structural parameters are listed in Table 5.

Broad peaks with good crystallinity are observed in Sample 6 (TiO<sub>2</sub>-ZrO<sub>2</sub> composite in the ratio of 1:9). TiO<sub>2</sub> is present in only Rutile phase where as  $ZrO_2$  is present in Monoclinic and Tetragonal phases. Most of the peaks correspond to Monoclinic  $ZrO_2$ . The peak at 20 value of 24.50<sup>0</sup> has the highest intensity and is characteristic peak of crystalline plane (101) of Tetragonal  $ZrO_2$ . The structural parameters are listed in Table 6.



Figure 1: XRD pattern of sample 9:1 TiO<sub>2</sub>-ZrO<sub>2</sub> composite

| Experimental d<br>values | JCPDS d<br>values | Crystallite size<br>(nm) | Strain (%) | Anatase<br>content<br>(%) |
|--------------------------|-------------------|--------------------------|------------|---------------------------|
| 3.5092                   | 3.5200            | 5.26                     | 0.047      |                           |
| 3.2746                   | 3.2400            | 5.11                     | 0.045      |                           |
| 2.9087                   | 2.9529            | 8.0                      | 0.086      |                           |
| 2.3893                   | 2.3780            | 24.69                    | 0.026      | 50.20                     |
| 1.6831                   | 1.6874            | 3.59                     | 0.130      | 50.39                     |
| 1.4800                   | 1.4804            | 6.89                     | 0.054      |                           |
| 1.3432                   | 1.3465            | 4.05                     | 0.081      |                           |
| 1.2634                   | 1.2649            | 4.8                      | 0.059      |                           |
| 1.1707                   | 1.1703            | 3.70                     | 0.071      |                           |
|                          |                   |                          |            |                           |

Table 1: Structural parameters of 9:1 TiO<sub>2</sub>-ZrO<sub>2</sub> composite



Figure 2: XRD pattern of sample 7:3 TiO<sub>2</sub>-ZrO<sub>2</sub> composite

Table 2: Structural parameters of 7:3 TiO<sub>2</sub>-ZrO<sub>2</sub> composite

| Experimental d | JCPDS d | Crystallite size | Strain | Anatase     |
|----------------|---------|------------------|--------|-------------|
| values         | values  | ( <b>nm</b> )    | (%)    | content (%) |
| 3.5366         | 3.5200  | 18.17            | 0.038  |             |
| 3.2805         | 3.2400  | 24.23            | 0.026  |             |
| 2.9227         | 2.9529  | 4.88             | 0.117  |             |
| 2.5086         | 2.5380  | 17.99            | 0.027  |             |
| 2.4016         | 2.4310  | 17.37            | 0.027  | 62.04       |
| 1.8968         | 1.8920  | 16.74            | 0.022  |             |
| 1.7107         | 1.6999  | 16.25            | 0.020  |             |
| 1.6731         | 1.6752  | 17.33            | 0.018  |             |
| 1. 4871        | 1.4808  | 4.52             | 0.064  |             |



Figure 3: XRD pattern of sample 6:4 TiO<sub>2</sub>-ZrO<sub>2</sub> composite

| Experimental d<br>values | JCPDS d<br>values | Crystallite size<br>(nm) | Strain (%) | Anatase<br>content<br>(%) |
|--------------------------|-------------------|--------------------------|------------|---------------------------|
| 3.51607                  | 3. 5200           | 19.38                    | 0.035      |                           |
| 3.26872                  | 3.2470            | 24.86                    | 0.025      |                           |
| 3.08052                  | 3. 1598           |                          |            |                           |
| 2.38322                  | 2.3780            |                          |            | 48.71                     |
| 1.89497                  | 1.8920            | 17.75                    | 0.021      |                           |
| 1.7019                   | 1.6999            | 10.89                    | 0.030      |                           |
| 1.66478                  | 1.6665            | 14.15                    | 0.023      |                           |
| 1.48427                  | 1.4808            |                          |            |                           |

Table 3: Structural parameters of 6:4 TiO<sub>2</sub>-ZrO<sub>2</sub> composite



Figure 4: XRD pattern of sample 4:6 TiO<sub>2</sub>-ZrO<sub>2</sub> composite

| Table 4: Structural | parameters of 4:6 | TiO <sub>2</sub> -ZrO <sub>2</sub> composite |
|---------------------|-------------------|----------------------------------------------|
|                     | <b>T</b>          |                                              |

| JCPDS d<br>values | Crystallite size<br>(nm)                                                                             | Strain (%)                                                                                                                      | Anatase<br>content<br>(%)                                                                                                                                                                     |
|-------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. 5200           | 29.99                                                                                                | 0.023                                                                                                                           |                                                                                                                                                                                               |
| 3.2470            | 18.18                                                                                                | 0.035                                                                                                                           |                                                                                                                                                                                               |
| 3. 1598           |                                                                                                      |                                                                                                                                 |                                                                                                                                                                                               |
| 2.3780            | 23.48                                                                                                | 0.019                                                                                                                           | 57 88                                                                                                                                                                                         |
| 1.8920            | 23.39                                                                                                | 0.015                                                                                                                           | 32.00                                                                                                                                                                                         |
| 1.7968            | 11.00                                                                                                | 0.030                                                                                                                           |                                                                                                                                                                                               |
| 1.6752            | 18.77                                                                                                | 0.017                                                                                                                           |                                                                                                                                                                                               |
| 1.4808            | 14.30                                                                                                | 0.020                                                                                                                           |                                                                                                                                                                                               |
|                   | JCPDS d<br>values<br>3. 5200<br>3. 2470<br>3. 1598<br>2.3780<br>1.8920<br>1.7968<br>1.6752<br>1.4808 | JCPDS d<br>valuesCrystallite size<br>(nm)3. 520029.993. 247018.183. 15982.378023.481.892023.391.796811.001.675218.771.480814.30 | JCPDS d<br>valuesCrystallite size<br>(nm)Strain (%)3. 520029.990.0233. 520029.990.0233. 247018.180.0353. 15982.378023.480.0191.892023.390.0151.796811.000.0301.675218.770.0171.480814.300.020 |



Figure 5: XRD pattern of sample 3:7 TiO<sub>2</sub>-ZrO<sub>2</sub> composite

|  | Table 5: Structural | parameters of 3:7 | TiO <sub>2</sub> -ZrO <sub>2</sub> composit | e |
|--|---------------------|-------------------|---------------------------------------------|---|
|--|---------------------|-------------------|---------------------------------------------|---|

| Experimental d<br>values | JCPDS d<br>values | Crystallite size<br>(nm) | Strain (%) | Anatase<br>content<br>(%) |
|--------------------------|-------------------|--------------------------|------------|---------------------------|
| 3.5160                   | 3.5200            | 17.74                    | 0.038      |                           |
| 3.2805                   | 3.2470            | 21.23                    | 0.030      |                           |
| 2.9134                   | 2.9529            |                          |            | 41.99                     |
| 1.8949                   | 1.8920            |                          |            |                           |
| 1.6816                   | 1.6874            |                          |            |                           |



Figure 6: XRD pattern of sample 1:9 TiO<sub>2</sub>-ZrO<sub>2</sub> composite

| Table 6: Structural | parameters of 1:9 | TiO <sub>2</sub> -ZrO <sub>2</sub> composite |
|---------------------|-------------------|----------------------------------------------|
|                     | r                 |                                              |

| Experimental d<br>values | JCPDS d<br>values | Crystallite size<br>(nm) | Strain (%) | Anatase<br>content<br>(%) |
|--------------------------|-------------------|--------------------------|------------|---------------------------|
| 3.6290                   | 3.6323            | 6.78                     | 0.105      |                           |
| 3.2628                   | 3.2400            | 8.53                     | 0.067      |                           |
| 3.1443                   | 3.1598            | 4.09                     | 0.121      |                           |
| 1.8001                   | 2.9529            | 5.44                     | 0.065      | -                         |
| 1.6859                   | 1.6874            | 8.30                     | 0.036      |                           |
| 1.6469                   | 1.6457            | 9.03                     | 0.031      |                           |
| 1.5284                   | 1.5381            | 8.12                     | 0.030      |                           |
|                          |                   |                          |            |                           |

| Sample                                        | Crystallite | Anatase  | Strain | Lat   | Lattice Parameters |      | ers  |
|-----------------------------------------------|-------------|----------|--------|-------|--------------------|------|------|
|                                               | Size (nm)   | Content% |        | Anata | ase                | Ru   | tile |
|                                               |             |          |        | a     | С                  | a    | c    |
| 9:1 TiO <sub>2</sub> -ZrO <sub>2</sub>        | 7.36        | 57.94    | 0.067  | 3.78  | 9.56               | 4.63 | 2.89 |
| 7:3 TiO <sub>2</sub> -ZrO <sub>2</sub>        | 15.28       | 62.04    | 0.040  | 3.78  | 9.53               | 4.62 | -    |
| 6:4 TiO <sub>2</sub> -ZrO <sub>2</sub>        | 17.41       | 48.71    | 0.027  | 3.79  | 9.83               | 4.64 | 2.98 |
| 4:6 TiO <sub>2</sub> -ZrO <sub>2</sub>        | 19.88       | 52.88    | 0.023  | 3.78  | 9.54               | 4.62 | -    |
| <b>3:7</b> TiO <sub>2</sub> -ZrO <sub>2</sub> | 19.4        | 41.99    | 0.034  | 3.78  | 9.57               | 4.64 | 2.87 |
| <b>1:9</b> TiO <sub>2</sub> -ZrO <sub>2</sub> | 6.97        | Rutile   | 0.065  | -     | -                  | 4.61 | 2.92 |
|                                               |             |          |        |       |                    |      |      |

| Table 7: Structural pair | ameters of TiO <sub>2</sub> -ZrO <sub>2</sub> con | nposite |
|--------------------------|---------------------------------------------------|---------|
|--------------------------|---------------------------------------------------|---------|

Some of the general features of the patterns are mentioned below.

The highest peak in four of the six samples with  $TiO_2$  content up to 40% has been found to be for the (101) plane of Anatase phase. The Anatase phase content in all these samples is substantial. This is significant as the Anatase phase gives better results for DSSC. The results are supported by other studies [5].

A hump like feature around  $2\theta$  value of  $30.5^{0}$  remains common in all samples with more than 30% ZrO<sub>2</sub> content suggesting some amorphicity in the samples. However there is a Tetragonal phase (101) of ZrO<sub>2</sub> around that which becomes most prominent in the sample with 90% ZrO<sub>2</sub>.

Other peaks including the one corresponding to Anatase phase (200) of  $TiO_2$ is also seen in all samples with high content of  $TiO_2$ , which results into a higher content of Anatase phase. The peak at 20 value of  $47.95^{\circ}$  is the characteristic peak of Anatase phase of TiO<sub>2</sub> but as the ZrO<sub>2</sub> concentration reaches to 90% this peak vanishes and a new peak at 20 value of  $50.65^{\circ}$  which represents crystalline plane (110) of Monoclinic phase of ZrO<sub>2</sub> appears. This is clearly visible in XRD pattern of 1:9 TiO<sub>2</sub>-ZrO<sub>2</sub> composite.

A broad peak at 2 $\theta$  value of 54.5<sup>0</sup> has been observed in XRD pattern of only 9:1 TiO<sub>2</sub>-ZrO<sub>2</sub> composite. This peak corresponds to crystalline plane (211) of Rutile phase of TiO<sub>2</sub>.

Few more peaks corresponding to monoclinic phase of  $ZrO_2$  have been observed at 2 $\theta$  values of 35.50<sup>0</sup>, 50.65<sup>0</sup>, 55.75<sup>0</sup> and 60.5<sup>0</sup> in XRD pattern of 1:9% TiO<sub>2</sub>-ZrO<sub>2</sub> composite.

The features are generally broad, which suggests the formation of material in nanocrystalline form. The calculation of crystallite size using Scherrer formula gives the crystallite size between 7 to 20 nm.

The peaks correspond to the various known phases of  $TiO_2$  as well as  $ZrO_2$ and match with the standard JCPDS values. Hence the occurrence of the individual oxides remains in their pure form in the samples. No other significant peaks are observed.

Table 7 shows different structural parameters of  $TiO_2$ -ZrO<sub>2</sub> composites derived from XRD results. The average crystallite size of all the samples lies between 6.97 nm and 19.88 nm. The smallest crystallite size has been observed for the samples 1 and 7. The highest lattice strain has been also observed for the same samples. This might be due to the smaller crystallite size [6, 7]. For higher content of TiO<sub>2</sub> and ZrO<sub>2</sub> the crystallite size increases but is restricted below 20 nm. The Anatase mass fraction varies as the concentration of  $ZrO_2$  varies. The highest Anatase mass fraction of 62.04% has been observed for 7:3  $TiO_2$ - $ZrO_2$  composite. Addition of  $ZrO_2$  does not adversely affect formation of Anatase phase but as  $ZrO_2$  concentration increases from 30 to 90 the Anatase content decreases and reaches to 35.91%, which looks logical.

The lattice parameters have been calculated only for the Anatase and Rutile phases as they are the significant parameters from the utility point of view. The Anatase phase, as stated earlier is important for the use of  $TiO_2$  as the electrode material for DSSC. The calculation has been done only for the available planes of phases in the particular samples. The values of these parameters have been by and large found to be uniform, which suggests consistency in the formation of these phases.

Although most of the studies conducted on  $TiO_2$ -ZrO<sub>2</sub> for DSSC electrode have a lower content of ZrO<sub>2</sub>, this study attempts to investigate higher content of ZrO<sub>2</sub> (30%) to study the possible role of ZrO<sub>2</sub> in the mixed oxide as the electrode. The sample with 30% ZrO<sub>2</sub> also shoes a higher Anatase content, which is another reason why TiO<sub>2</sub>-ZrO<sub>2</sub> sample in the ratio of 7:3 was considered for further study as an electrode.

# 5.3.2 UV-Visible Spectroscopy

The optical properties of prepared samples were investigated by UV-Visible absorption spectra. The absorption spectra were recorded on Thermo Fisher Scientific make Evolution 600 Spectrophotometer in the wavelength range of 200-900 nm. The optical bandgap was evaluated by Tauc's plot. The absorption spectra and relative Tauc's plot are shown in figure 7 to figure 12.

The different optical parameters calculated from UV-Visible absorption spectra are given in Table 8.



Figure 7: Absorption spectrum and Tauc's plot for 9:1 TiO<sub>2</sub>-ZrO<sub>2</sub> composite



Figure 8: Absorption spectrum and Tauc's plot for 7:3 TiO<sub>2</sub>-ZrO<sub>2</sub> composite



Figure 9: Absorption spectrum and Tauc's plot for 6:4 TiO<sub>2</sub>-ZrO<sub>2</sub> composite







Figure 11: Absorption spectrum and Tauc's plot for 3:7 TiO<sub>2</sub>-ZrO<sub>2</sub> composite







Figure 13: Energy level diagram for TiO<sub>2</sub>-ZrO<sub>2</sub>



Figure 14: Variation of absorption coefficient with wavelength



Figure 15: Variation of absorption coefficient with wavelength

| Sample                                        | Peak          | Bandgap       | <b>Refractive Index</b> |
|-----------------------------------------------|---------------|---------------|-------------------------|
|                                               | Absorption    | ( <b>eV</b> ) |                         |
|                                               | ( <b>nm</b> ) |               |                         |
| <b>9:1</b> TiO <sub>2</sub> -ZrO <sub>2</sub> | 337           | 2.13          | 2.63                    |
| 7:3 TiO <sub>2</sub> -ZrO <sub>2</sub>        | 286           | 2.33          | 2.56                    |
| 6:4 TiO <sub>2</sub> -ZrO <sub>2</sub>        | 328           | 2.15          | 2.62                    |
| <b>4:6 TiO<sub>2</sub>-ZrO<sub>2</sub></b>    | 339           | 1.62          | 2.87                    |
| <b>3:7 TiO<sub>2</sub>-ZrO<sub>2</sub></b>    | 324           | 2.16          | 2.62                    |
| 1:9 TiO <sub>2</sub> -ZrO <sub>2</sub>        | 326           | 3.07          | 2.34                    |

Table 8: Different optical parameters of TiO<sub>2</sub>-ZrO<sub>2</sub> samples

The following observations can be made from the results.

The peak absorbance of all the samples is between 320 to 340 nm except sample 2 with 70%  $TiO_2$  and 30%  $ZrO_2$  whose peak absorption is at lower wavelength. Thus, this sample can absorb at lower ultraviolet wavelengths.

The absorption coefficient of the samples, which indicates the amount of radiation absorbed in the sample, is given in Figure 14. It shows that the sample 2 again has a higher value of the co efficient in the entire visible range as well. This continues upto near infrared.

Figure 15 shows the variation of extinction coefficient with wavelength. The curves for extinction coefficient which signifies the combination of energy absorbed and energy scattered also shows the same trend.

The refractive index of the samples also varies in a small range except the sample dominated by  $ZrO_2$  i.e. the last sample. Hence the density and transparency of the samples are almost same.

The bandgap of the samples were calculated using Tauc's plot. The sample with 7:3 ratio of  $TiO_2$ -ZrO<sub>2</sub> has a relatively high bandgap of 2.33 eV. Sample 4 shows the lowest bandgap. However the sample is not purely crystalline. The bandgap of sample with 90% ZrO<sub>2</sub> has been found to be 3.07 eV. For the other three samples, the bandgap is almost same.

The bandgap of pure  $TiO_2$  is 3.2 eV while that of pure  $ZrO_2$  is 4.6 eV. Their mixture might result into a bandgap picture given in the figure 20.

The modification in the bandgap may be attributed to the sub-bandgap absorptions **[8, 9]**. These sub band gap absorption may arise from surface states of

the  $TiO_2$ -ZrO<sub>2</sub> material. These surface states are surface localized electronic states within the material bandgap, involving complex species such as dangling bonds, defects and atoms adsorbed on the surface [10, 11].

# **5.4 Conclusion**

Based on the structural properties of the sample obtained from the XRD results and the optical properties of the samples from UV-Visible analysis, sample 2 with 70% TiO<sub>2</sub> and 30%  $ZrO_2$  has been found suitable as the mixed oxide electrode material for further studies.

## References

[1] N.I.K uznetsova, L.I.K uznetsova, L.G.Detushe va, V.A. Likholobov, G.P. Pez, and H.Cheng, J. Mol. Catal. A, 2000, 161, 1.

[2] M.Caldararu, M.F. Thomas, J.Bland, and D.Spranceana, Appl. Catal. A, 2001 209, 383.

[3] X. Fu, L.A. Clark, Q. Yang, M.A. Anderson, Environ. Sci. Technol, 1996, 30, 647–653.

[4] Athapol Kitiyanan, Supachai Ngamsinlapasathian, Soropong Pavasupree, Susumu Yoshikawa, Journal of Solid State Chemistry, 2005, 178, 1044–1048

[5] Htet Htet Nwe, Yin Maung Maung, Than Than Win and Ko Ko Kyaw Soe, Journal of Science (JOS), 2012, 3, 197.

[6] Biswajit Choudhury and Amarjyoti Choudhury, International Nano Letters 2013,3, 1.

[7] M. E. Manriquez, M. Picquart, X. Bokhimi, T. Lopez, P. Quintana, and J. M. Coronado, J. Nanosci. Nanotechnol, 2008, 8, 1.

[8] W. Tong-Shun, W. Kai-Xue, Z. Lu-Yi, L. Xin-Hao, W. Ping, W. De-Jun, and Jie-Sheng Chen J. Phys. Chem. C, 2009, 113, 9114–9120

[9] X.Bokhimi, A.Morales, O.No varo, M.Portilla, T.Lopez, F.Tzompantzi, and R.Gomez, J. Solid State Chem. 1998, 135, 28.

[10] L. Kronik, Y. Shapira, Surf. Interface Anal, 2001, 31, 954–965.

[11] L. Kronik, Y. Shapira, Surf. Sci. Rep, 1999, 37, 1–206.