List of Figures

1.1	(a) Recording geometry for Gabor holograms (on-axis geometry). (b)	
	Hologram resulting from superposition of scattered and unscattered	
	wavefronts at the detector plane (object was a random distribution of	
	transparent microspheres). \ldots	3
1.2	Image retrieval from Gabor (on-axis) holograms	3
1.3	(a) Recording of off-axis holograms (b) Hologram resulting from super-	
	position of object and reference wavefronts (object was a distribution	
	of transparent microspheres)	4
1.4	Image reconstruction from off-axis holograms	5
1.5	Gabor DHIM using a magnifying lens. The detector plane is situated	
	near the image plane of the magnifying lens	9
1.6	On-axis DHIM with a separate reference beam. Here also the detector	
	plane is situated near the image plane of the magnifying lens. $\ . \ .$.	10
1.7	Off-axis two-beam DHIM. Detector plane is situated near the image	
	plane of the magnifying lens making the phase retrieval possible by the	
	use of a filtered Fourier transform	11
1.8	Common path Off-axis two-beam DHIM. A separate reference wave is	
	created by spatial filtering of one of the duplicated object wavefronts.	13
1.9	Common path off-axis self-referencing DHIM. Portion of the object	
	wavefront un-modulated by the object information act as the reference	
	wave field and the modulated portion act as the object wave field.	
	Angular separation between them is introduced by the beam duplicator.	16

2.1	Formation of hologram due to superposition of the object and the ref-	
	erence wavefronts at the detector plane. Carrier fringes are modulated	
	in the region where the object exists	20
2.2	Digital hologram reconstruction. Reference wave gets scattered from	
	the structures of the hologram. It is numerically propagated to the	
	position where the object existed (virtual image)	22
2.3	Position of the object (magnified image) and the hologram (detector)	
	plane in DHIM. The object plane (magnified image plane) is situated	
	either at the detector or very near to it	23
2.4	Scattered wavefront as a collection of plane waves travelling in differ-	
	ent directions (angle). The scattering angle is decided by the spatial	
	frequency of the object (smaller objects, higher spatial frequencies)	
	scatter at higher angles. An object with sinusoidal intensity variation	
	(like a hologram), will give rise to only three scattered components	
	(only one frequency component). \ldots \ldots \ldots \ldots \ldots \ldots	24
2.5	Numerical reconstruction of digital holograms using ASP approach.	
	Reference wave illuminating the hologram generates the angular spec-	
	trum at the hologram plane (z=0), which is filtered (to obtain angular	
	spectrum of object wavefront at the hologram plane) and then propa-	
	gated to the image plane using free space propagation function. $\ . \ .$	25
2.6	(a) Hologram illuminated by the reference wavefront. (b) Power spec-	
	trum of the hologram obtained after Fourier transform, where three	
	components (un-diffracted reference, real object and virtual object)	
	can be seen. (c) Filtered spectrum, which contains only the spatial	
	frequencies corresponding to object alone. This is then propagated to	
	the image plane	26
2.7	Retrieved intensity profile at the image plane for the hologram shown	
	in Fig.2.6a	28
2.8	(a) Object hologram of the 20 $\mu \mathrm{m}$ diameter polystyrene sphere im-	
	mersed in oil. (b) Background hologram of the background (oil). Inset	
	in both the images shows the same area in the field of view. \ldots .	29

2.9	(a) Object phase distribution (object is a $20\mu m$ diameter polystyrene	
	sphere immersed in oil). (b) Background (oil) phase distribution. (c)	
	Phase difference.	30
2.10	Continuous phase distribution for the wrapped phase distribution shown	
	in Fig.2.9c.	30
2.11	Quantitative phase reconstruction from digital holograms. (a) Contin-	
	uous phase difference obtained in the case of $20\mu m$ diameter polystyrene	
	micro-spheres. This is the region of interest shown by the rectangu-	
	lar area in Fig.2.10. (b) Thickness distribution of the micro-sphere	
	obtained by plugging in the refractive index values in Eqn. $(2.5.3)$. (c)	
	Cross sectional thickness profile of the micro-sphere along the solid line	
	shown in Fig.2.11a.	32
3.1	(a) Off-axis two-beam DHIM using Mach-Zehnder interferometer ge-	
	ometry. Object beam trans-illuminates the object. Two microscope	
	objective (MO) lenses are used in the setup. Sample is mounted on	
	a translation stage for focusing. (b) Wavefront passing through the	
	object gets modulated because of the spatially varying optical path	
	length distribution of the cells. (c) Object and reference beams are	
	combined by a beam splitter and allowed to interfere at the detector	
	plane at an angle creating the off-axis geometry. Image plane of the	
	magnifying lens is situated either at the detector plane or very near to	
	it	36
3.2	Photograph of the table-top arrangement of MZ-DHIM \ldots	37
3.3	(a) Object hologram recorded with of 8-form diatom test slide (Surirella	
	Gemma). (b) Background hologram for the same	39
3.4	(a) Retrieved object intensity distribution at the image plane. (b)	
	Phase difference (quantitative phase image of the object) obtained after	
	phase unwrapping. (c) Optical thickness distribution of the object.	40

3.5	Spatial phase stability. (a) Phase difference profile without any object	
	in the field of view. (b) Three dimensional rendering of the phase	
	variation in the rectangular area shown in Fig.3.5a. (c) Histogram of	
	the phase profile inside the rectangular area	41
3.6	Temporal phase stability. (a) Phase fluctuation profile for an area	
	of 300×300 pixels. (b) temporal evolution of phase along the different	
	spatial points shown in Fig.3.6a. (c) Histogram of the phase fluctuation $\$	
	profile for the analyzed area	43
3.7	Onion layers. Image on the right shows the region inside the rectangle	
	on the left. Inner and outer surfaces of a layer are marked	44
3.8	(a) Recorded digital hologram of onion cell. (b) Interference fringes	
	inside the area of interest in Fig.3.7a	45
3.9	Reconstructed intensity patterns at different axial plane. (a) $-28\mu\mathrm{m}$	
	outside focus plane, (b) at the focus plane, (c) 15μ m inside focus plane	
	and (d) 27.5 μ m outside focus plane [100]	46
3.10	Reconstructed phase profile at the best focus plane for onion cells just	
	after it is mounted on the glass slide. (a) Wrapped phase distribution,	
	(b) Optical thickness distribution of the cell determined from the un-	
	wrapped phase. (c) Phase profile image after 24 hours. (d) Thickness	
	profile after 24 hours [100]. \ldots \ldots \ldots \ldots \ldots	46
3.11	Optical thickness profile of onion skin cells. (a) Obtained optical thick-	
	ness thickness profile for fresh cell. (b) Optical thickness profile after	
	24 hours [100]	47
3.12	Variation in maximum optical thickness as a function of time	47

3.13	(a) Phase contrast image (unwrapped) of onion cells before introduc-	
	tion of water. Phase profile for the cell inside the rectangular area	
	is used to determine effect of hydrostatic pressure on the cells. (b)	
	Time evolution of phase inside region of interest (shown in Fig.3.13a).	
	(c) Phase profile at different time instances (along the solid black line	
	shown in first figure of Fig.3.13b), showing that there is only minor	
	change in thickness of the cell even after 10 minutes of introduction of	
	water	48
3.14	Intensity profile of the cells at different time instances as the sugar	
	solution was spreading into the cells. Phase profile of the cell inside	
	the green rectangle in the first figure is used to find the effect of osmotic	
	pressure on the cells. Flow front of sugar solution is shown as white	
	dashed line	50
3.15	Quantitative phase profile of the cells as a function of time. As the	
	sugar solution comes into contact with the cell, its thickness drastically	
	decreases.	51
3.16	Cross-sectional phase profiles at different time instances (along the	
	solid black line shown in first phase image in Fig.3.15), showing that	
	the cell almost flattens after it is completely immersed in sugar solution	
	due to osmotic pressure.	51
3.17	Quantitative phase contrast images of un-germinated onion cells, (a)	
	outer surface and (c) inner surface. Thickness profile distribution of	
	these cells are shown in (b) for outer surface and (d) for inner surface.	
	Phase profile along the solid red line in (a) and (c) are compared to	
	estimate the effect of germination on cells	52
3.18	Quantitative phase contrast images in the case of germinated onion	
	cells, (a) cells of outer surface and (c) cells on the inner surface. (b)	
	Thickness profile of cells in outer surface and (d) Thickness profile of	
	cells on inner surface. Phase profile along the solid red line in (a) and	
	(c) are compared to estimate the effect of germination on cells	53

3.19	Cross-sectional of thickness profile. (a) Before germination. (b) After	
	germination	54
3.20	(a) hologram of onion cells showing the region of nucleus. (b) Region	
	inside the blue rectangle showing the modulation of the interference	
	fringes in the region of the nucleus as well as at the cell walls. \ldots	55
3.21	(a) Quantitative phase image (unwrapped) of the onion cell, with the	
	cell nucleus visible. (b) Optical thickness profile of the cell nucleus ob-	
	tained after global thresholding of the thickness profile by the average	
	of the phase value just around the cell nucleus (shaded ring shaped	
	region in Fig.3.21a). (c) Three dimensional rendering of the optical	
	thickness profile of the cell nucleus. (d) Cross sectional thickness pro-	
	file along the line in Fig.3.21b	56
3.22	(a) Quantitative phase image (unwrapped) of the wall of onion cells	
	from the outer surface of a layer and (c) 3D profile of the cell wall.	
	(b) Phase image of the wall of onion cells from the inner surface of a	
	layer and (d) three dimensional rendering of the phase profile of the	
	wall. (e) and (f) represents the cross sectional phase profile of the cells	
	from the outer and inner surfaces respectively, along the lines shown	
	in Fig.3.22a and Fig.3.22b	57
4.1	Structure of human red blood cell	61
4.2	Recoded holograms in the case of red blood cells. (a) Object hologram	
	(red blood cells). (b) Background holograms (blood plasma)	62
4.3	Reconstructed intensity profile of red blood cells	62
4.4	Reconstructed profile of red blood cells. (a) Wrapped phase distribu-	
	tion. (b) Optical thickness distribution obtained after phase unwrapping.	63
4.5	Thickness profile of Red blood cells. (a) Computed optical thickness	
	distribution of red blood cells using the reconstructed phase profile in	
	Fig.4.4b in Eqn. $(2.5.3)$. (b) Optical thickness profile of the cell inside	
	red circle in Fig.4.5b. (c) Cross sectional optical thickness profile of	
	the same cell.	64

4.6	Improved temporal phase stability. Histogram of the phase fluctuation	
	obtained for the microscope used for 3D imaging of red blood cells. $\ .$	66
4.7	Phase fluctuation profile of red blood cells quantified using MZ-DHIM.	
	This is computed using 600 holograms recorded at the rate of 20 Hz	67
4.8	Time varying phase profile of red blood cell (for the cell inside the	
	white rectangle in Fig.4.7	68
4.9	Phase, phase fluctuation and optical thickness fluctuation amplitude	
	of red blood cell inside the area of interest shown in Fig.4.7. (a) Phase	
	profile of the cell. (b) Phase fluctuation profile of the cell. (c) Optical	
	thickness fluctuation profile of the cell	69
4.10	Time variation of optical thickness (OPL). Temporal evolution of opti-	
	cal thickness at the points indicated in Fig.4.9a along with the standard	
	deviation of each plot (which indicates the optical thickness fluctuation	
	at that point)	70
4.11	variation in optical thickness fluctuation amplitude across the whole	
	cell as a function of time. Dynamic sub-domain across the cell can	
	be seen in the image. These can be quantified and their coherence	
	(temporal and spatial) can be determined. \ldots \ldots \ldots \ldots \ldots	70
4.12	Frequency spectrum of time variation of optical thickness (OPL). Fre-	
	quency spectrum of the optical path length change for the points shown	
	in Fig.4.9a	71
4.13	Distribution of thickness fluctuation frequency across the cell. \ldots	71
4.14	Time evolution of amplitude and frequency of optical thickness fluctu-	
	ation at different points on the cell shown in Fig.4.9a \ldots .	72
5.1	Self-referencing Lateral shearing Digital Holographic Microscope [82, 42]	76
5.2	Holograms resulting in self-referencing Lateral shearing Digital Holo-	
	graphic Microscope using a glass plate. (a) Recorded hologram (b) and	
	(c) images from the front and back surface of the glass plate (areas in-	
	side the blue rectangles)	77

5.3	Phase contrast images obtained from self-referencing DHIM (a) Phase	
	contrast image (for the area inside the green rectangle) obtained after	
	phase subtraction. (b) Thickness profile of the microspheres. (c) Cross	
	sectional thickness profile of the microsphere	78
5.4	(a) Optical path length variation at a single spatial point in the thick-	
	ness profile; (b) Histogram of the optical path fluctuations at 2500	
	random spatial points.	79
5.5	Wide field of view Lateral shearing Digital Holographic Interference	
	Microscope. (a) Schematic of the setup. (b) Photograph of the actual	
	setup. (c) Configuration of the pin-hole mounted on a microscope	
	slide used to convert the wavefront reflected from the back surface of	
	the shearing glass plate into the reference wavefront. \ldots \ldots \ldots	80
5.6	Recorded images in the wide field of view lateral shearing digital holo-	
	graphic microscope. (a) Reference beam intensity at the detector plane.	
	(b) Object beam intensity recorded by the detector. (c) Holograms	
	formed at the detector plane	82
5.7	Calibration of the wide field of view lateral shearing digital holographic	
	microscope using polystyrene microspheres of $10\mu m$ diameter. (a)	
	Quantitative phase profile obtained after phase subtraction. (b) Three	
	dimensional thickness distribution profile of the microsphere obtained	
	from the phase profile. (c) Cross-sectional thickness profile of the mi-	
	crosphere long the line shown in Fig.5.7a	83
5.8	Spatial stability of the wide field of view common path digital holo-	
	graphic microscope. Spatial variation of phase computed from holo-	
	grams recorded using a CCD array and a VGA webcam sensor are	
	shown in (a) and (c) respectively. Histograms of the phase distribu-	
	tions for obtained using CCD array and webcam sensor are shown in	
	(b) and (d) respectively.	85

5.9	Temporal phase stability of the wide field of view common path digi-	
	tal holographic microscope using CCD array (a-c) and VGA webcam	
	sensor (d-f). Spatial variation in the temporal phase stability using a	
	CCD array and a VGA webcam sensor are shown in (a) and (d) re-	
	spectively. (b) and (e) shows the time evolution of phase. (c) and (f)	
	is the histogram of the temporal phase variation for CCD array and	
	webcam respectively	86
5.10	(a) Hologram recorded with CCD array. (b) Zoomed region inside the	
	blue rectangle. (c) Quantitative phase distribution inside the white	
	(dashed) rectangle. (d) Optical thickness distribution computed from	
	the quantitative phase information. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	88
5.11	Results obtained with Webcam array as the recording device. (a) Holo-	
	gram recorded with webcam array. (b) Zoomed region inside the black	
	rectangle. (c) Quantitative phase distribution for the hologram shown	
	in Fig. 5.11a. (d) Optical thickness distribution computed from the	
	quantitative phase information. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	89
5.12	Imaging of cell dynamics. (a) Optical path length distribution of the	
	cells in the field of view reconstructed from the phase profile. Inset	
	shows the three dimensional optical thickness profile of the cell in-	
	side the region of interest marked by the white rectangle. (b) Optical	
	thickness fluctuation at each point on the cell along with the three di-	
	mensional rendering of the optical fluctuation profile for the cell inside	
	the white rectangle. (c) Time variation of optical volume (for the cells	
	marked in Fig. 5.12a). (d) Frequency of thickness oscillations at each	
	point on the cell (inset shows the 3D rendering of the frequency profile	
	for the cell inside the white rectangle	90

5.13	Imaging of cell dynamics using webcam array. (a) Optical thickness	
	distribution of the cells in the field of view obtained from the phase	
	profile along with the three dimensional optical thickness profile of the	
	cell inside the region of interest marked by the white rectangle. (b)	
	Optical thickness fluctuation profile of the cells along with the three	
	dimensional rendering of the optical fluctuation profile. (c) Optical	
	volume as a function of time (for the cells marked in Fig.5.13a). (d)	
	Change in frequency of thickness fluctuation with position inside the	
	cells	91
6.1	LSDHM phase tomography system using single laser source	96
6.2	LSDHM phase tomography system using multiple diode laser sources.	
	(a) Schematic of the setup. (b) Photograph of the setup. \ldots .	98
6.3	Collection of projection data using LSDHM $\hfill \ldots \ldots \ldots \ldots \ldots$	100
6.4	Data acquisition and phase reconstruction. (a) - (e) Holograms of	
	$20\mu{\rm m}$ diameter glass microsphere for beam angles of $-36^\circ,\ -18^\circ,\ 0^\circ,$	
	18° and 36° respectively. (f) - (j) reconstructed object phase at these	
	projection angles	102
6.5	(a) Sinogram for 36 projections spanning total angle of 72° obtained for	
	$20\mu\mathrm{m}$ glass microsphere immersed in microscope oil. (b) Phase profile	
	for the projection shown by the line in Fig.6.5a	103
6.6	Iterative algorithm for tomographic reconstruction	105
6.7	Sectional images (y-z sections) of the $20\mu m$ diameter glass microsphere.	
	Different sections can be understood from Fig.6.8. The colour bar	
	shown in the last figure (for $x=22\mu m$) is common for all	106
6.8	Co-ordinate system used in the representation of back projection data	107
6.9	Refractive index profile along the direction of beam propagation for	
	$x=10\mu m$ plane	107
6.10	Holograms and reconstructed phases for setup employing array of laser	
	diode modules. (a) - (g) Holograms of $10\mu\mathrm{m}$ diameter glass microsphere	
	for beam angles of -21°, -14°, -7°, 0°, 7°, 14° and 21° respectively. (h)	
	- (n) reconstructed object phase at these projection angles	108

6.11	Sinogram of the $10\mu\mathrm{m}$ glass microsphere obtained from 7 projections	
	in the case of laser diode array. \hdots	109
6.12	Sectional images (y-z sections) of the $10\mu m$ diameter glass microsphere	
	imaged with laser diode array. The colour bar shown in the last figure	
	(for $x=9\mu m$) is common for all	110
6.13	Refractive index profile using the setup employing the laser diode array.	
	The profile is in the direction of beam propagation for x=5 μ m plane .	110
6.14	(a) - (c) Holograms of red blood cells for beam angles of -21°, 0° and 21°	
	respectively. (d) - (f) reconstructed object phase at these projection	
	angles	111
6.15	Sectional images (x-y sections) of human red blood cells for different z	
	planes separated by $0.2\mu m$.	112