
Chapter 2

Theory of Digital Holography

As discussed in Chapter 1, holography is a two-step process, involving (i) recording of

hologram which uses the principle of interference and (ii) reconstruction of hologram

based on the principle of diffraction [1, 2, 4, 69, 71]. In digital holography recording

is done on pixilated digital sensors [69]. Reconstruction is done by numerical im-

plementation of scalar diffraction integrals from which the whole field information of

recorded object wavefront can be obtained [11, 70, 85, 86]. In this chapter, theory

behind the digital recording and reconstruction process of holograms is detailed.

2.1 Recording of holograms

First stage of holography is recording of the interference pattern (hologram) which

arises due to superposition of the object and the reference wavefront [2, 4, 69, 71].

This interference pattern contains the amplitude and phase information of the waves

scattered from the object. Off-axis geometry is used in all the developed techniques

and applications, discussed in this thesis. In such geometry, source beam is split into

two and one of them passes through the object and another behaves as a reference

beam, and then both beams are allowed to interfere at digital sensor (Fig.2.1).

Photo-detectors are quadratic in nature and can respond only to the absolute

square of complex amplitude (intensity) distribution. Hence hologram pattern is

recorded in form of spatially varying intensity distribution by recording medium

[2, 4, 11, 17, 30, 69, 70, 71, 84, 85, 86, 87]. If the complex amplitude distribu-

tions of the object and reference wavefronts at the recording plane (hologram plane)
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Figure 2.1: Formation of hologram due to superposition of the object and the reference
wavefronts at the detector plane. Carrier fringes are modulated in the region where
the object exists.

are O(x, y) = EO(x, y)exp[iφO(x, y)] and R(x, y) = ER(x, y)exp[iφR(x, y)] respec-

tively (where EO and ER are their respective scalar amplitude distributions and φO

and φR are their respective phase distributions), then the resulting intensity profile

(hologram) sampled by the digital sensor can be written as [2, 4, 69, 71, 84]

IH(x, y) = |O +R|2 = (O +R)(O + R)∗

= (EOexp[iφO] + ERexp[iφR])(E
∗

Oexp[−iφO] + E∗

Rexp[−iφR])
(2.1.1)

where * denotes the complex conjugation. Eqn.(2.1.1) can be simplified in terms of

the intensities of the object and reference wavefronts

IH(x, y) = EOE
∗

O + ERE
∗

R + EOE
∗

Rexp[i(φO − φR)] + ERE
∗

Oexp[−i(φO − φR)]

= IO + IR + EOE
∗

Rexp[i(φO − φR)] + ERE
∗

Oexp[−i(φO − φR)]

(2.1.2)

where IO and IR are the intensity of the object and reference beam respectively.

Collectively (IO + IR) may be regarded as the background term and the cross terms

can be regarded as the interference terms [4].
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2.2 Reconstruction of holograms

Reconstruction of hologram is the second step in holography. In digital holography

they are reconstructed numerically by illuminating them by an exact digital replica

reference wave (Fig.2.2). This is numerically equivalent to multiplying Eqn.(2.1.2) by

the reference wave [69, 70]

IH(x, y)ERexp[iφR(x, y)] = (IO + IR)ERexp[iφR]

+ IREOexp[iφO] + ERERexp[2iφR]E
∗

Oexp[−iφO]
(2.2.1)

In Eqn.(2.2.1) first term on the right hand side represents the reference wavefront

passing through the hologram undiffracted (zero order) [70]. This term does not con-

tain any information about the object. Second term contains the complex amplitude

information of the object wave (at the hologram plane), which can be propagated to

the image plane (where the object existed) to obtain information about the object.

This is also called the virtual image (see Fig.1.4), since it is formed exactly at the

position where the object existed and is an exact replica of the object. Last term on

the right hand side produces a distorted real image of the object (see Fig.1.4). Since

in the DHIM configurations discussed in this thesis, off-axis geometry is used, the

three terms in Eqn.(2.2.1) will be separated at the hologram plane as well as at the

image plane (Fig.2.2). From Eqn.(2.2.1), it can be seen that by illuminating the dig-

ital hologram by a numerical reference wave and propagating it to the image plane,

the complex amplitude distribution of the object can be retrieved. Complex am-

plitude contains both the scalar amplitude (absorption/reflection profile) and phase

information (thickness/depth profile) of the object.

As discussed above in digital holography the reconstruction of the object wave

field (propagation of the scattered reference wavefront from hologram plane to im-

age plane) is done numerically by simulating the diffraction process happening at

the digitally recorded holograms when illuminated by the reference wave using scalar

diffraction theory [69, 71]. The numerical reconstruction process can be based on

the Fresnel-Kirchhoff diffraction integral employing Fresnel transform after Fresnel

approximation [84, 89, 90]. Reconstruction can also be done employing the angular

spectrum approach (ASP) to the scalar diffraction theory [69, 92, 93, 94, 95]. Each
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Figure 2.2: Digital hologram reconstruction. Reference wave gets scattered from the
structures of the hologram. It is numerically propagated to the position where the
object existed (virtual image).

of these approaches describes the scattering (diffraction) of the reconstructing wave

from the structures of the hologram and the propagation of the scattered wavefront to

the image plane. The numerical reconstruction process (scattering plus propagation)

yields the object complex amplitude distribution, which contains information about

the amplitude and phase of the object under investigation. For larger especially dif-

fuse objects (objects kept large distance from the hologram), Fresnel-Kirchoff integral

with Fresnel approximation (distance of propagation is much larger than size of the

hologram - paraxial approximation) is the best approach to retrieve the object com-

plex amplitude distribution [11, 70, 84, 85, 86, 89, 90].

In DHIM, the object (magnified image) is situated either at the detector plane or very

near to the detector plane (Fig.2.3). It should be noted that the object information

captured by the detector in this case is the magnified image of the micro-object as

shown in Fig.2.3 [96]. It should be note that the propagation step can altogether be

avoided by keeping the hologram plane (detector) at the image plane of the magni-

fying lens [36, 74, 75, 76, 83, 84]. So short distance propagations (or no propagation

at all) is the requirement in the case of small transparent or phase objects imaged

with DHIM. Angular spectrum approach describes the wavefront propagation over
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short distances (no assumptions on the minimum distance of propagation - no parax-

ial approximation) compared to the size of the array (hologram). This is in contrast

to Fresnel-Kirchoff integral which assumes propagation distances much larger than

the hologram dimensions. So in the case of DHIM, angular spectrum propagation

approach is ideal for image retrieval and also makes compact experimental setup pos-

sible. Another advantage of this approach is that, it can separate out the different

diffracted components (un-diffracted reference, virtual object component, real object

component) in the frequency domain (only the frequency information about the vir-

tual/real object is propagated) and hence there will not be overlap between any of

the three components in the reconstruction plane (image plane) [92].

micro-object

lens

magnified image
(object seen by
hologram)

hologram

d

Figure 2.3: Position of the object (magnified image) and the hologram (detector)
plane in DHIM. The object plane (magnified image plane) is situated either at the
detector or very near to it.

2.3 Numerical propagation using Angular Spec-

trum approach

Waves scattering from an object can be considered in terms of plane wave components

propagating at different directions (angles) [71] as shown in Fig.2.4. The angle of

scattering of the object wavefront depends upon the spatial frequency components

existing in the object and the complex amplitude of the wavefront at another parallel



24

plane can be computed by adding (integrating) the contributions due to these plane

wave components [71].

For retrieval of object complex amplitude distribution using ASP approach (Fig.2.5),

in the first step, digital holograms are illuminated by the reference wavefront giving

rise to the complex amplitude at the hologram plane, which can be written as [30]

U(x, y, z = 0) = IH(x, y)ERexp[iφR(x, y)] (2.3.1)

In Eqn.(2.3.1), z = 0 is the hologram plane and U(x, y, z = 0) is the complex

amplitude at the hologram plane due to illumination of the hologram by the reference

wavefront. The aim of the numerical processing is to propagate this complex ampli-

tude distribution to the plane, where the object (magnified image) existed (Fig.2.5).
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Figure 2.4: Scattered wavefront as a collection of plane waves travelling in different
directions (angle). The scattering angle is decided by the spatial frequency of the
object (smaller objects, higher spatial frequencies) scatter at higher angles. An ob-
ject with sinusoidal intensity variation (like a hologram), will give rise to only three
scattered components (only one frequency component).

Angular spectrum at z = 0 plane is obtained by Fourier transformation of Eqn.(2.3.1)

and can be written as

Û(fx, fy; z = 0) =

∫

∞

−∞

∫

U(x, y, z = 0)exp[i2π(fxx+ fyy)]dxdy (2.3.2)

In the above equation (fx, fy; z = 0) is the Fourier transform at the hologram plane

of the scattered reference wavefront, with fx and fy as the spatial frequencies in the
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Figure 2.5: Numerical reconstruction of digital holograms using ASP approach. Refer-
ence wave illuminating the hologram generates the angular spectrum at the hologram
plane (z=0), which is filtered (to obtain angular spectrum of object wavefront at the
hologram plane) and then propagated to the image plane using free space propagation
function.

x and y direction respectively. Fig.2.6b shows the angular spectrum of the hologram

shown in Fig.2.6a. This is an off-axis hologram recorded with DHIM employing Mach-

Zehnder geometry (geometry similar to that shown in Fig.1.7). A random linearly

polarized He-Ne laser (λ=632.8nm, o/p power < 2mW) was used as the source. An

8-bit CCD array with pixel pitch of 4.65µm was used for recording the holograms. Ob-

ject was 20 µm diameter polystyrene microsphere (refractive index=1.58), immersed

in oil (refractive index=1.518). A 40X, NA=0.65 microscope objective lens was used

for magnification.

Filtering (using a circular band pass filter) is be applied to the resulting spec-

trum (Fig.2.6b) so that the unwanted terms, first and last term in Eqn.(2.2.1) can be

removed. These terms corresponds to the un-diffracted reference wave and the dis-

torted real object respectively. By this filtering, the spectrum corresponding to the

object only can be obtained. Basically Fourier transform decomposes the complicated

function into a series of simple complex functions. So the inverse Fourier transform

of the filtered spectrum of Eqn.(2.3.2) provides the modified complex amplitude at

(x, y, z = 0) containing the information about the object only (Fig.2.6c). This can be
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Figure 2.6: (a) Hologram illuminated by the reference wavefront. (b) Power spec-
trum of the hologram obtained after Fourier transform, where three components
(un-diffracted reference, real object and virtual object) can be seen. (c) Filtered
spectrum, which contains only the spatial frequencies corresponding to object alone.
This is then propagated to the image plane.

written as [71, 92]

Ū(x, y, z = 0) =

∫∫

∞

−∞

filt[Û(fx, fy; z = 0)]exp[i2π(fxx+ fyy)]dfxdfy (2.3.3)

where Ū(x, y, z = 0) is the filtered (modified) complex amplitude distribution

(containing only object information) and filt[Û(fx, fy; z = 0)], is the filtered angular

spectrum of U(x, y, z = 0). If the complex amplitude at a plane parallel to the (x, y)

plane but a distance z=d from the (x, y, z = 0) plane is known, then the angular

spectrum at this plane can be written as [71]

Û(fx, fy; z = d) =

∫∫

∞

−∞

U(x, y, z = d)exp[−i2π(fxx+ fyy)]dxdy (2.3.4)

If the relationship between the angular spectrums at (x, y, z = 0) and (x, y, z = d)

can be determined, the effect of wave propagation on the angular spectrum can be

determined. So the object complex amplitude distribution at (x, y, z = d) can be

written in terms of its angular spectrum [71]

Uo(x, y, z = d) =

∫∫

∞

−∞

Û(fx, fy; z = d)exp[i2π(fxx+ fyy)]dfxdfy (2.3.5)

This wave field should satisfy the Helmholtz equation, whose solution can be

written in terms of the filtered spatial frequency distribution at the hologram plane
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as [92]

Ûo(fx, fy; z = d) = filt[Û(fx, fy; z = 0)]exp[ik
√

1− λ2f 2
x − λ2f 2

yd] (2.3.6)

The effect of propagation over a distance z=d is simply a change in the relative

phases of the various components of the angular spectrum [71]. Each plane wave

components travels at a different angle and hence travel different distances between

the two parallel planes (hologram and image) producing phase delays. In Eqn.(2.3.6),

λ is the vacuum wavelength of the light source that illuminates the hologram. Inverse

Fourier transform of Eqn.(2.3.6) will yield the complex amplitude at (x, y, z = d) as

[92]

Uo(x, y; z = d) =

∫∫

∞

−∞

Ū(fx, fy; z = 0)exp
[

ik
√

1− λ2f 2
x − λ2f 2

y d
]

× exp[i2π(fxx+ fyy)]dfxdfy

(2.3.7)

The above relationship can be numerically implemented by first Fourier trans-

forming the wave field at the hologram plane, filtering it and multiplying it with the

free space propagation function (first exponential function in the above equation) and

then taking its inverse Fourier transform. Eqn.(2.3.7) can then be written as [30, 92]

Uo(x, y; z = d) = ℑ−1

{

filt[ℑ{U(x, y, z = 0)}]exp
[

ik
√

1− λ2f 2
x − λ2f 2

y d
]}

(2.3.8)

In the numerical reconstructions of holograms recorded using DHIM discussed in

this thesis Eqn.(2.3.8) is used to retrieve the object complex amplitude distribution.

If the hologram plane (digital array) is at the image plane of the magnifying lens,

then d = 0 and Eqn.(2.3.8) reduces just to Fourier fringe analysis [97].

2.4 Retrieval of intensity and phase of object wave-

front

Complex amplitude at the image plane is numerically computed using Eqn.(2.3.8).

The most important parameter in Quantitative phase imaging modality like DHIM

is the phase of the object wavefront. Eqn.(2.3.8) can be used to retrieve the intensity



28

and phase information of the object. The intensity of the wavefront is equal to the

absolute square of the complex amplitude and can be written as

Io(x, y) = |Uo(x, y)|
2 (2.4.1)

Fig.2.7 shows the object intensity distribution at the image plane obtained by

numerical propagation in the case of the hologram shown in Fig.2.6a.

Figure 2.7: Retrieved intensity profile at the image plane for the hologram shown in
Fig.2.6a

Phase of the object wavefront is calculated from the angle the complex amplitude

makes with the Real axis

φo(x, y) = arctan
Im[Uo(x, y)]

Re[Uo(x, y)]
(2.4.2)

For each hologram of the object (object hologram) a background hologram (Fig.2.8b),

without the object in the field of view (only the medium surrounding the object will

be in the field of view) and by keeping all the other parameters same, is also recorded.

This hologram is also reconstructed using Eqn.(2.3.8) and the phase is retrieved

φB(x, y) = arctan
Im[UB(x, y)]

Re[UB(x, y)]
(2.4.3)
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(a) (b)

Figure 2.8: (a) Object hologram of the 20 µm diameter polystyrene sphere immersed
in oil. (b) Background hologram of the background (oil). Inset in both the images
shows the same area in the field of view.

2.5 Phase difference and object thickness

Phase difference (interference phase) is computed directly by subtracting the back-

ground phase distribution from the object phase distribution [69].

∆φ(x, y) = φo(x, y)− φB(x, y) ifφo > φB

= φo(x, y)− φB(x, y) + 2π ifφB > φo

(2.5.1)

This phase subtraction nullifies the aberrations due to optical elements, as the

parameters other than the object remained same between the exposures. This brings

out the phase distribution due to the object alone, negating the phase due to aber-

rations [30, 84]. Fig.2.9 shows the process of phase subtraction, which brings out the

object phase information after compensating for the phase due to aberrations in the

system. Phase shown in Fig.2.9c is wrapped (phase variation between 0 and 2 π).

This needs to be unwrapped to convert it into continuous phase distribution before

using it in thickness profiling of the object. Fig.2.10 shows the unwrapped phase

distribution applying Goldstein branch cut unwrapping method.

The phase difference acquired by the object beam that passes through the object

is given by Eqn.(2.5.1). This phase difference is proportional to both the refractive
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Figure 2.9: (a) Object phase distribution (object is a 20µm diameter polystyrene
sphere immersed in oil). (b) Background (oil) phase distribution. (c) Phase difference.
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Figure 2.10: Continuous phase distribution for the wrapped phase distribution shown
in Fig.2.9c.
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index difference between the object and the surrounding medium (background) and

the thickness of the object itself [30, 36, 83, 84].

∆φ(x, y) =
2π

λ
(no − nB)L(x, y) (2.5.2)

In Eqn.(2.5.2), nO and nB are the constant average refractive indices of the object

and the background respectively and L is the spatially varying thickness of the object.

Eqn.(2.5.2) can also be expressed as

∆φ(x, y) =
2π

λ
∆nL(x, y) (2.5.3)

In Eqn.(2.5.3), ∆n is the refractive index difference between the object and the

background. The spatially varying optical path length (OPL = ∆n×L) distribution

is either due to a spatial variation in refractive index or the or due to a spatially

varying thickness. In the cells investigated, the spatial variation in OPL is bought

about by spatial variation in thickness rather than refractive index, which could be

assumed to be a constant. If the refractive index values are known, then Eqn.(2.5.3)

can be used to construct the thickness distribution (3D image) of the object. Fig.2.11

shows the 3D rendering of the thickness profile of the 20µm diameter polystyrene

microsphere constructed from the continuous phase distribution shown in Fig.2.10.

In the thickness reconstructions, nO = 1.58 and nB = 1.518 were used.

Fig.2.11 summarizes the quantitative phase imaging by numerical reconstruction

of digital holograms. Object and background holograms are reconstructed by the

numerical implementation of Eqn.(2.3.8). Their reconstructed complex amplitude

distributions at the image plane are used to calculate the object and background

phases using Eqn.(2.4.2) and Eqn.(2.4.3) respectively. Then the phase difference is

computed to nullify the aberrations and to bring out the object phase distribution

by the use of Eqn.(2.5.1). Continuous phase difference after phase unwrapping is

shown in Fig.2.11a. The obtained phase difference along with the refractive index

values are plugged into Eqn.(2.5.3), to construct the object thickness profiles shown

in Fig.2.11b and Fig.2.11c. It should also be noted that by changing the value of d

in Eqn.(2.3.8) information at different object planes can be obtained (even though

path integrated), which might provide important object information, which might be
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Figure 2.11: Quantitative phase reconstruction from digital holograms. (a) Continu-
ous phase difference obtained in the case of 20µm diameter polystyrene micro-spheres.
This is the region of interest shown by the rectangular area in Fig.2.10. (b) Thickness
distribution of the micro-sphere obtained by plugging in the refractive index values in
Eqn.(2.5.3). (c) Cross sectional thickness profile of the micro-sphere along the solid
line shown in Fig.2.11a.
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useful in its identification [36].

For the DHIM techniques discussed in this thesis, numerical reconstructions of holo-

grams are achieved by the use of angular spectrum propagation integral given by

Eqn.(2.3.8). The resulting phase images are used to compute the object thickness

as well as its time evolution. Also various static and dynamic parameters for the

object under investigation are extracted from the reconstructed thickness profiles. In

many cases, especially in the case of object identification and comparison, it is not

necessary to have the refractive index values of the cell and the background medium.

Optical path length profiles are sufficient to quantify, compare and identify object

using DHIM [34].


