Fig. 1.1	Atomic/ molecular arrangement in crystalline, polycrystalline and amorphous materials	2
Fig. 1.2	Structure of metallic alloy and metallic glass	3
Fig. 1.3	Mechanical properties of metallic glasses	6
Fig. 1.4	Hysteresis loop of metallic glasses	7
Fig. 1.5	Structural applications of metallic glasses	9
Fig. 1.6	Biomedical applications of metallic glasses	10
Fig. 1.7	Miscellaneous applications of metallic glasses	11
Fig. 1.8	Typical polarization curve	17

Chapter 2

Fig. 2.1	General instrumentation of thermal analysis techniques	22
Fig. 2.2	Schematic diagram of a Differential Scanning Calorimetry (DSC)	25
Fig. 2.3	Typical DSC thermogram	26
Fig. 2.4	Glass transition	27
Fig. 2.5	Typical modulated heating rate	29
Fig. 2.6	A picture of DSC 2910 (TA Instruments Inc. USA) system	32
Fig. 2.7	Schematic diagram of a potentiostat	33

Fig. 3.1	Crystallized fraction as a function of temperature for T_{i} , T_{i} , C_{i} , metallic glass at different beating retain	56
	Ti ₂₀ Zr ₂₀ Cu ₆₀ metallic glass at different heating rates; (a) Peak-1, (b) Peak-2: symbols represent experimental points	
	and solid lines show the least square fitted curve using eq. (3.36)	

Fig. 3.2	Normalized $y(\alpha)$ and $z(\alpha)$ with crystallized fraction α for different heating rates; (a) Peak-1, (b) Peak-2	58
Fig. 3.3	Normalized heat flow curves at different heating rates; (••••) experimental, () iso-kinetic results, (-) iso-conversional results. (a-d) Peak-1: (a) 1°Cmin ⁻¹ , (b) 2°Cmin ⁻¹ , (c) 4°Cmin ⁻¹ , (d) 8°Cmin ⁻¹ ; (e-h) Peak-2: (e) 1°Cmin ⁻¹ , (f) 2°Cmin ⁻¹ , (g) 4°Cmin ⁻¹ , (h) 8°Cmin ⁻¹	62
Fig. 3.4	KAS plot for α =0.3; (a) Peak-1, (b) Peak-2	65
Fig. 3.5	OFW plot for α =0.3; (a) Peak-1, (b) Peak-2	66
Fig. 3.6	Kissinger plot; (a) Peak-1, (b) Peak-2	68
Fig. 3.7	Augis & Bennett's plot; (a) Peak-1, (b) Peak-2	69
Fig. 3.8	Boswell plot; (a) Peak-1, (b) Peak-2	70
Fig. 3.9	Ozawa plot; (a) Peak-1, (b) Peak-2	71
Fig. 3.10	Friedman plot for α =0.3; (a) Peak-1, (b) Peak-2	73
Fig. 3.11	Gao & Wang plot; (a) Peak-1, (b) Peak-2	74
Fig. 3.12	Local activation energies (E_{α}) at different α from different methods; (a) Peak-1, (b) Peak-2	75
Fig. 3.13	Variation of onset of crystallization temperature (T_x) with heating rate (β): (—) represents theoretically calculated results using Eq. (3.47); (\bullet , \checkmark) represents experimental points for peak 1 & 2 respectively for Cu ₆₀ Zr ₂₀ Ti ₂₀ metallic glass	77
Fig. 3.14	Variation of peak crystallization temperature (T_p) with heating rate (β): (—) represents theoretically calculated results using Eq. (3.49); (•, •) represents experimental points for peak 1 & 2 respectively for Cu ₆₀ Zr ₂₀ Ti ₂₀ metallic glass	78
Fig. 3.15	Variation of T_x and T_p with heating rate for $Cu_{60}Zr_{40}$ metallic glass	79

Fig. 4.1	Schematic TTT diagram	90
Fig. 4.2	Variation of ΔG with temperature for $Au_{49}Ag_{5.5}Pd_{2.3}Cu_{26.9}Si_{16.3}$ metallic glass	107
Fig. 4.3	Variation of ΔH with temperature for $Au_{49}Ag_{5.5}Pd_{2.3}Cu_{26.9}Si_{16.3}$ metallic glass	108

Fig. 4.4	Variation of ΔS with temperature for $Au_{49}Ag_{5.5}Pd_{2.3}Cu_{26.9}Si_{16.3}$ Metallic glass	108
Fig. 4.5	(a) - (f) Relationship between various GFA parameters with Z_{max} for Zr-based metallic glasses	115
Fig. 4.6	Relationship between $\Delta G(T_g)$ and Z_{max} for Zr-based metallic glasses	116
Fig. 4.7	Relationship between $\Delta G(T_g)/\Delta H_m$ and Z_{max} for Zr-based metallic glasses	117
Fig. 4.8	Variation of Gibbs free energy with temperature for $(Cu_{50}Zr_{50})_{100-x}M_x$ metallic glasses, where M=Nb and Al, and x=0, 4	122
Fig. 4.9	Variation of Gibb's free energy difference with temperature for $\rm Cu_{48}Zr_{48}Al_4$ alloy	123
Fig. 4.10	Variation of ΔG with temperature for $Fe_{41}Co_7Cr_{15}Mo_{14}C_{15}B_6Y_2$ metallic glass	126
Fig. 4.11	Variation of ΔG (Lad-1) with temperature for $Fe_{48-x}Co_xCr_{15}Mo_{14}C_{15}B_6Y_2$ (x=0, 7) metallic glass	128

Fig. 5.1	Polarization curves for $Co_{66}Si_{12}B_{16}Fe_4Mo_2$ metallic glasses in: (a) artificial saliva solution (ASS) medium, (b) Phosphate-Buffered Saline (PBS) Solution, (c) Artificial Blood Plasma (ABP) Solution, and (d) Hank's Balanced Saline Solution (HBSS)	144
Fig. 5.2	SEM micrographs of corroded $\rm Co_{66}Si_{12}B_{16}Fe_4Mo_2$ metallic glass in PBS medium	146
Fig. 5.3	Potentiodynamic scans of $Fe_{32}Ni_{36}Cr_{14}P_{12}B_6$ and $Fe_{67}Co_{18}B_{14}Si_1$ metallic glasses in simulated bio-fluids: (a) ASS, (b) PBS, (c) ABP, and (d) HBSS	148
Fig. 5.4	SEM micrograph of $Fe_{32}Ni_{36}Cr_{14}P_{12}B_6$ metallic glass in HBSS medium	150
Fig. 5.5	SEM micrograph of Fe ₆₇ Co ₁₈ B ₁₄ Si ₁ metallic glass in ABP medium	150

Table 2.1	Different thermal analysis techniques	21
Table 2.2	Operating parameters of potentiodynamic test	35
Table 2.3	Compositions (g/L) of Artificial Saliva Solution (ASS), Phosphate-Buffered Saline (PBS) Solution, Artificial Blood Plasma (ABP) Solution and Hank's Balanced Saline Solution (HBSS)	36

Chapter 3

Table 3.1	Values of Avrami (growth) exponent (n) , pre-exponential factor (k_o) and activation energy (E) obtained by least square fitting of fractional crystallization data for both the crystallization peaks.	55
Table 3.2	Local activation energies (E_a) at different degrees of conversions, α for different methods	64
Table 3.3	Activation energies (<i>E</i>) and pre-exponential factor (k_o) for different methods	72
Table 3.4	Experimental T_x and T_p values at different heating rates for $Cu_{60}Zr_{40}$ and $Cu_{60}Zr_{20}Ti_{20}$ metallic glasses for peak 1	78

Table 4.1	Various GFA parameters	102
Table 4.2	Experimental parameters for Zr-based metallic glasses	110
Table 4.3	Gibbs free energy difference at T_g for Zr-based metallic glasses	112
Table 4.4	Characteristic temperatures (K) for $(Cu_{50}Zr_{50})_{100-x}M_x$ metallic glasses, where M=Nb and Al, and x=0, 4	119
Table 4.5	GFA parameters for $(Cu_{50}Zr_{50})_{100-x}M_x$ metallic glasses, where M=Nb and Al, and x=0, 4	120
Table 4.6	Values of $\Delta G(T_g)$ in kJmol ⁻¹ by Lad-I and lad-II equations	121
Table 4.7	Characteristic temperatures (K) for $Fe_{48-x}Co_xCr_{15}Mo_{14}C_{15}B_6Y_2$ (x=0, 7)	124

Table 4.8	Various GFA parameters for $Fe_{48-x}Co_xCr_{15}Mo_{14}C_{15}B_6Y_2$ (x=0, 7) metallic glass	125
Table 4.9	$\Delta G (T_g)$ values by different expressions in kJmol ⁻¹ for Fe _{48-x} Co _x Cr ₁₅ Mo ₁₄ C ₁₅ B ₆ Y ₂ (x=0, 7) metallic glass	128

Table 5.1	Electrochemical parameters obtained of potentiodynamic study of $Co_{66}Si_{12}B_{16}Fe_4Mo_2$ metallic glass	144
Table 5.2	$Electrochemical\ parameters\ obtained\ of\ potentiodynamic\ study\\ of\ Fe_{32}Ni_{36}Cr_{14}P_{12}B_6\ and\ Fe_{67}Co_{18}B_{14}Si_1\ metallic\ glasses$	149

Papers published in international refereed journals

- Effect of Micro Alloying on Glass Forming Ability of Cu₅₀Zr₅₀ Metallic Glass Supriya Kasyap, Ashmi T. Patel, Arun Pratap AIP Conference Proceedings, 1536: 651-652, 2013
- Crystallization kinetics of Ti₂₀Zr₂₀Cu₆₀ metallic glass by isoconversional methods using modulated differential scanning calorimetry
 Supriya Kasyap, Ashmi T. Patel, Arun Pratap Journal of Thermal Analysis and Calorimetry, 116(3):1325-1336, June 2014
- Heating Rate and Composition Dependence of Crystallization Temperature of Cu-based Metallic Glasses
 Supriya Kasyap, Sonal Prajapati, Arun Pratap Advanced Materials Research, 1141: 156-161, 2016
- Glass Forming Ability of Zr-based Amorphous Alloys Supriya Kasyap, Sonal R. Prajapati, Arun Pratap [Accepted for publication in Advanced Science Letters]

Papers under consideration for publication

- Thermodynamic behavior of Au₄₉Ag_{5.5}Pd_{2.3}Cu_{26.9}Si_{16.3} metallic glass in undercooled region
 Supriya Kasyap, Sonal R. Prajapati, Arun Pratap [Submitted to International Journal of Thermophysics]
- Bio-corrosion studies of Co₆₆Si₁₂B₁₆Fe₄Mo₂ metallic glass Supriya Kasyap, Sonal R. Prajapati, Arun Pratap [Submitted to Advanced Electrochemistry]

Paper presented at Conferences

- Effect of Micro Alloying on Glass Forming Ability of Cu₅₀Zr₅₀ Metallic Glass
 Supriya Kasyap, Ashmi T. Patel, Arun Pratap
 International Conference on Recent Trends in Applied Physics & Materials Science (RAM-2013) – Bikaner, Rajasthan
- Heating Rate Dependence of Crystallization Temperature of Zr₂₀Ti₂₀Cu₆₀ Metallic Glass
 Supriya Kasyap, Arun Pratap 7th National Conference on thermophysical Properties (NCTP-2013) – Kanpur, U. P.
- 3. Effect of Co substitution for Fe on the glass forming ability of $Fe_{48-x}Co_xCr_{15}Mo_{14}C_{15}B_6Y_2$ (x=0, 7) metallic glass **Supriya Kasyap**, Sonal Prajapati, Arun Pratap National Conference on Perspectives of Physics in Multi-disciplinary Research (NCPJ-14) – Jaipur, Rajasthan
- *Thermodynamic behavior of Au*₄₉Ag_{5.5}Pd_{2.3}Cu_{26.9}Si_{16.3} metallic glass in undercooled region
 Supriya Kasyap, Sonal R. Prajapati, Arun Pratap The 15th International Conference on Rapidly Quenched and Metastable Materials (RQ-15) - Shanghai, China
- Glass Forming Ability of Zr-based Amorphous Alloys
 Supriya Kasyap, Sonal R. Prajapati, Arun Pratap
 National Conference on Advanced Functional Materials & their Applications (AFMA-2015) – Ajmer, Rajasthan
- *Heating Rate and Composition Dependence of Crystallization Temperature of Cu-based Metallic Glasses* **Supriya Kasyap**, Sonal Prajapati, Arun Pratap National Conference on Recent Conference in Science of Materials (NCSM-2K15) – Vadodara, Gujarat

Other publications

- Kinetics of Phase Transformation in Metallic Glasses
 Arun Pratap, Supriya Kasyap, Sonal R. Prajapati, Ashmi T. Patel ITAS Bulletin, 6 (1): 37-49, June 2013
- A thermodynamic approach towards glass-forming ability of amorphous metallic alloys Sonal R. Prajapati, Supriya Kasyap, Arun Pratap, Bulletin of Materials Science, 38(7): 1693-1698, December 2015
- Non-isothermal crystallization kinetics of Zr₅₂Cu₁₈Ni₁₄Al₁₀Ti₆ metallic glass Sonal R Prajapati, Supriya Kasyap, Ashmi T. Patel, Arun Pratap Journal of Thermal Analysis and Calorimetry, 124(1): 21-33, April 2016
- *Effect of driving force of crystallization on critical cooling rate for Pd based metallic glasses* Sonal R. Prajapati, **Supriya Kasyap**, Arun Pratap,
 [Accepted for publication in Journal of Thermal Analysis and Calorimetry]