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3.1 Introduction 

Crystallization kinetics is the study of rate of change of a highly disordered amorphous 

structure into an ordered crystalline structure. This study involves every aspect of the 

conversion from one to other state. In an amorphous alloy, the constituents are trapped in the 

disordered structure due to super-cooling of the alloy melt. Since these materials are away from 

equilibrium, the study of their phase transformation becomes crucial to understand the route of 

formation and to control the structure and properties of amorphous alloys.  

The two major reasons to study kinetics of crystallization are:  

Firstly, expressing the rate of reaction as a function of state variables, such as temperature, 

pressure, etc., makes the evaluation of reaction rate easy, though not necessarily accurate, in 

any other set of conditions. Secondly, it helps to understand the mechanism of reaction. The 

first kinetic analysis was done by Wilhelmy [3.1], when he tried to study the kinetics of 

inversion of cane sugar in the presence of acids. He gave the following rate law for the 

conversion process: 

( )
dx

k C x
dt

            (3.1) 

Where, x is the amount of converted cane sugar, t is the time, C is the initial amount of cane 

sugar, and k is the rate constant. Later on Guldberg and Waage [3.2] and van’t Hoff [3.3] also 

gave rate equations for the reactant to product conversion processes. According to van’t Hoff 

the reaction rate may be written as: 

 ndC
kC

dt
            (3.2) 
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Where, C is the concentration of each of the reactants, t is the time and n is the number of 

molecules involved in the reaction or the reaction order.  

Equation (3.2) holds good for only single step reactions, where all molecules react equally at a 

time and the reactions of individual molecules remain unaffected by temperature. This 

limitation of van’t Hoff’s equation was brought forward by Ostwald [3.4], which motivated 

further research for multi-step kinetic analysis of thermally activated processes. The general 

equation for single step reaction was first given by Lewis [3.5] 

 1
d

k
dt


            (3.3) 

In this expression the concentration was replaced by degree of conversion, since the state of 

any reacting solid cannot be calculated by its concentration. Soon researchers started analysing 

multi-step reactions [3.6-3.8] involving two different rate processes for nucleation and growth 

or nucleation followed by its branching. Bagdassarian [3.9] and Erofeev [3.10] were the first 

ones to propose multi-step nucleation, which was later generalized by Allnatt and Jacobs 

[3.11]. Further, growth rate of the nuclei may also differ in different directions. Also different 

crystals may grow at different rates in a poly-crystal. Hence, occurrence of multi-step reactions 

is very common and their kinetics cannot be understood by single step reaction mechanism. 

Following this development in the field of solid-state reaction mechanism, many researchers 

started working on representing a particular route of a reaction by a reaction model. This 

representation of reaction mechanism by models was first initiated by Jacobs and Tompkins 

[3.12]. In eq. (3.3), α (1-α) can be considered as the reaction model for a particular single-step 

reaction and thereby giving a general rate equation as: 

( )
d

kf
dt


           (3.4) 
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Eq. (3.4) indicates that the reaction must produce α versus t data for a particular degree of 

conversion. This also implies that, one can use the experimental data of α versus t and fit the 

theoretical data of different models in order to get the real picture of any reaction mechanism.   

 

3.1.1 Notion of Activation Energy 

All solid state processes need some external force for their activation. These external force may 

be in terms of temperature, pressure, magnetic field, photo-activation, etc. In present chapter, 

we will be dealing with the kinetic analysis of activation of solid-state processes by the 

application of temperature, i.e., thermal activation. Kinetic analysis of a number of thermally 

driven processes such as thermal oxidation and decomposition of polymers, crystallization of 

glasses and polymers, solidification of metallic alloys, etc, are available in literature [3.13-

3.19]. Dollimore has reported thermal analysis of a wide variety of materials [3.20].  

Arrhenius [3.21] brought forward the concept of activation energy that described the reaction 

rate to be dependent on applied temperature.  

2

(log )d k B

dT T
          (3.5) 

Where, T is temperature and B is equal to E/R, with E and R the activation energy and Universal 

Gas constant (8.314 JK-1mol-1). 

Equation (3.5) implies: 

0 exp
E

k k
RT

 
  

 
         (3.6) 

This is the well-known form of Arrhenius equation, where k0 is the pre-exponential factor. 

Initially, E was expected to be constant, but later on it was found that the E values keep on 

changing with the advancement of reaction. Sometimes this variable nature of E may introduce 

some non-linearity in the Arrhenius plot. This non-linearity in Arrhenius plot was first 



Chapter-3 
Crystallization Kinetics of Metallic Glasses 

 
 

 

 41 

acknowledged by Hinshelwood [3.22]. This indicates that certain reactions are composed of 

few reactions running simultaneously at different rates. Though the linear nature of Arrhenius 

equation has been justified by many researchers, it cannot be generalized for all the solid state 

processes since it provides an average activation energy for the entire reaction and not for each 

elementary step occurring in the reaction. Various steps occurring at different rates have their 

distinct E value, which gets mixed up when we assume it to be a single-step reaction and a 

general kinetic data is used to derive a conclusion for the entire process. In such cases, an 

effective value of E is obtained which is average of all individual events occurring 

simultaneously. Eventually, the single-step kinetic analysis turned out to be futile due to two 

main reasons, i.e., firstly it payed no attention to the experimental variations in activation 

energy values (the non-linearity in Arrhenius equation) and secondly its tendency to replace 

the variable E values for a set of simultaneously occurring events by an average value. Hence, 

concept of variable activation came into existence. 

The kinetics of thermally activated events can be studied either isothermally or non-

isothermally. Non-isothermal methods are more frequently used ones as they do not need any 

time to reach at a particular temperature, unlike isothermal experiments, and the phase 

transformations occur at their respective temperatures. Moreover, isothermal events have 

highest reaction rate at its initiation, not allowing the sample to reach high temperatures. 

Whereas non-isothermal heating can be achieved at very high temperatures also. 

 

3.1.2 Kinetics of Phase Change:  

Isokinetic and Iso-conversional Methods 

The basic kinetic equation can be written as  

( ) ( )
d

k T f
dt


          (3.7) 
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Where, α is the degree of conversion, t is time, k(T) is the Arrhenius rate constant (eq. 3.6) and 

f(α) is the reaction model. A number of methods are available in literature that evaluate the 

kinetic parameters (E and k0) by fitting data to various models (f(α)) that are specific to a 

particular reaction mechanism. These methods are known as “model fitting methods” or “iso-

kinetic methods”. They provide single value of kinetic parameters by assuming the reaction to 

be same throughout.  

The integral form of eq. (3.7) is 

 
1

0

( ) ( ) ( )g f d k T t



  


         (3.8) 

This is the case in isothermal conditions. In non-isothermal conditions, time dependence is 

eliminated by using heating rate (β) and the above equation takes the following form: 

 
1

0 0

1
( ) ( ) ( )

T

g f d k T dT



  



          (3.9) 

Where, β is dT/dt. 

Equation (3.9) can also be written as  

0

0

( ) exp

T
k E

g dT
RT




 
  

 
         (3.10) 

Above equation can be used to derive useful information about the kinetic process in terms of 

the kinetic triplets i.e., the activation energy, pre-exponential factor and the reaction model 

[3.23].   

Iso-kinetic methods, in general, are not applicable to non-isothermal data. They depend upon 

the reaction model f(α) for the determination of E and k0. Moreover, f(α) is found by fitting 

different reaction models to the experimental data. Also, it provides single vales of Arrhenius 

parameters. Hence iso-kinetic methods are not appropriate for studying the kinetic process in 

non-isothermal conditions. 
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Reliable kinetic parameters can only be measured by the method that does not depend on 

models, i.e., “model-free methods”. These methods are also known as iso-conversional 

methods. Iso-conversional methods can be used to obtain kinetic parameters by carrying out a 

series of heating experiments. These methods assume that the reaction rate is a function of 

temperature only at a particular degree of conversion. Iso-conversional methods are divided 

into linear and non-linear methods. Linear methods are further bifurcated into differential and 

integral iso-conversional methods. Linear integral methods are derived using the 

approximation of the integral term in eq. (3.10). Whereas, differential equations take a 

differential form as shown below: 

1

(ln( / ) Ed d dt

dT R








 
  

 
        (3.11) 

Vyazovkin and Dollimore [3.24] gave a non-linear method for the calculation of E with high 

accuracy. A plenty of linear integral and differential methods are available in literature [3.25-

3.32]. 

Both the methods have their own merits and demerits. Therefore, before performing any 

analysis, it is essential to confirm the validity of different models by performing some tests, 

such as: (a) fitting experimental data by theoretical models, Malek test [3.33], Master plots 

[3.34], etc. In present chapter, different tests have been performed on MDSC data of 

Ti20Zr20Cu60 metallic glass in order to study the applicability of these methods for studying the 

non-isothermal crystallization kinetics of metallic glasses. 
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3.2 Theoretical Formulations 

3.2.1 Iso-conversional Methods 

The reaction rate for non iso-thermal crystallization kinetics can be expressed by the kinetic 

equation as shown in eq. (3.10) [3.35]. Since, the integral in eq. (3.10) doesn’t have an exact 

analytical solution; various approximations of this integral are suggested in literature [3.36-

3.39], for evaluation of activation energies dependent on the degree of conversion, α. 

The general form of the linear equation expressing the linear integral iso-conversional methods 

is [3.40]: 

ln
k

E
A C

T RT



 

 
   

 
        (3.12) 

Where k and A are parameters depending on approximations of temperature integral, C is 

constant and the subscript α designates the degree of conversion. For Ozawa-Flynn-Wall 

(OFW) (k=0, A=1.0516), Kissinger-Akahira-Sunose (KAS) (k=2, A=1) and so on. 

3.2.1.1 Linear Iso-conversional Methods 

3.2.1.1.1 Linear Integral Iso-conversional Methods 

(a) Kissinger-Akahira-Sunose (KAS) Method -The Effect of Non-linearity 

Kissinger-Akahira-Sunose (KAS) [3.27-3.28] used the approximation given by Coats and 

Redfern [3.41] to evaluate the integral in eq. (3.10). This method is based on the expression 

0

2
ln ln

E k R

T RT E



  

   
     

            (3.13) 
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The Eα can be calculated from the slope of the plot ln (β/Tα
2) vs. 1000/Tα for constant 

conversion, α. 

For MDSC, the measured heating rate becomes [3.42] 

γ = β + ATωcos ωt         (3.14) 

Where, β is the linear heating rate and second term is due to sinusoidal temperature modulation. 

AT and ω are amplitude and angular frequency (2π/T; T is time period) and t is the time of 

reaction.  

Here, having a positive heating profile is very important to avoid any ambiguity in the 

measurement of actual heat flow associated with crystallization kinetics. The above condition 

can be satisfied if,   

β ≥ ATω  or,  (ATω / β) ≤ 1 

Substituting the heating rate employed by MDSC (eq. (3.14)) in place of β in eq. (3.13), eq. 

(3.13) becomes 

0

2

( cos )
ln lnT

E k RA t

T RT E



  

     
     

          (3.15) 

0

2

cos
ln 1 lnT

E k RA t

T RT E



  

 



    
       

                            (3.16) 

Using properties of ln 

0

2

cos
ln ln 1 lnT

E k RA t

T RT E



  

 



    
        

           (3.17) 

Expanding and neglecting higher order terms, we get,   
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1

0

2
1

cos
( 1)

ln ln

n

n T

n

A t

E k R

T n RT E



  

 









 
            

   


                 (3.18) 

2

0

2

cos cos1
ln .... ln

2

T T
E k RA t A t

T RT E



  

   

 

       
            

             (3.19) 

Taking average over 1 complete cycle eq. (3.23) transforms to  

2

0

2
ln ... ln

2

T
E k RA

T RT E



  





    
        
           (3.20) 

Eq. (3.20) is the KAS equation by using non-linear heating rate of MDSC. 

Similar treatment has been done to the linear integral iso-conversional methods i.e., Kissinger 

method, Augis & Bennett’s method, Boswell method, Ozawa-Flynn-Wall (OFW); and linear 

differential iso-conversional methods i.e., Friedman, and  Gao & Wang. The factor (ATω/2β)2 

on L.H.S. of eq. (3.20) is supposed to cause non-linearity. 

i. Kissinger Method: This method assumes reaction rate to be maximum at peak 

temperature (Tp). It is used to calculate activation energy at a constant degree of conversion, α 

i.e., at Tα= Tp. Kissinger equation is 

0

2
ln ln

p p

k RE

T RT E

   
         

         (3.21) 

Kissinger equation for MDSC can be obtained by repeating eq. (3.15) to eq. (3.20) resulting in 

the final expression: 

2

0

2
ln ... ln

2

T

p p

k RA E

T RT E





     
                

      (3.22) 
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The slope and intercept the plot ln (β/Tp
2) vs. 1000/Tp provide the values of activation energy, 

E and the pre-exponential factor, k0 respectively. 

 

ii. Augis & Bennett’s Method: This method is an extension of Kissinger method and it is 

supposed to provide accurate values of kinetic parameters. Apart from peak temperature (Tp) it 

also incorporates onset temperature of crystallization (To) [3.29].  

 
 

 0ln ln
pp o

E
k

RTT T

 
    
 
           (3.23) 

For non-linear heating rate, on repeating steps in eq. (3.15) to eq. (3.20) we get, 

 
 

2

0ln ... ln
2

T

pp o

A E
k

RTT T





   
           

 

       (3.24) 

The values of E and k0 calculated respectively from the slope and intercept of the plot ln (β/ 

(Tp-To)) vs. 1000/Tp 

iii. Boswell Method:  As ((Tp-T0)/Tp) ≈ 1, Augis and Bennett methods may provide crude 

results. Boswell method, based on the following linear equation [3.30], overcomes the 

limitation of Augis and Bennett method. 

ln
p p

E
const

T RT


  

          (3.25) 

Again following eq. (3.15) to eq. (3.20), for non-linear heating rate, eq. (3.25) modifies to 

2

ln ...
2

T

p p

A E
const

T RT





 
     
            (3.26) 

The value of E as calculated from the slope of the plot ln(β/Tp) vs. 1000/Tp . 
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(b) Ozawa-Flynn-Wall (OFW) Method 

Ozawa-Flynn-Wall [3.25-3.26] solved eq. (3.10) by using Doyle’s approximation [3.42-3.45]. 

The OFW expression is 

ln 1.0516
E

const
RT





   

         (3.27) 

Following steps (3.15) to (3.20) for eq. (3.27) we get 

 
2

ln ... 1.0516
2

T
EA

const
RT










 
     
          (3.28) 

At Tα=Tp (Ozawa method) the value for activation energy is determined using eq. (3.27) and 

its modified expression for non-linear heating rate is obtained by replacing Tα=Tp in eq. 3.28. 

 

3.2.1.1.2 Linear Differential Iso-conversional Methods  

These methods use the differential of the transformed fraction to calculate the activation 

energy, Eα. From eq. (3.7) Friedman [3.31] derived a linear differential iso conversional 

expression 

 0ln ln ln ( )
Ed d

k f
dt dT RT



  

 
 

   
      

   

      (3.29) 

This method is also supposed to give accurate results of E, since it does not apply any 

mathematical approximation to the temperature integral. However, since it is a differential 

method its accuracy is limited by signal noise. 

Eq. (3.29) can be modified to eq. (3.30) by repeating eq. (3.15) to eq. (3.20),  
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 
2

0ln ... ln ( )
2

T
EAd

k f
dT RT



 


 



  
       

   
      (3.30) 

The values of E can be calculated from the slope of the plot ln (β (dα/dT)α) vs. 1000/Tα for 

constant conversion, α 

A method suggested by Gao & Wang [3.32] is a special case of Friedman method. The 

expression used by Gao & Wang is as followed 

 

ln
p p

d E
const

dT RT



 

    
           (3.31) 

For non-linear heating rate, again by performing steps in eq. (3.15) to eq. (3.20), eq. (3.31) 

changes to 

 

2

ln ...
2

T

p p

Ad E
const

dT RT






   
                    (3.32) 

The values of E can be calculated from the slope of the plot ln (β (dα/dTp)) vs. 1000/Tp. 

 

3.2.2 Iso-kinetic Methods 

Most of the iso-kinetic methods are based on the KJMA rate equation [3.46-3.50] given by  

 
( 1)

(1 ) ln(1 )
n nd

nk
dt


 


   

       (3.33) 

Where α is degree of conversion at a particular time t, n is Avrami (growth) exponent and k is 

the Arrhenius rate constant given by eq. (3.6) 

From equations (3.33) & (3.6) transformed fraction can be expressed as 
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0

01 exp exp

n
T

T

k E
dT

RT




  
     

   
        (3.34) 

The integral in eq. (3.13) does not have an exact solution and hence one has to switch to 

approximations. Various approximations have been used in literature to obtain an accurate 

solution of the integral [3.51-3.53]. On employing Gorbachev approximation [3.53] i.e., eq. 

(3.35) in eq. (3.34) we obtain eq. (3.36). 

2

0
2

T

E RT E RTRT
e dT e

E RT

 


        (3.35) 

2

01 exp exp
( 2 )

n

k RT E
dT

E RT RT




   
      

     

      (3.36) 

The values of E, n and k0 can be determined by fitting the experimental data of α to eq. (3.36) 

with the help of method of least square. 

 

3.2.3 Testing Techniques 

In order to get realistic values of kinetic parameters E and k0, one must test the validity of 

different models then use suitable method for interpretation of kinetic data.  

3.2.3.1 Malek Test 

The validity of KJMA model in non-isothermal conditions can be checked by various methods 

available in literature [3.33, 3.54-3.55]. Malek [3.33] proposed a simple method for checking 

the applicability of KJMA model. According to Malek the KJMA model is valid for studying 

the non-isothermal crystallization kinetics if the maximum of the function z(α) comes in the 
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range (0.61-0.65). In present study we have calculated both y(α) and z(α) as expressed in eq. 

(3.37) and (3.38) respectively. 

( ) exp( )y E RT           (3.37) 

2( )z T            (3.38) 

Where φ is the heat flow evaluated during the crystal growth, represented by the following 

equation 

0 exp( ) ( )cH k E RT f            (3.39) 

And  

 
( 1)

( ) (1 ) ln(1 )
n n

f n  


   
       (3.40) 

Where, ∆Hc is the enthalpy difference associated with crystallization process.  

If 0<αM<αP (where αM and αP are maximum of y(α) and z(α) respectively), and αP is not equal 

to zero, then Malek’s criteria suggests the equation for f(α) given by Sestak-Berggren [3.56], 

used for evaluating the kinetic parameters. 

Sestak-Berggren equation is given as: 

( ) (1 )M Nf              (3.41) 

Where, M and N are kinetic parameters, their ratio can be calculated as:  

(1 )

M

M

M

N







          (3.42) 

Considering S-B equation, the reaction rate can be given as: 
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exp (1 )M NEd
Z

dt RT


 

 
   

 
       (3.43) 

Another way of representing SB equation is: 

ln exp ln ln (1 )
M

N
Ed

Z N
dt RT


 

                  
     (3.44) 

The value of N can be obtained from the slope of the plot ln[(dα/dt) exp(Eα/RT)] versus ln 

[αM/N(1-α)]. The parameter M can then be calculated from equation (3.42).  

3.2.3.2 Master Plot 

For a more precise check of the above determined kinetic parameters, Master plot and heat 

flow curve match can be performed. In master plot method [3.34], considering α=0.5, the 

experimental and theoretical values of the appropriate reaction model can be compared by 

applying the following equation: 

 

 

 0.50.5

exp( )

(0.5) exp

E RTf d dt

f d dt E RT





 


        (3.45) 

The left side of the expression represents the theoretically calculated reduced reaction model 

with respect to the reaction function at α=0.5. The right side of the expression is calculated 

from the experimentally determined values of activation energy. 

3.2.3.3 Normalized Heat Flow Curves 

For a more rigorous check of applicability of KJMA equation, we have obtained the theoretical 

normalized heat flow curves by making use of calculated kinetic parameters i.e., E and n and 

equations (3.39) and (3.40). The values of local Avrami exponent are calculated using the 

following equation [3.57]  
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ln[ ln(1 )]
( )

( ) (1/ )

R
n

E T






  
 

        (3.46) 

3.3 Concept of Crystallization temperature 

Metallic glasses exhibits some characteristics temperatures i.e., the glass transition temperature 

(Tg), the onset of crystallization temperature (Tx), melting temperature (Tm), etc, when they are 

subjected to thermal treatment. These temperatures symbolize the commencement of various 

phase changes occurring in the amorphous alloy, such as Tg, Tx, and Tm indicates the initiation 

of glass transition, crystallization, and melting processes. The crystallization temperature (Tx) 

represents the onset of crystallization process and the peak crystallization temperature (Tp) 

represents the temperature of the peak of crystallization event. Both Tx and Tp shows a 

significant variation with heating rate (β). In order to study the kinetic nature of these transition 

temperatures, the variation of Tx and Tp with heating rate is studied for Cu-based metallic 

glasses. The information about Tx and Tp at different heating rates help in finding the activation 

energy of crystallization for metallic glasses by the use of various iso-kinetic and iso-

conversional methods as discussed in the previous sections. Further, the effect of substitution 

of Ti for Zr in Cu60Zr40 metallic glass is also discussed in terms of Tx. 

3.3.1 Variation of Tx and Tp with Heating Rate 

For understanding the crystallization behaviour and thermal stability of metallic glasses, it is 

crucial to understand the relationship between the crystallization temperatures and the applied 

heating rate. Many relations are available in literature to study temperature variation with 

heating rate, such as Kissinger equation, Ozawa equation, Lasocka equation, etc [3.25-3.30, 

3.58-3.59]. Most of the methods suggest linear relationship of Tx and heating rate, but this may 

not be true for all the cases. Both Tx and Tp shows a significant variation with heating rate (β). 
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Tx and Tp are shifted to higher temperatures with increasing heating rates, which implies that 

crystallization depends upon heating rate during continuous heating [3.60-3.61].  

The variation of crystallization temperature with heating rates can be understood in terms of 

power law equation [3.58], i.e, 

   0

y

xT T            (3.47) 

Where, β is the normalized heating rate, T0 is the Tx at a heating rate of 10Cmin-1. Normalization 

has been done with respect to heating rate of 10C min-1. 

Using eq. (3.47) exponent y can be calculated as 

 

 
 

1

10 10

1

log log
x

x

T
y

T

 
 

     
  

        (3.48) 

Where (Tx)α represents Tx at any arbitrary heating rate. In present study, we have taken α = 4, 

i.e., Tx at 40C min-1. And (Tx)1 represents Tx at 10C min-1 (i.e., T0).  

In a similar way Tp variation with β can be written as 

 0

y

pT T            (3.49) 

Where y can be calculated as 

 
 

 
1

10 10

1

log log
p

p

T
y

T

 


 
     
 
 

        (3.50) 

Here, (Tp)α and (Tp)1 are value of Tp at 40C min-1 and 10C min-1 respectively. 

3.4 Results and Discussions 

Cu-Zr-Ti alloys are found to have excellent thermal and mechanical properties [3.62-3.63]. 

Among various compositions of Cu-Zr-Ti alloys, Ti20Zr20Cu60 is found to have highest glass 
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forming ability (GFA) [3.62]. Due to its high glass forming ability, various studies have been 

carried out on this metallic glass for understanding its crystallization kinetics [3.64-3.66]. 

Hence, in present case, we have studied non iso-thermal crystallization of Ti20Zr20Cu60 metallic 

glass. 

The modulated DSC experiments clearly indicate two step crystallization process. The 

crystallized fraction, α was calculated from MDSC curves and variation of α with temperature, 

at all the studied heating rates, is shown in fig. 3.1(a) & fig. 3.1(b) for the two crystallization 

peaks respectively. Iterative least-square fitting method was used to fit the experimental data 

of fractional crystallization to eq. (3.36). Kissinger equation was used to obtain the initial 

estimates of E and k0. The sigmoidal variation of crystallized fraction (α), with temperature 

indicates that crystallization is occurring in bulk. Table 3.1 reports the values of E, k0, and n 

obtained by least square fitting method. 

Table 3.1 Values of Avrami (growth) exponent (n), pre-exponential factor (k0) and activation energy 

(E) obtained by least square fitting of fractional crystallization data for both the crystallization peaks. 

Heating 

Rate 

(0Cmin-1) 

KJMA (Eq. (3.36)) 

Peak 1 Peak 2 

n k0 (1022 s-1) E (kJmol-1) n k0 (1017 s-1) E (kJmol-1) 

1 1.91 1.12 338 2.34 3.44 287 

2 1.93 4.27 346 2.00 2.28 284 

4 1.90 1.33 338 2.08 1.85 282 

8 1.77 1.05 336 2.01 1.46 280 
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(a) 

 

(b) 

 
Fig. 3.1: Crystallized fraction as a function of temperature for Ti20Zr20Cu60 metallic glass at different heating 

rates; (a) Peak-1, (b) Peak-2: symbols represent experimental points and solid lines show the least square fitted 

curve using eq. (3.36) 
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Figure 3.2 represents the variation of y(α) and z(α) with crystallized fraction α. As shown in 

the plots, the maximum of z(α) falls in the range (0.50 - 0.59) and (0.55 – 0.60) for peak 1 and 

2 respectively, whereas that of y(α) falls in the range (0.27 – 0.35) and (0.38 – 0.45) respectively 

for peak 1 and 2. These values are less than that predicted by Malek [3.33]. Hence in present 

case, KJMA model cannot be used for the study of non-isothermal crystallization kinetics. 

Figures 3.3(a) - (h) represent the experimental normalized heat flow and the theoretically 

calculated normalized heat flow using equations (3.39) and (3.40). For iso-kinetic methods the 

values of E, n, and k0 used, are those obtained from the least square fitting method and are 

listed in table 3.1. For iso-conversional methods, E and k0 values used are calculated by KAS 

method. 
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(a) 

 

 

(b) 

 

Fig. 3.2: Normalized y(α) and z(α) with crystallized fraction α for different heating rates; (a) Peak-1, (b) Peak-2 
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(d) 

 



Chapter-3 
Crystallization Kinetics of Metallic Glasses 

 
 

 

 61 

 

(e) 

 

 

 

 

 

(f) 
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(g) 

 

(h) 

 

Fig. 3.3: Normalized heat flow curves at different heating rates; (• • • •) experimental, (- - - -) iso-kinetic results, 

(—) iso-conversional results.(a-d) Peak-1: (a) 10Cmin-1, (b) 20Cmin-1, (c) 40Cmin-1, (d) 80Cmin-1; (e-h) Peak-2: 

(e) 10Cmin-1, (f) 20Cmin-1, (g) 40Cmin-1, (h) 80Cmin-1 
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It can be seen from figures 3.3 (a)-(h) that iso-conversional and iso-kinetic methods show a 

close match to each other. Both of them show a deviation from the experimental data at lower 

heating rates. As heating rate increases, the theoretically calculated normalized heat flow 

values matches with the experimental data. Further, for all heating rates the calculated values 

deviate at both the tails of the peak, but show a close match in intermediate temperature range. 

This deviation at the peak tails may be due to high errors in the base line interpolation for peak 

tails [3.33]. It can also be noted that before peak crystallization temperature the normalized 

heat flow calculated by iso-conversional method matches more accurately with the 

experimental results, except for fig 3.3(b). After the near peak region, the iso-kinetic method 

provides better results. It can be understood in terms of nucleation and growth processes. 

During initial stages of crystallization process nucleation and growth occur simultaneously, but 

after the peak nucleation process becomes negligible and crystallization is dominated by 

growth process. Thus, the entire crystallization process is a complex phenomenon and hence it 

cannot be explained completely by iso-kinetic methods. For understanding this complex 

process, the dependence of E on α is studied by various iso-conversional methods.  

3.4.1 Linear Integral Iso-conversional Methods 

The variable values of Eα and the k0 are calculated at different degree of conversion (α) by 

using KAS and OFW methods, and the values are shown in table 3.2. Fig. 3.4 (a) & (b) and 

Fig. 3.5 (a) & (b) shows the KAS and OFW plots for both the crystallization peaks.  

The factor (ATω/2β)2 on L.H.S. of eq. (3.20) is coming out to be almost constant for all heating 

rates. Hence, its contribution to non-linearity is negligible, which is clearly indicated by figures 

3.4(a) & 3.4(b). Typically (ATω/β) ≈1, for e.g., for β =10 C/min, AT =0.16, ω = (2π)/p, where p 

is time period (=60 s); (ATω/β) =1. 
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Table 3.2 Local activation energies (Eα) at different degrees of conversions, α for different methods 

 

α 

Eα (kJ/mol) 

KAS OFW Friedman 

Peak-1 Peak-2 Peak-1 Peak-2 Peak-1 Peak-2 

0.1 418 ± 6 390 ± 5 407 ± 7 383 ± 5 420 ± 3 342 ± 1 

0.2 393 ± 5 341 ± 4 383 ± 5 337 ± 4 409 ± 3 335 ± 1 

0.3 559 ± 0 321 ± 4 548  ± 0 316 ± 7 403 ± 2 329 ± 1 

0.4 415 ± 7 320 ± 4 407 ± 7 316 ± 7 392 ± 0 318 ± 1 

0.5 418 ± 7 319 ± 4 407 ± 7 316 ± 4 417 ± 4 306 ± 1 

0.6 392 ± 5 321 ± 4 383 ± 5 316 ± 4 385 ± 1 306 ± 1 

0.7 433 ± 7 341 ± 4 407 ± 7 337 ± 4 369 ± 1 307 ± 1 

0.8 416 ± 7 319 ± 4 407 ± 7 316 ± 4 365 ± 1 296 ± 2 

0.9 392 ± 5 319 ± 4 383 ± 5 316 ± 4 355 ± 2 305 ± 5 

1 390 ± 5 320 ± 4 383 ± 5 316 ± 4 304 ± 4 358 ± 7 

 

 

Isoconversional methods also includes some methods that provide E values only at the peak 

crystallization temperature (Tp). These methods include Kissinger method [3.27], Augis- 

Bennette method [3.29], Boswell method [3.30], Ozawa method [3.25], etc. The reaction rate 

is assumed to be highest at the peak crystallization temperature, hence, if the value of E is 

known at that temperature, entire crystallization process can be controlled in order to achieve 

desired degree of crystallinity.  
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(a)  

 
 

 

 

 

 

(b) 

 
Fig. 3.4: KAS plot for α =0.3; (a) Peak-1, (b) Peak-2 
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(a) 

 

 

 

 

 

(b) 

 

Fig. 3.5: OFW plot for α =0.3; (a) Peak-1, (b) Peak-2 
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Kissinger equation calculates activation energy at a constant α i.e., at Tα= Tp only using 

equation (3.21). For non-linear heating rate equation 3.22 is used to calculate E and k0 values, 

and the so obtained values are reported in table 3.3. Fig. 3.6 (a) & (b) shows Kissinger plots 

for first and second peak respectively. Augis & Bennett equation subsumes the onset of 

crystallization temperature (T0) along with the Tp. Equation (3.24) represents the Augis & 

Bennett equation for non-linear heating rate, and its plots are shown in fig 3.7 (a) & (b) for 

both peaks. This method is also applicable to heterogeneous reactions. But, as ((Tp-T0)/Tp) ≈ 1, 

it may provide crude results. This limitation of Augis & Bennett method is overcome by 

Boswell method, which is shown in eq. (3.26). Boswell plots for both crystallization process 

are shown in fig 3.8 (a) & (b). Ozawa methods is a special case of OFW method, which finds 

E values only at Tp. Ozawa plots are shown in fig. 3.9 (a) & (b) for both peaks calculated by 

using eq. (3.28). The values of E and k0 obtained by Augis & Bennett, Boswell, and Ozawa 

methods are shown in table 3.3.  
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(a) 

 

 

 

(b) 

 

Fig. 3.6: Kissinger plot; (a) Peak-1, (b) Peak-2 
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(a) 

 

(b) 

 

Fig. 3.7: Augis & Bennett’s plot; (a) Peak-1, (b) Peak-2 
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(a) 

 

(b) 

 

Fig. 3.8: Boswell plot; (a) Peak-1, (b) Peak-2 
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(a) 

 

(b) 

 

Fig. 3.9: Ozawa plot; (a) Peak-1, (b) Peak-2 
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Table 3.3 Activation energies (E) and pre-exponential factor (k0) for different methods 

Method E(kJ/mol) k0 (s-1) 

Peak 1 Peak 2 Peak 1 Peak 2 

Kissinger 392 ± 5 320 ± 4 5.67 х 1022 3.93 х 1016 

Augis & Bennett’s 

method 

312 ± 9 282 ± 3 1.26 х 1020 1.38 х 1017 

Boswell 398 ± 5 324 ± 4 - - 

Ozawa 383 ± 7 316 ± 5 - - 

Gao & Wang 385 ± 4 306 ± 1 - - 

 

 

3.4.2 Linear Differential Iso-conversional Methods 

Friedman [3.31] derived an expression for estimation of activation energy of crystallization 

based on the differential of the transformed fraction. Since it does not require any 

approximation for temperature integral, accurate results of E are expected to be obtained. The 

expression given by Friedman is shown in eq. (3.29). It provides variable value of E for 

different α, that are reported in table 3.2. Fig. 3.10 shows a Friedman plot at α=0.3. 

 

A special case of Friedman’s equation involves calculation of E only at Tp. This method was 

given by Gao and Wang [3.32]. Fig. 3.11 shows Gao and Wang plot obtained using eq. (3.31), 

and the so obtained values of E are reported in table 3.3.  
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(a) 

 

(b) 

 

Fig. 3.10: Friedman plot for α =0.3; (a) Peak-1, (b) Peak-2 
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(a) 

 

(b) 

 

Fig. 3.11: Gao & Wang plot; (a) Peak-1, (b) Peak-2 
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(a) 

 

(b) 

 

Fig. 3.12: Local activation energies (Eα) at different α from different methods; (a) Peak-1, (b) Peak-2 
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The variation of local activation energies (Eα) with the crystallized fraction, α has been shown 

in fig. 3.12(a) & fig. 3.12(b) respectively for peak-1 and peak-2 by using three different iso-

conversional methods, namely KAS, OFW, and Friedman. The values of local activation 

energies (Eα) at different α, are reported in table 3.2. For both the peaks KAS and OFW methods 

show similar variations in Eα with α, provided the Eα values for OFW were smaller than that 

obtained by KAS method, whereas, Friedman points varied quite differently as compared to 

the KAS and OFW points.  

For peak-1, all of the three methods show substantial variation with α. KAS and OFW methods 

show a sudden increase in Eα at α =0.3. Then there is a decrease in Eα values till α =0.6, followed 

by a small increase at α =0.7 and then it further decreases, whereas Friedman points shows a 

continuous decrease till end except for α =0.5. Therefore, the primary exothermic process can 

be interpreted as a multiple mechanism process. For peak-2, Eα values obtained from KAS and 

OFW methods, first decreases from α=0.1 to α =0.3, then remains almost constant from till α 

=1 except for a sudden increase at α =0.7. The second exothermic event can also be explained 

in terms of a multiple step mechanism, since Eα values varied considerably with α for all three 

methods.  

3.4.3 Heating Rate Dependence of Crystallization 

Temperatures  

The crystallization temperatures (Tx and Tp) show a strong dependence on the heating rates 

employed. Tx and Tp get shifted to higher temperatures with an increase in heating rate 

employed [3.60-3.61]. Theoretically, the values of Tx and Tp for Cu60Zr20Ti20 metallic glass are 

calculated using eq. (3.47) and (3.49) respectively, and the efficacy of this relationship is 

confirmed by fitting it to the experimental values of Tx and Tp obtained using MDSC heating 
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experiments. Fig. 3.13 represents the variation of theoretically calculated Tx values with heating 

rate β for both the crystallization peaks. It can be seen that the calculated Tx values varies in 

accordance with the experimental Tx values. The variation of theoretically calculated and 

experimental Tp values is shown in figure-3.14, for both crystallization peaks. Both the 

calculated and experimental values of Tp are found to be in good agreement with each other. 

Hence, it can be understood that the power law equation is a suitable tool for understanding the 

variation of crystallization temperatures with heating rate. Using this concept of variation of Tx 

(or Tp) with heating rate (β), the activation energy for the crystallization of metallic glasses can 

be determined using different iso-kinetic and iso-conversional methods. 

 

Fig. 3.13: Variation of onset of crystallization temperature (Tx) with heating rate (β): (     ) represents 

theoretically calculated results using Eq. (3.47); ( ,    ) represents experimental points for peak 1 & 2 

respectively for Cu60Zr20Ti20 metallic glass 

Tx and Tp are inversely proportional to the relaxation time which in turn varies inversely with 

heating rate (β). Hence, with increase in heating rate, Tx and Tp increases. At smaller heating 

rates, the molecules get more time to relax and rearrange themselves into an ordered structure 

and hence the metallic glass starts crystallizing at a lower temperature, and vice-versa.  
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Another factor that affects the crystallization temperature of a metallic glass is the atomic size 

mismatch. A greater size mismatch among the constituent atoms is expected to cause to a higher 

value of Tx. Other factors responsible for variation in Tx includes reduction in free volume & 

diffusivity, electron to atom ratio and differences in electro-negativities. 

 
Fig. 3.14: Variation of peak crystallization temperature (Tp) with heating rate (β): (       ) represents theoretically 

calculated results using Eq. (3.49); ( ,    ) represents experimental points for peak 1 & 2 respectively for 

Cu60Zr20Ti20 metallic glass 

Table 3.4 Experimental Tx and Tp values at different heating rates for Cu60Zr40 and Cu60Zr20Ti20 metallic 

glasses for peak 1 

Cu60Zr40 [3.67] Cu60Zr20Ti20 

Heating rate 

(0Cmin-1) 

Tx (K) Tp (K) Heating rate 

(0Cmin-1) 

Tx (K) Tp (K) 

5 705.26 715.6 1 705.69 713.39 

10 707.19 723 2 713.11 719.85 

15 709.12 726.5 4 717.34 727.89 

20 711.05 729.6 8 723.91 734.72 
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Table 3.4 represents experimental Tx and Tp values at different heating rates for Cu60Zr40 and 

Cu60Zr20Ti20 metallic glasses. It can be observed that the characteristics temperatures shift 

towards higher values with increase in heating rates and number of components. A higher value 

of Tx represents greater GFA of metallic glass.  In present case Tx value at β =50Cmin-1 for 

binary system is equivalent to the value of Tx at β =10min-1 for ternary system. This indicates 

that the substitution of Ti to the binary metallic glass shifts the value of Tx to a higher 

temperature. It implies that a ternary alloy is a better glass former as compared to its respective 

binary counterpart. Hence, the GFA of Cu-Zr binary alloy enhances significantly by the 

addition of Ti. Fig. 3.15 shows a linear variation of Tx and Tp with heating rate for Cu60Zr40 

metallic glass, given by the expression: 

Tx (or Tp) = A + B β         (3.51) 

With A and B as the slope and intercept of the plot and β is the heating rate employed. 

 

Fig. 3.15: Variation of Tx and Tp with heating rate for Cu60Zr40 metallic glass [3.67] 
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Glass formation is favoured by the three empirical rules given by Inoue et al [3.68]: (i) number 

of components, (ii) size mis-match between the various components, and (iii) negative heat of 

mixing. More number of components makes the structure of glassy alloy denser and randomly 

packed with a short range order and thereby increases its GFA. Hence, ternary alloy 

Cu60Zr20Ti20 is a better glass former than Cu60 Zr40. Secondly, the GFA of metallic glasses 

increases if the size difference between different components is more (>12%). With the 

addition of elements of different radii, it becomes difficult for the components to acquire their 

stable configuration due to increase in the entropy of disorder. In present case for Cu60Zr20Ti20 

metallic glass, the atomic radius of Cu, Zr and Ti are 0.128 nm, 0.160 nm and 0.147 nm 

respectively. This size difference is sufficient to make the interchangeability between the 

different components difficult. Large size difference destabilizes the crystalline phase by 

increasing the internal energy of the crystalline solid solution. The prime root of metallic glass 

formation lies in destabilizing the competing crystalline phase. This destabilization of 

crystalline phase can be accomplished by atomic pair formation between unlike components 

with large size difference [3.69-3.71]. Formation of local crystalline structure, in alloys with 

same atomic sized components, is shown by Yun et al [3.71]. Hence, a greater GFA is crucially 

favoured by a large size mis-match and a large negative heat of mixing. The substitution of Zr 

by Ti makes the interchangeability among the components of the alloy easy, since Ti and Zr 

belong to the same group in periodic table and share common characteristics. Hence Ti 

becomes a suitable candidate for changing composition of metallic glass from Cu60Zr40 to 

Cu60Zr20Ti20. Thirdly, negative heat of mixing favours glass formation by coercing the 

formation of atomic pair between different components, which in turn increases the difficulty 

of atomic rearrangement in a glassy alloy during heating. The heats of mixing for atomic pairs 

Cu-Zr, Zr-Ti and Ti-Cu are -23, 0 and -9 kJ mol-1 respectively [3.72]. These interactions are 

much weaker as compared to those atomic interactions in quaternary and quinary alloys such 
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as Zr55Cu30Al10Ni5 and Zr41Ti14Cu12.5Ni10Be22.5. The heats of mixing for atomic pairs in 

Zr55Cu30Al10Ni5 and Zr41Ti14Cu12.5Ni10Be22.5 alloys are 0, -23, -49, -43, -44, -22, -9, -35 and -

30 kJmol-1 respectively for Zr-Ti, Zr-Cu, Zr-Ni, Zr-Be, Zr-Al, Al-Ni, Ti-Cu, Ti-Ni and Ti-Be 

[3.72]. These atomic interactions can also be understood in terms of pre-exponential factor (k0). 

k0 provides information about the number of jumps nuclei make per unit time in order to 

overcome the activation energy barrier. In general, it gives information about atomic mobility. 

k0 can be obtained by least square fitting of the crystallized fraction versus temperature curve.  

The values of k0 for first and second peaks, calculated by the iterative least-square fitting to the 

experimental data of fractional crystallization for Cu60Zr20Ti20 metallic glass, are found to be 

of the order 1022 and 1017 s-1 respectively (table 3.1). Typical Zr based BMGs exhibit k0 of the 

order of 1012 s-1 for first crystallization peak, such as the value of k0 for Zr55Cu30Al10Ni5 and 

Zr41Ti14Cu12.5Ni10Be22.5 BMGs are 4.2 x1012s-1 and 1.0 x 1012s-1 respectively [3.60, 3.73]. This 

indicates that the value of k0 for Cu60Zr20Ti20 metallic glass is much higher than that of Zr-

based quaternary and quinary BMGs. This may be due to the reason that quaternary and quinary 

BMGs are supposed to have higher degree of dense random packing as compared to that of the 

ternary alloy. Further k0 is greatly influenced by the configuration and atomic interactions 

between the various components of the alloy. The atoms of an alloy, with high degree of dense 

random packing, require greater energy to overcome the interatomic interactions. The mobility 

of atoms in alloys with strong interatomic interactions is less than the alloys with weak 

interatomic interactions. The heats of mixing of atomic pairs in quaternary and quinary BMGs 

are higher than that of the ternary alloy. Hence Zr55Cu30Al10Ni5 and Zr41Ti14Cu12.5Ni10Be22.5 

BMGs exhibit relatively smaller values of k0 as compared to Cu60 Zr20Ti20 metallic glass. 
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3.5 Conclusions 

3.5.1 Crystallization Kinetics of Ti20Zr20Cu60 Metallic Glass 

The non-isothermal crystallization kinetics for Ti20Zr20Cu60 metallic glass was studied by iso-

conversional methods. The activation energy required for primary crystallization is found to be 

more than activation energy required for subsequent crystallization peak by all the iso-

conversional methods. Iso-conversional methods provide values of activation energy, Eα as a 

function of α, which is not possible by any of the iso-kinetic methods. But the Avrami (growth) 

exponent that gives information about the dimensionality of crystal growth can be calculated 

by the use of iso-kinetic methods. Both methods of calculating the kinetic parameters for 

crystallization process provide fairly accurate results near peak crystallization temperature as 

seen from fig. 3.3 (a) - (h). Though fig 3.1 shows that iso-kinetic method provides better fitting 

to the experimental α value, but the complexity of crystallization event can be better understood 

by iso-conversional methods. Hence, the combination of both methods can be used for studying 

the kinetics of crystallization process. KAS, OFW, and Friedman methods provide activation 

energies dependent on α. The values of Eα obtained by KAS and OFW methods lie close to 

each other, whereas Friedman method shows a different variation of Eα with α. For peak-1, Eα 

values show an irregular variation with α. For peak-2 also there is a substantial decrease in Eα, 

from α =0.1 to α =0.3. Afterwards, it remains constant except for α =0.7.  Hence, both 

crystallization events are multiple mechanism processes. Also, the term that is expected to 

cause non-linearity, i.e., (ATω/2β)2 is almost constant for all heating rates. Thus, the non-linear 

heating rate does not change the nature of different linear iso-conversional methods. The linear 

behaviour of the various expressions remains intact. Hence, MDSC can be conveniently used 

for studying kinetics of crystallization of metallic glasses. 
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3.5.2 Heating Rate Dependence of Crystallization 

Temperatures 

In order to study the stability of metallic glasses, it is required to understand their behaviour 

towards crystallization event. Crystallization is characterized by the onset of crystallization 

temperature (Tx) and peak crystallization temperature (Tp). This study provides an insight of 

heating rate and composition dependence of crystallization temperature. Both The 

crystallization temperature (Tx) and the peak crystallization temperature (Tp) are found to 

follow a power law variation with heating rate for Cu60Zr20Ti20 metallic glass. It also provides 

information about the heating rate suitable for crystallization of a melts. In absence of sufficient 

experimental data one can make use of theoretical formulae for deriving useful conclusions 

regarding the kinetics of crystallization. Cu60Zr40 binary alloy follows a linear variation for both 

the characteristic temperatures i.e., Tx and Tp respectively. Further, an addition of Ti to binary 

alloy increases the characteristic temperatures, which enhances the GFA. Hence, an increase 

in number of components increases the GFA of a metallic glass. 
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